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Abstract: Spatiotemporal fusion in remote sensing plays an important role in Earth science appli-
cations by using information complementarity between different remote sensing data to improve
image performance. However, several problems still exist, such as edge contour blurring and uneven
pixels between the predicted image and the real ground image, in the extraction of salient features
by convolutional neural networks (CNNs). We propose a spatiotemporal fusion method with edge-
guided feature attention based on remote sensing, called STF-EGFA. First, an edge extraction module
is used to maintain edge details, which effectively solves the boundary blurring problem. Second,
a feature fusion attention module is used to make adaptive adjustments to the extracted features.
Among them, the spatial attention mechanism is used to solve the problem of weight variation in
different channels of the network. Additionally, the problem of uneven pixel distribution is addressed
with a pixel attention (PA) mechanism to highlight the salient features. We transmit the different
features extracted by the edge module and the encoder to the feature attention (FA) module at the
same time after the union. Furthermore, the weights of edges, pixels, channels and other features are
adaptively learned. Finally, three remote sensing spatiotemporal fusion datasets, Ar Horqin Banner
(AHB), Daxing and Tianjin, are used to verify the method. Experiments proved that the proposed
method outperformed three typical comparison methods in terms of the overall visual effect and five
objective evaluation indexes: spectral angle mapper (SAM), peak signal-to-noise ratio (PSNR), spatial
correlation coefficient (SCC), structural similarity (SSIM) and root mean square error (RMSE). Thus,
the proposed spatiotemporal fusion algorithm is feasible for remote sensing analysis.

Keywords: convolutional neural network; remote sensing; spatiotemporal; image fusion; feature
attention; edge extraction

1. Introduction

The continuous launches of satellites enable a drastic increase in remote sensing data,
and new sensors have been developed in the direction of high spectral, spatial and tempo-
ral resolution. These sensors include those used by the Landsat, Sentinel and Moderate
Resolution Imaging Spectrometer (MODIS) series satellites. However, remote sensing
images are limited in spatial, temporal and spectral resolution due to different sensors.
Since the 1990s, researchers have been using fusion techniques to combine information
from multiple bands or satellites for scientific purposes [1,2]. Through continuous re-
search by scholars, many methods involving spatiotemporal fusion [3,4], spatial-spectral
fusion [5] and spatio-temporal-spectral integration [6] have emerged, which have greatly
decreased their restrictions and thus greatly improved the application of imagery. Such
applications include simulating the soil water content in heterogeneous areas [7], mapping
evapotranspiration [8], land use change [9] and extracting abandoned land areas [10].
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In studying the spatiotemporal characteristics of land surface features, the spatial and
temporal resolutions of satellite sensors have very important effects, but a remote sensing
image acquired by a single satellite sensor may be limited by mutual spatial and temporal
resolution constraints. Spatiotemporal fusion [11] is a combination of heterogeneous satel-
lite images with high spatial (Landsat) and high temporal (MODIS) resolution to generate
dense sequence images with high temporal and spatial resolution using spatiotemporal
fusion algorithms. It can be used to effectively generate high spatiotemporal resolution
images at low cost and with high efficiency. To date, domestic and foreign scholars have
performed extensive research on spatiotemporal fusion algorithms for different data types.
However, there are still some problems, such as edge contour blurring and uneven pixels
between the predicted image and the real ground image, in the extraction of salient features
by convolutional neural networks (CNNs). Therefore, it would be meaningful to develop a
method to increase the edge information and focus on the effective information of domains
from different remote sensing images to obtain fused images with high spatiotemporal
resolution. In this study, we propose such a fusion method for the spatiotemporal fusion of
remote sensing images and apply it to three different real remote sensing datasets.

2. Related Work

To date, domestic and foreign scholars have performed extensive research on spatiotem-
poral fusion algorithms for different data types. In recent years, some scholars [3,4,12,13]
have provided detailed reviews of spatiotemporal fusion methods and have sorted and
classified the existing methods. At present, most scholars classify them into methods based
on weight function, decomposition, model and deep learning.

The spatial and temporal adaptive reflectance fusion model (STARFM) [14] was the
first to fuse Landsat and MODIS images with weighted spatiotemporal data and is one of
the most widely used algorithms for spatiotemporal fusion. However, the method has some
limitations when dealing with complex scenes, and many improved methods are available,
such as the enhanced version of STARFM (ESTARFM) [15], the spatiotemporal adaptive
algorithm for mapping reflectance change (STAARCH) [16] and spatiotemporal restraint
unmixing (STRUM) [17]. ESTARFM [15] is an enhanced spatiotemporal adaptive surface
reflectivity fusion model that can increase the accuracy of extraction in different image
regions, thus broadening the application of spatiotemporal fusion algorithms for complex
scenes. STAARCH [16] is an adaptive spatiotemporal algorithm that maps reflectivity
change to detect change points. STRUM [17] is also based on the basic framework of
STARFM and predicts changes in ground objects between reference and time phases
through mixed-pixel decomposition.

