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Abstract: In this study, we propose integrating unmanned aerial systems (UASs) and machine
learning classification for suitability prediction of expanding habitats for endangered flora species to
prevent further extinction. Remote sensing imaging of the protected steppe-like grassland in Bilje
using the DJI P4 Multispectral UAS ensured non-invasive data collection. A total of 129 individual
flora units of five endangered flora species, including small pasque flower (Pulsatilla pratensis (L.)
Miller ssp. nigricans (Störck) Zämelis), green-winged orchid (Orchis morio (L.)), Hungarian false
leopardbane (Doronicum hungaricum Rchb.f.), bloody cranesbill (Geranium sanguineum (L.)) and
Hungarian iris (Iris variegate (L.)) were detected and georeferenced. Habitat suitability in the projected
area, designated for the expansion of the current area of steppe-like grassland in Bilje, was predicted
using the binomial machine learning classification algorithm based on three groups of environmental
abiotic criteria: vegetation, soil, and topography. Four machine learning classification methods were
evaluated: random forest, XGBoost, neural network, and generalized linear model. The random
forest method outperformed the other classification methods for all five flora species and achieved the
highest receiver operating characteristic (ROC) values, ranging from 0.809 to 0.999. Soil compaction
was the least favorable criterion for the habitat suitability of all five flora species, indicating the need
to perform soil tillage operations to potentially enable the expansion of their coverage in the projected
area. However, potential habitat suitability was detected for the critically endangered flora species of
Hungarian false leopardbane, indicating its habitat-related potential for expanding and preventing
further extinction. In addition to the current methods of predicting current coverage and population
count of endangered species using UASs, the proposed method could serve as a basis for decision
making in nature conservation and land management.

Keywords: nature conservation; random forest; environmental criteria; classification; multispectral imaging

1. Introduction

In recent years, and especially after the accession of the Republic of Croatia to the
European Union, there have been significant changes in the needs related to environmental
monitoring and management in Croatia. These changes primarily include: (1) greater im-
portance to the aspect of nature protection, for which the main instrument is the European
ecological network Natura 2000 [1] and (2) the need for a detailed evaluation of environmen-
tal and natural resources, especially water, air, and soil, given the expected consequences of
climate change [2]. The loss of natural habitats due to climate change, intensive agricultural
production, drainage of wetlands, urban development, and environmental contamination
are the main reasons for endangering various flora species worldwide [3,4]. In order to
monitor the status and protection of flora, the International Union for Conservation of
Nature (IUCN) has prescribed rules and criteria for assessing the endangerment of wild
species and has set standards for the preparation of red lists [5].
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All these conditions place additional demands on land management of protected
natural areas in Croatia; under the new circumstances, a detailed inventory is required
for the purpose of spatial planning [6]. The most recent study, in 2016, on the flora
of the steppe-like grassland in Bilje reported a total of 109 plant species detected from
35 families [7]. The steppe-like grassland in Bilje was protected in 2001 under the category
of natural monument and it represents an integral part of the ecological habitat network
of the Republic of Croatia within the Natura 2000 [7]. Due to the human-made habitat
degradation caused by suboptimal land management over the years, an initiative was
started for the expansion of steppe-like grassland in Bilje. To perform such a procedure,
due to the narrow ecological gradients of the present flora species, an accurate evaluation
of the habitat suitability according to relevant abiotic factors is necessary [8]. These abiotic
factors generally include climate, soil, and topography environmental components, which
are continuously interacting with vegetation [9].

Among the previously detected flora species in Bilje’s steppe-like grassland, there are
five endangered flora species that are protected by the nature protection acts of Croa-
tia [10]. These are small pasque flower (Pulsatilla pratensis (L.) Miller ssp. nigricans
(Störck) Zämelis), green-winged orchid (Orchis morio (L.)), Hungarian false leopardbane
(Doronicum hungaricum Rchb.f.), bloody cranesbill (Geranium sanguineum (L.)), and Hungar-
ian iris (Iris variegata (L.)) [10,11]. The small pasque flower is a perennial herbaceous plant
and a geophyte [12], which, at the beginning of the 1990s, had the status of a regionally
extinct (RE) species in Croatia [12]. It was detected again, later in the decade, but still
has the status of a critically endangered species and is strictly protected in Croatia. The
green-winged orchid is a perennial herbaceous plant and a geophyte [13], which is found
in pastures and grasslands individually or in small groups throughout Central and South-
ern Europe [13]. The Hungarian false leopardbane is a perennial herbaceous plant and
a hemicryptophyte [14], which specifically inhabits dry grasslands, with the steppe-like
grassland in Bilje being its only habitat in Croatia. The bloody cranesbill is a perennial
herbaceous plant and a hemicryptophyte, which grows in dry, moderately acidic soils, as
well as in sunny to semi-shady locations [15]. The Hungarian iris is a perennial herbaceous
plant and a geophyte, specific for its narrow ecological valence regarding topographic
conditions [16].

The conventional approach to habitat suitability studies include subjective methods
with marginal reproducibility as they are dominantly affected by expert assumptions.
Geographic information system (GIS)-based multicriteria anaylsis in combination with
individual weight determination methods, such as analytic hierarchy procedure, enables
flexible suitability calculations but is deficient with regard to computational efficiency and
reliability [9]. To overcome these limitations while maintaining flexibility and straightfor-
wardness in spatial prediction, machine learning methods have been increasingly adopted
in habitat suitability analyses [17]. Since this approach requires a number of input enviro-
mental criteria, the role of remote sensing imaging becomes even more valuable in serving
as a fundamental data source. Due to the sensitivity of endangered flora species and the
need to not affect their natural habitat, remote sensing imaging methods are particularly
suitable for habitat suitability prediction and nature conservation in general [18,19]. More-
over, remote sensing imaging in red-edge and near-infrared spectral bands is sensitive to
plants’ photosynthetic activities that might vary over time [20]. It enables the detection
of minor variabilities in vegetation properties of endangered flora species, as well as of
vegetation in general, providing the reliability and robustness of suitability predictions [21].
To provide an efficient multispectral imaging solution with high spatial resolution in re-
stricted locations, unmanned aerial systems (UASs) have been successfully implemented in
various nature conservation studies, specifically ensuring non-invasive data collection in
sensitive study areas [22]. Various machine learning classification algorithms have recently
been established as state-of-the-art methods for suitability prediction in various disciplines,
such as agriculture [9], forestry [23], nature and environment conservation [24], including
land and marine contamination studies [25,26]. While these methods have been success-
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fully utilized in previous studies [27,28], habitat suitability prediction methods according
to environmental criteria have been relatively unexplored, especially for the purpose of
extending the habitat of endangered flora species [29].

The aim of this study was to propose and evaluate a method for habitat suitability
prediction of endangered steppe flora species based on UAS imaging and machine learning
classification, which could be applied as a nature conservation decision-making