Another scholar proposed a decomposition-based spatiotemporal fusion method,
spatial filtering, regression model fitting and residual compensation (FIT-FC) [18] in a new
approach. The linear regression (LR)-based fusion algorithm combines spatial filtering
and residual compensation to classify spatiotemporal images and has yielded satisfactory
results. At present, flexible spatiotemporal data fusion (FSDAF) [19] is also used in a
wide range of decomposition methods, and it enables spatiotemporal image prediction
with improved spatial detail by combining spectral decomposition and thin-slab sample
interpolation concepts to capture the reflectance changes caused by land cover transitions.
Additionally, this approach can maintain more spatial detail than can STARFM. Based on
this algorithm, scholars also proposed an enhanced FSDAF (EFSDAF) algorithm [20], an
improved flexible spatiotemporal data fusion (IFSDAF) approach [21] and other algorithms
to improve the image fusion capability of FSDAF. In recent years, several scholars have
proposed graphics processing unit (GPU) [22] algorithms for parallel computing, aiming to
speed up existing algorithms such as cuSTARFM and cuFSDAF [23].

In the last decade, algorithms that utilize machine models have been increasing
and have been heavily researched. Examples include spatiotemporal reflectance fusion
via sparse representation (SPSTFM) [24], compression sensing for spatiotemporal fusion
(CSSF) [25] and so on. Huang et al. [24] proposed the first spatiotemporal reflectance fusion
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via sparse representation (SPSTFM) by using spatiotemporal image pairs, building a priori
high temporal resolution images and a priori high spatial resolution images, considering
the reflectance variation relationship of the images through dictionary learning, and finally
obtaining high temporal resolution time series images. However, there are still some issues
with maintaining spectral fidelity and predicting spatial details. Chen et al. [26] proposed
a hierarchical spatiotemporal adaptive fusion model (HSTAFM) that adaptively fuses
multisensor features to accurately capture seasonal changes and land use/cover changes
by enhancing coarse-resolution images with super-resolution information based on sparse
representations, followed by preselection for temporal changes, and selecting similar pixels
using a two-level strategy. On this basis, Li et al. [27] designed a single-pair learning-based
SPSTFM method, combining spatial and temporal expansion models to increase the training
set, improve the spatial resolution of high temporal resolution by improving dictionary
learning, combine high-pass information obtained by the module fused with high spatial
resolution imagery, and successfully improve the accuracy of spatiotemporal prediction.
This method improves the prediction effect of SPSTFM.

CNNs have been applied to spatiotemporal image fusion deep learning methods [28,29],
and the fusion performance has been improved. The deep CNN for spatiotemporal fusion
(STFDCNN) [30] reconstructs spatial resolution images from temporal resolution images
using a spatiotemporal fusion method involving deep CNNs; notably, nonlinear mapping
super-resolution-based CNNs are less efficient than the sparse representation method.
However, the spatial resolution of Landsat and MODIS images is quite different, so using
high temporal resolution images to reconstruct high spatial resolution images will bring
instability. Li et al. [31] used CNNs to calculate reflectance variations between images to
model the heterogeneity of fine pixels from high temporal resolution images, providing
a stable and less time-consuming strategy. Li et al. [32] also adopted a spatiotemporal
fusion model driven by sensor-bias (BiaSTF) and further used a CNN to learn the bias
information between two images, alleviating the spectral and spatial distortion problems in
traditional methods. Both of these methods effectively enhance the feature linkages between
images and improve image fusion. Spatial information loss is an obvious problem in high
temporal resolution images, and scholars have proposed a variety of two-stream CNNs. Liu
et al. [33] used a two-stream CNN (StfNet) that considers temporal correlation and temporal
consistency between image sequences and can predict fine images not only based on
structural similarity (SSIM) but also on texture information in temporally adjacent images
to predict fine images and perform spatiotemporal fusion in a CNN-based super-resolution
process. Chen et al. [34] designed a combination of a methods using multiscale dual-stream
CNNs (STFMCNNs) and atrous spatial pyramid pooling (ASPP) to extract image pair
multiscale features, additionally exploiting complementary-based temporal dependencies
and temporal consistency information, which can accurately predict differences to obtain
predicted images that are similar to real images. Jia et al. [35] also used a mapping method
based on temporal variability and spatial information, combining forward and backwards
predictions to generate prediction images with high spatial and temporal resolution, with
great predictions of vegetation phenology and land use change ability. Tan et al. [36]
designed a deep convolutional spatiotemporal fusion network (DCSTFN). It requires an
artificial design to build a nonlinear mapping relationship and the extracted features to
reconstruct the predicted image. Because the DCSTFN requires a hypothetical equation for
mapping between different images, an enhanced DCSTFN (EDCSTFN) was proposed [37],
and no hypothetical equation is required in this approach. The difference between reference
data and predicted data is learned entirely from the actual data. In addition, a new
composite loss function was constructed, and it significantly improved upon the traditional
function. Overall, the EDCSTFN model displayed superior performance compared to
traditional models, with higher accuracy, visual quality and robustness.

However, there are still some problems, such as edge contour blurring and uneven
pixels between the predicted image and the real ground image in the extraction of salient
features by CNN. Considering the problems above, we designed a remote sensing spa-
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tiotemporal fusion network based on edge information–guided feature fusion attention
(called EIFA-STF). It can reduce information loss during network layer transfers while
focusing on the key available information. The model is validated with three remote sens-
ing spatiotemporal fusion datasets, namely Ar Horqin Banner (AHB), Daxing and Tianjin,
which include different types of variations and large differences in MODIS and Landsat.
The generalization and robustness of the STF-EGFA model are fully validated by compar-
ing our proposed method with three representative methods. Our main contributions are
as follows:

1. We design a spatiotemporal fusion method with edge-guided feature attention based on
remote sensing, called STF-EGFA, which strengthens the connections among features in
different layers and reduces information loss while utilizing multilayer features.

2. The edge extraction module in STF-EGFA is mainly designed to decrease the boundary
information loss in the process of feature extraction and improve the retention of edge
details at high spatial resolution to ensure that the predicted spatiotemporal images
retain more saliency.

3. The design of the feature attention (FA) module in STF-EGFA focuses on the key avail-
able information by using an FA mechanism guided by edge information. Information
weighting and pixel heterogeneity are optimized among different channels in the
network to provide more accurate predictions of spatiotemporal changes.

The rest of this paper is organized as follows: The second part introduces each module
of EIFA-STF. Section 3 introduces the specific implementation process of the method in
detail and evaluates the method objectively and subjectively with other typical remote
sensing spatial data fusion methods. Section 4 discusses and analyses the method through
an ablation test. Section 5 concludes this paper and provides an outlook on future work.

3. Methods

The basic framework of STF-EGFA follows the overall EDCSTFN network architec-
ture [37]. The edge extraction module and FA module are added on the basis of the original
network, as shown in Figure 1, with a dual encoder–decoder network structure and a total
of five network modules. The first encoder, called the FEncoder, is mainly used to extract
features from images with high spatial resolution. The second encoder, called the REncoder,
is mainly used to extract the feature differences between high spatial resolution images
and high temporal resolution images. The third module is the edge extraction module,
which is mainly used to extract the edge features of the input high spatial resolution images.
The fourth module is the FA module, which includes a combination of channel attention
(CA) and pixel attention (PA) mechanisms and is mainly used to solve problems related
to different weights among different channels and heterogeneous pixel distributions in
different images. The fifth module is the reconstruction decoder used to generate the
prediction image.

First, two groups of images at t0 and t2 and the MODIS image at t1 needing to be
predicted were simultaneously input into the encoding modules. As shown in Figure 2,
Landsat images at t1 were predicted through t0 and t2 data, and real Landsat images of
t1 at the predicted time were input into the network as labels to calculate feature losses.
Second, the input Landsat data at t0 and t2 were used to extract edge information through
the edge extraction module, and the extracted edge information was added to the encoder
information. Next, by inputting the features extracted from the two encoders and the
edge feature module into the FA module, the spatiotemporal features to be predicted
were generated. Finally, the decoder reconstructed the obtained features to generate the
predicted image.
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Figure 2. Predicted image based on spatiotemporal fusion, in which all images of t0 and t2 and the
MODIS at time t1 are known images, and the Landsat image of t1 is the prediction image.

The whole process can be expressed by the following equation:

Lt1 = F(s(f(Ltk) + r(Ltk, Mt1, Mtk) + e(Ltk))) (k 6= 1) (1)

where f is the FEncoder encoder, r is the REncoder residual encoder, e is the edge extraction
module, s is the FA module, and F is the reconstruction decoder.

3.1. Edge Feature Extraction

Inspired by previous edge feature extraction methods [38], an edge feature extraction
module was designed with partial edge information lost, as shown in Figure 3. EdgeDetect
contains four parts: the spatial gradient, Maxpool, Avgpool and Conv2d. By using the
edge guidance module, the edge features of the image are enhanced to preserve the detail
information in the input image and to reduce noise and artefacts while preserving the
detail information to achieve a predicted image with abundant detail features. First, the
spatial gradient operator is used to identify the horizontal and vertical edge features of the
image, and to further enhance the gradient information, the edge enhancement operator
S is applied to the available gradient information. Finally, the extracted edge feature
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dimensions are converted to feature maps with the same dimension as the encoder output
through the convolution layer. The edge enhancement operator S is expressed as follows:

S(∇L) = max︸︷︷︸
j=J

(max︸︷︷︸
i=I

∇L(i + 1, j + 1),∇L(i, j)) (2)

where∇L is the gradient feature of the input image, I = {1 . . . , m− 1} and J = {1 . . . , m− 1}.
The indexes i and j represent the horizontal and vertical directions of the gradient image,
respectively.
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3.2. Feature Attention

The retention of edge information can avoid the degradation of details in the process
of fusion. Attention mechanisms have been successfully applied in many computer vision
tasks due to their ability to capture regions of interest in visual scenes, and the main goal of
fusion is to find the appropriate features for each channel. Notably, an FA mechanism [39]
can handle images with uneven pixel distributions and channel weights, extend the repre-
sentation capability of CNNs and achieve good results in restoring the haze-free image. FA
includes CA and PA, and Figure 4 shows the network structure of the FA module.
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3.2.1. Channel Attention

A CA mechanism [39] learns weights according to the importance of features in
different channels, and the weights are different for each channel; however, the weights at
different pixel positions for pixels in the same channel are the same, as shown in Figure 5.
Considering the complexity of channels in remote sensing spatiotemporal images, a CA
module is introduced in this paper. First, we use global average pooling to input the global
spatial information from the channel into the channel descriptor, and the feature map size
is changed from C × H ×W to C × 1 × 1. Subsequently, to obtain the weights of different
channels, the features are subsequently convolved through two layers, and sigmoid and
rectified linear unit (ReLU) activation functions are used. The size of the obtained feature
map is C × 1 × 1. Finally, the input image and the channel weights are multiplied in an
element-by-element process to obtain the final CA feature map of size C × H ×W.

3.2.2. Pixel Attention

The PA mechanism [39] learns weights according to the importance of features at
different pixel locations, with the same weight for each channel but different weights at
different pixel locations for pixels in the same channel, as shown in Figure 6. Considering
the complexity and uneven distribution of remotely sensed spatiotemporal images, the
PA module is introduced in this paper; notably, the feature information in high-frequency
image regions can be prioritized. First, the input image is passed through two convolution
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layers, and sigmoid and ReLU activation functions are applied. Then, the feature map is
resized from C × H ×W to 1 × H ×W. Subsequently, the input image and PA features
are multiplied in an element-by-element process to obtain the final PA feature map of size
C × H ×W.
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3.3. Loss Function

To improve the sharpness of the predicted, remotely sensed, spatiotemporally fused
images, we applied the loss function concept in EDCSTFN [37] in our experiments to define
a new composite loss function. Additionally, in the EDCSTFN, a composite mean square
error (MSE) loss function was used to constrain content loss and feature loss; however,
Lim et al. [40] showed that in terms of peak signal-to-noise ratio (PSNR) and SSIM metrics,
many image recovery models trained with L1 loss functions achieve better performance
than those trained with L2 loss functions. To obtain better performance in image prediction,
we replaced MSE loss with the more well-constrained L1 loss, and the new composite loss
function was constructed as follows:

loss = LC + LF + α · LV (3)

where LC is the content loss, LF is the feature loss, LV is the visual loss, α is a scaling factor
used to balance the weight of visual loss in the compound loss function, and the value of α
is 0.8.

Among them, the content loss and feature loss use the L1 loss function, which can
effectively recover image details, and the visual loss function uses MS-SSIM as the loss
metric to effectively retain high-frequency feature information. By combining three different
loss functions, the loss of features is constrained, and clear predicted images are obtained.

The L1 loss function, a commonly used regression loss function based on the mean
of the absolute value of the difference between the target value and the predicted value,
reflects the average error magnitude of the predicted value, regardless of the type of input.
This function yields a stable gradient and avoids the gradient explosion problem. Without
considering the direction of the error, the L1 loss function is stable and robust.

L1 =
1
N

N

∑
i=1
‖F̂Lt1 − FLt1‖ (4)

where N denotes the number of elements in the feature map, F̂Lt1 denotes the features
extracted from the STF-EGFA prediction using the pretrained encoder, and FLt1 denotes
the features extracted from the observed data on the prediction date t1.
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4. Experiments and Evaluations

The STF-EGFA model has five parts, and the compound loss function is applied in
the experiments. We conduct experiments with three different datasets, AHB, Daxing
and Tianjin, to verify the generalization and robustness of the STF-EGFA model. We use
three different remote sensing spatiotemporal fusion methods for subjective and objective
evaluation: STARFM [14], FSDAF [19] and EDCSTFN [37]. The compared methods are
tested according to the recommended parameters. Experiments were performed on an
Intel(R) Core (TM) i9-10850K central processing unit (CPU) @3.60 GHz, NVIDIA GeForce
RTX 3080, and 64 GB RAM configuration, and experiments were performed using PyTorch.

4.1. Datasets

To validate the characteristics of spatiotemporally fused remote sensing images, we
use the benchmark dataset proposed by Jun et al. [12] in the field of spatiotemporal fusion.
The three datasets in the following experiments are called the AHB dataset, Tianjin dataset
and Daxing dataset. Table 1 provides more details. All Landsat images were acquired with
the Landsat 8 Operational Land Imager (OLI), with a total of 6 bands. For MODIS images,
the AHB dataset is from MOD09GA images, while the Tianjin and Daxing datasets are from
MOD02HKM. In the experiment, the spatiotemporal fusion becomes more complicated
due to the large obvious strip noise interference between the two shortwave infrared bands,
and only the front four bands are used in the experiment. The three datasets are allocated in
the same way: the training set is 80% of the datasets (7 groups), and the validation and test
sets are 20% of the datasets (2 groups). Three image pairs, namely t0, t1 and t2, constitute a
set of training data.

Table 1. The experimental dataset details.

Dataset Image Size Experimental
Image Size

Experimental
Image Pairs

Experimental
Image Time Span Main Change Types

AHB 2480 × 2800 × 6 2432 × 2432 × 6 27 30 May 2013–
6 December 2018

Ar Horqin Banner of Inner
Mongolia province

Tianjin 2100 × 1970 × 6 1920 × 1920 × 6 27 1 September 2013–
18 September 2019 Tianjin city

Daxing 1640 × 1640 × 6 1536 × 1536 × 6 27 1 September 2013–
1 August 2019 Daxing district of Beijing

4.1.1. AHB Dataset

The AHB dataset [12] was established to measure phenology changes in rural areas.
A total of 27 pairs of images from a cloud-free Landsat-MODIS image set obtained from
30 May 2013 to 6 December 2018, spanning a period of more than 5 years, were used
in the experiment. The first and second rows in Figure 7 show the MODIS images (lin-
early stretched by 2%) of the AHB dataset, while the first and second rows of the AHB
dataset in Figure 8 show Landsat images (linearly stretched by 2%). The figures show
that there are large differences in the surface features associated with the times the images
were acquired, especially in the yellow elliptical areas (Figures 7 and 8), with significant
phenology changes.

4.1.2. Tianjin Dataset

The Tianjin dataset [12] was proposed to detect phenological changes in urban areas.
A total of 27 image pairs were used in the experiment. The images were cloud-free Landsat-
MODIS images obtained from 1 September 2013 to 18 September 2019, spanning over
6 years. The first and second rows in Figure 9 show the MODIS images (linearly stretched
by 2%) of the Tianjin dataset, while the first and second rows of the Tianjin dataset in
Figure 10 show Landsat images (linearly stretched by 2%). The figures show that the
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surface features in the city differ in color and texture over time, with significant urban
phenology changes, especially in the yellow elliptical areas (Figures 9 and 10).
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4.1.3. Daxing Dataset

The Daxing dataset [12] was used to assess model performance in detecting land cover
change. A total of 27 image pairs were used in the experiment. The images were cloud-free
Landsat-MODIS images obtained from 1 September 2013 to 1 August 2019, spanning over
6 years. The first and second rows in Figure 11 show the MODIS images (linearly stretched
by 2%) of the Daxing dataset, while the first and second rows of the Daxing dataset in
Figure 12 show Landsat images (linearly stretched by 2%). The figures show that the surface
land cover in the city changes over time, especially following the construction of Beijing
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Daxing International Airport in the yellow elliptical areas (Figures 11 and 12), the ground
features have undergone great changes.

Remote Sens. 2022, 14, 3057 11 of 22 
 

 

4.1.3. Daxing Dataset 
The Daxing dataset [12] was used to assess model performance in detecting land 

cover change. A total of 27 image pairs were used in the experiment. The images were 
cloud-free Landsat-MODIS images obtained from 1 September 2013 to 1 August 2019, 
spanning over 6 years. The first and second rows in Figure 11 show the MODIS images 
(linearly stretched by 2%) of the Daxing dataset, while the first and second rows of the 
Daxing dataset in Figure 12 show Landsat images (linearly stretched by 2%). The figures 
show that the surface land cover in the city changes over time, especially following the 
construction of Beijing Daxing International Airport in the yellow elliptical areas (Figures 
11 and 12), the ground features have undergone great changes. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 11. MODIS images from the Daxing dataset reflecting land cover changes. Dates: (a) 1 Sep-
tember 2013; (b) 29 April 2014; (c) 22 August 2015; (d) 14 February 2016; (e) 7 May 2017; (f) 1 October 
2018. 

   
(a) (b) (c) 

 

   

  

   

Figure 11. MODIS images from the Daxing dataset reflecting land cover changes. Dates: (a) 1 September
2013; (b) 29 April 2014; (c) 22 August 2015; (d) 14 February 2016; (e) 7 May 2017; (f) 1 October 2018.

Remote Sens. 2022, 14, 3057 11 of 22 
 

 

4.1.3. Daxing Dataset 
The Daxing dataset [12] was used to assess model performance in detecting land 

cover change. A total of 27 image pairs were used in the experiment. The images were 
cloud-free Landsat-MODIS images obtained from 1 September 2013 to 1 August 2019, 
spanning over 6 years. The first and second rows in Figure 11 show the MODIS images 
(linearly stretched by 2%) of the Daxing dataset, while the first and second rows of the 
Daxing dataset in Figure 12 show Landsat images (linearly stretched by 2%). The figures 
show that the surface land cover in the city changes over time, especially following the 
construction of Beijing Daxing International Airport in the yellow elliptical areas (Figures 
11 and 12), the ground features have undergone great changes. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 11. MODIS images from the Daxing dataset reflecting land cover changes. Dates: (a) 1 Sep-
tember 2013; (b) 29 April 2014; (c) 22 August 2015; (d) 14 February 2016; (e) 7 May 2017; (f) 1 October 
2018. 

   
(a) (b) (c) 

 

   

  

   

Remote Sens. 2022, 14, 3057 12 of 22 
 

 

   
(d) (e) (f) 

Figure 12. Landsat images from the Daxing dataset reflecting land cover changes. Dates: (a) 1 Sep-
tember 2013; (b) 29 April 2014; (c) 22 August 2015; (d) 14 February 2016; (e) 7 May 2017; (f) 1 October 
2018. 

4.2. Evaluation 
Image quality evaluation has always been an important step in remote sensing spa-

tiotemporal fusion, and to better quantify the quality of a predicted image, objective eval-
uation indexes that are representative in mathematics should be applied. Additionally, 
actual ground data should be compared to the data in predicted and fused images. In this 
paper, five evaluation metrics—spectral angle mapper (SAM) [41], PSNR [42], spatial cor-
relation coefficient (SCC) [43], SSIM [44] and root mean square error (RMSE) [45]—are 
used to objectively evaluate and analyze the spatiotemporal fusion results in different da-
tasets. The SAM technique [41] is used to calculate the spectral distortion between the 
predicted fusion result and the original image; the PSNR [42] reflects the difference be-
tween the ground truth image and the predicted fused image based on the statistical mean 
of the greyscale difference between the corresponding image elements; the SCC [43] is 
used to assess the similarity of the spatial details in fused and reference images based on 
high-frequency information; the SSIM [44] measure is implemented between a predicted 
fused image and a ground truth image; and the RMSE [45] measures the deviation be-
tween the predicted and actual reflectance and provides a global description of the radio-
metric difference between a ground truth image and a predicted fused image. SAM, PSNR 
and RMSE are spectral quality metrics, and SCC and SSIM are spatial quality metrics. 

4.3. Experimental Results and Analysis 
In the experiments, we tested the effectiveness of our method with the AHB dataset, 

Tianjin dataset and Daxing dataset and compared the method with three remote sensing–
based spatiotemporal fusion methods: STARFM [14], FSDAF [19] and EDCSTFN [37]. For 
the comparisons made in the subsequent experiments, we set parameter values in the 
trained network: the number of epochs is 30 times, the size of batch_size is 16, the crop-
ping size of image blocks is 128 × 128, the cropping step size of image blocks is 128, the 
value of padding is 16 and the initial learning rate in the network is 0.001. 

4.3.1. AHB Dataset 
The evaluation of the spatiotemporal fusion prediction of the AHB dataset [12] is 

based on a combination of subjective and objective evaluation methods. Figure 13 shows 
the experimental results in the AHB dataset, in which the yellow box area is the enlarged 
detail area. In the yellow ellipse of the enlarged region, we can clearly see that STARFM 
predicts better edge details but relatively poor color. FSDAF produces more accurate tex-
ture details than STARFM, but block artefacts appear. The EDCSTFN algorithm can also 
retain texture information better than STARFM. The proposed STF-EGFA model produces 
complete spatial details compared to EDCSTFN, especially in the yellow elliptical region, 
indicating that STF-EGFA provides the best edge preservation effect. 

   

Figure 12. Landsat images from the Daxing dataset reflecting land cover changes. Dates: (a) 1 September
2013; (b) 29 April 2014; (c) 22 August 2015; (d) 14 February 2016; (e) 7 May 2017; (f) 1 October 2018.

4.2. Evaluation

Image quality evaluation has always been an important step in remote sensing spa-
tiotemporal fusion, and to better quantify the quality of a predicted image, objective
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evaluation indexes that are representative in mathematics should be applied. Additionally,
actual ground data should be compared to the data in predicted and fused images. In
this paper, five evaluation metrics—spectral angle mapper (SAM) [41], PSNR [42], spatial
correlation coefficient (SCC) [43], SSIM [44] and root mean square error (RMSE) [45]—are
used to objectively evaluate and analyze the spatiotemporal fusion results in different
datasets. The SAM technique [41] is used to calculate the spectral distortion between
the predicted fusion result and the original image; the PSNR [42] reflects the difference
between the ground truth image and the predicted fused image based on the statistical
mean of the greyscale difference between the corresponding image elements; the SCC [43]
is used to assess the similarity of the spatial details in fused and reference images based on
high-frequency information; the SSIM [44] measure is implemented between a predicted
fused image and a ground truth image; and the RMSE [45] measures the deviation between
the predicted and actual reflectance and provides a global description of the radiometric
difference between a ground truth image and a predicted fused image. SAM, PSNR and
RMSE are spectral quality metrics, and SCC and SSIM are spatial quality metrics.

4.3. Experimental Results and Analysis

In the experiments, we tested the effectiveness of our method with the AHB dataset,
Tianjin dataset and Daxing dataset and compared the method with three remote sensing–
based spatiotemporal fusion methods: STARFM [14], FSDAF [19] and EDCSTFN [37]. For
the comparisons made in the subsequent experiments, we set parameter values in the
trained network: the number of epochs is 30 times, the size of batch_size is 16, the cropping
size of image blocks is 128 × 128, the cropping step size of image blocks is 128, the value of
padding is 16 and the initial learning rate in the network is 0.001.

4.3.1. AHB Dataset

The evaluation of the spatiotemporal fusion prediction of the AHB dataset [12] is
based on a combination of subjective and objective evaluation methods. Figure 13 shows
the experimental results in the AHB dataset, in which the yellow box area is the enlarged
detail area. In the yellow ellipse of the enlarged region, we can clearly see that STARFM
predicts better edge details but relatively poor color. FSDAF produces more accurate
texture details than STARFM, but block artefacts appear. The EDCSTFN algorithm can also
retain texture information better than STARFM. The proposed STF-EGFA model produces
complete spatial details compared to EDCSTFN, especially in the yellow elliptical region,
indicating that STF-EGFA provides the best edge preservation effect.

To better explain the spatiotemporal fusion prediction effect of the proposed method,
the prediction results are evaluated by calculating the average of five evaluation metrics:
SAM, PSNR, CC, SSIM and RMSE. Table 2 shows the objective evaluation results of different
methods for the AHB dataset, where the bold font represents the optimal value for each
evaluation metric. The results show that the two deep learning methods EDCSTFN and
EIFA-STF outperform the traditional STARFM and FSDAF methods in various evaluation
indicators. The EIFA-STF model achieves the best results among the 5 evaluation metrics,
with SAM, PSNR, CC, SSIM and RMSE improving by 8.91%, 2.15%, 12.01%, 3.45% and
15.26%, respectively, compared with the EDCSTFN method. The method uses FA and edge
extraction modules to effectively enhance the spatial information, capture interchannel and
pixel information, and enhance the fusion results. In summary, the method in this paper
demonstrates reliable applicability to the AHB dataset.
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Table 2. Objective evaluation results for the AHB test set.

Method SAM ↓ * PSNR ↑ CC ↑ SSIM ↑ RMSE ↓
STARFM 0.339 22.220 0.351 0.687 22.946
FSDAF 0.324 22.412 0.524 0.681 20.444

EDCSTFN 0.101 28.147 0.433 0.840 11.368
STF-EGFA 0.092 28.751 0.485 0.869 9.633

* ↑ indicates that larger is better, ↓ indicates that smaller is better.

4.3.2. Tianjin Dataset

We also test the proposed method on the urban phenological change dataset, as shown
in Figure 14, the result of the Tianjin dataset [12]. The yellow boxed area is the area of
detail amplification. In the yellow ellipse of the enlarged region, STARFM yields the worst
prediction effect and displays some variability for different images. FSDAF and STF-EGFA
produce more accurate texture details and spectral information than STARFM and retain
the edge information from the image. In addition, the EDCSTFN method also has a good
effect in maintaining texture information, and the simulation results are quite different from
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the original image. Therefore, the STF-EGFA algorithm proposed in this paper achieves
good results while maintaining the image edge and spectral information.
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Figure 14. Experimental results based on the Tianjin dataset for spatiotemporal fusion: (a,f) Ground
truth image; (b,g) STARFM method results; (c,h) FSDAF method results; (d,i) EDCSTFN method
results; and (e,j) STF-EGFA method results.

On the basis of the Tianjin test set, five evaluation indicators—SAM, PSNR, CC, SSIM
and RMSE—are calculated and evaluated. Table 3 shows the objective evaluation results
of different methods on the Tianjin dataset. It is worth noting that our proposed STF-
EGFA method outperforms the traditional STARFM and FSDAF methods on every metric.
Compared with EDCSTFN, the proposed EIFA-STF approach is superior, with a 19.09%
improvement in SAM, a 6.21% improvement in PSNR, a 15.11% improvement in CC, a
9.33% improvement in SSIM, and an 18.27% improvement in RMSE. Compared with other
algorithms, the use of FA and edge extraction technology can better preserve more edge
and detail information and make more accurate predictions for spatiotemporal fusion
images. In summary, the method in this paper also demonstrates reliable applicability on
the Tianjin dataset. The best values of objective evaluation indexes are shown in bold.
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Table 3. Objective evaluation of the Tianjin test set.

Method SAM ↓ PSNR ↑ CC ↑ SSIM ↑ RMSE ↓
STARFM 0.375 17.462 0.268 0.589 53.019
FSDAF 0.240 20.261 0.438 0.632 32.500

EDCSTFN 0.110 28.554 0.761 0.772 9.536
STF-EGFA 0.089 30.327 0.876 0.844 7.794

4.3.3. Daxing Dataset

We also test the applicability of the network using a land use change dataset. Figure 15
below shows the experimental results of various methods for the Daxing dataset [12]; the
yellow boxed area is the area of detail amplification. In the yellow ellipse of the enlarged
region, the images obtained by STARFM and FSDAF are similar in color, and the image
details obtained by the FSDAF algorithm are better than those obtained by the STARFM
method. In addition, the STARFM results display partial pixel loss. Comparatively, the
EDCSTFN and STF-EGFA methods can better retain edge information. The proposed
STF-EGFA method achieves the best results in preserving edge information, especially in
the yellow elliptical regions, which indicates that STF-EGFA has advantages in edge preser-
vation; however, improvements in color prediction are needed. The proposed STF-EGFA
method can better preserve the edge information in the image, especially in the yellow
elliptical regions, which indicates that STF-EGFA has advantages in edge preservation;
however, improvements in color prediction are needed.

On the basis of the Daxing test set, five evaluation indicators—SAM, PSNR, CC,
SSIM and RMSE—are calculated and evaluated. The objective evaluation of the Daxing
dataset is shown in Table 4. Obviously, EDCSTFN and EIFA-STF perform better than
traditional STARFM and FSDAF. The EIFA-STF method performs better than the EDCSTFN
deep learning algorithm, and the optimal values of all 5 evaluation indexes are obtained.
Compared with EDCSTFN, the proposed EIFA-STF approach is superior, with a 10.96%
improvement in SAM, a 2.87% improvement in PSNR, a 4.88% improvement in CC, a 4.12%
improvement in SSIM, and a 9.92% improvement in RMSE. The subjective and objective
evaluations show that the STF-EGFA method can better preserve salient information such
as edges and can better predict the effect of the image. In summary, the method in this
paper also demonstrates reliable applicability for the Daxing dataset. The best values of
objective evaluation indexes are shown in bold.

Table 4. Objective evaluation of the Daxing test set.

Method SAM ↓ PSNR ↑ CC ↑ SSIM ↑ RMSE ↓
STARFM 0.090 27.942 0.731 0.805 10.221
FSDAF 0.088 28.941 0.776 0.811 9.144

EDCSTFN 0.073 30.766 0.841 0.826 7.426
STF-EGFA 0.065 31.650 0.882 0.860 6.689
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5. Discussion
5.1. Ablation Experiment

To better verify the added module effectiveness of the STF-EGFA, we performed
ablation experiments to discuss and verify the added modules. We divided the test into
three types: (a) only an edge feature extraction module is used in the model, called Only
edge; (b) while adding the edge feature module, add FA (after the FEncoder) at the same
time, called Edge-FA-encoder; and (c) while adding the edge feature module, add FA
(before the decoder) at the same time, called Edge-FA-decoder. The three models were
tested and validated with the Daxing dataset. The schematic diagrams of the three model
structures are shown in Figure 16.

The three kinds of network training results are shown in Figure 17, which illustrates
that adding modules results in a substantial improvement in the effectiveness of spatiotem-
poral fusion. First, edge information is better retained in the network when the edge
module is added, thus preserving the edge features of the predicted images. Additionally,
the model with an edge extraction module and an FA module (after the FEncoder) better
optimizes the predicted image channels and the pixel features in the network. In addition,
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while adding the edge feature module, adding FA (before the decoder) effectively retains
both edge information and color information to obtain a better fusion effect, displaying
certain stability. Through the ablation experiments of the above three modules, it can be
intuitively seen from the figure that the STF-EGFA method can better preserve the edge
structure of the image and extract detailed features.
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In addition, we performed an objective evaluation of two groups of images from the
Daxing dataset in three structural experiments. The experimental results obtained with the
EIFA-STF network under different conditions are shown in Table 5; five evaluation metrics,
namely SAM, PSNR, CC, SSIM, and RMSE, were used to assess the results. Notably, the
addition of the edge extraction module improved all five metrics compared to those for the
original network, indicating that the addition of the edge extraction module in the network
positively influenced the prediction results of spatiotemporal fusion. In another set of
experiments, we used edge extraction while adding FA (after the FEncoder). Adding the
second module yielded a certain improvement in the experimental effect compared to that
when only the edge feature extraction module was considered. On this basis, we evaluated
whether the position of the feature module influences the fused image result and placed the
FA module before the decoder. The experimental results showed that the network achieved
an improved fusion effect, and four evaluation indexes reached optimal values among
those observed. Additionally, the SAM index was improved by 10.96% compared with
that for the EDCSTFN method. In summary, the proposed STF-EGFA network not only
provides the best spatiotemporally fused images but also best retains spectral information
and edge features. It is obvious that the simultaneous use of the edge feature extraction
module and the FA module can not only improve the fusion effect of the network but also
increase the stability of network fusion. We have carefully checked the funding information
and the funding information provided is accurate. The best values of objective evaluation
indexes are shown in bold.

Table 5. Objective evaluation of the Daxing dataset in ablation experiments.

Method SAM ↓ PSNR ↑ CC ↑ SSIM ↑ RMSE ↓
EDCSTFN 0.073 30.766 0.841 0.826 7.426
Only edge 0.062 31.561 0.877 0.858 6.752

Edge-FA-encoder 0.063 31.585 0.882 0.860 6.748
Edge-FA-decoder 0.065 31.650 0.882 0.860 6.689

5.2. Discussion

The experiments on the above three datasets indicate that our method achieves good
prediction results on the AHB dataset, the Tianjin dataset and the Daxing dataset of rural
and urban phenology changes and obtains edge features similar to real ground images. In
this experiment, we use the newly proposed datasets to break through the limitations of
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the Coleambally Irrigation Area (CIA) and Lower Gwydir Catchment (LGC) in this field
and provide reference values for further pertinent research.
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Second, we ablate the proposed method through experimental verification and com-
prehensive analysis of the method of different modules and modules for the location of the
influence of the method. First, the influence of the edge module on the experimental results
is analyzed with the Daxing dataset. The experimental analysis shows that the increase
in the edge module greatly improves the image fusion effect and edge features, similar to
the ground real image edge features. Moreover, for the comprehensive analysis of the FA
module, especially for the FA module, we show different experimental results obtained in
different positions with the addition of the AM and with the addition of the experimental
analysis module in different positions in the network. Therefore, we can study the influence
of the modules on the experimental results by considering the different positions of the
modules to propose more efficient and suitable methods.

However, our model has some shortcomings that can be improved. Compared
to the EDCSTFN method, which has 281,764 parameters, our proposed algorithm has
342,101 parameters, which is an increase of 60,337 parameters. In future research, we
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will consider using a lighter network structure and additional modules to improve the
prediction accuracy of spatiotemporal fusion.

6. Conclusions

In this paper, we propose a spatiotemporal fusion method with edge-guided feature
attention based on remote sensing, called STF-EGFA, which is designed to enhance the
expression of salient features and improve the quality of predicted images. The added
edge-guided extraction module enhances the retention of predicted image edge details. The
combined feature fusion attention module with channels and pixels achieves the adaptive
adjustment of features to highlight salient features in images, thus solving the information
weighting and pixel heterogeneity problems among different channels in the network.
Using a combination of subjective and objective evaluations, the proposed model is shown
to achieve good performance, as verified for three datasets with different types of variations
and large discrepancies, indicating the robustness of the established method. The proposed
STF-EGFA model can capture edge, spectral and channel information more effectively than
other methods and is useful for remote sensing spatiotemporal image fusion tasks.
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STF-EGFA Spatiotemporal fusion network with edge-guided feature attention
CNN Convolutional neural network
MODIS Moderate Resolution Imaging Spectrometer
STARFM Spatial and temporal adaptive reflectance fusion model
STRUM Spatiotemporal restraint unmixing
STAARCH Spatiotemporal adaptive algorithm for mapping reflectance change
FIT-FC Fitting, and residual compensation
LR Linear regression
FSDAF Flexible spatiotemporal data fusion
GPU Graphics Processing Units
CSSF Compression sensing for spatiotemporal fusion
SPSTFM Spatiotemporal reflectance fusion via sparse representation
HSTAFM Hierarchical spatiotemporal adaptive fusion model
BiaSTF Spatiotemporal fusion model driven by sensor bias
ASPP Atrous spatial pyramid pooling
DCSTFN Deep convolutional spatiotemporal fusion network
FA Feature attention
PA Pixel attention
CA Channel attention
SAM Spectral angle mapper
PSNR Peak signal-to-noise ratio
CC Correlation coefficient
SSIM Structural similarity
RMSE Root mean square error
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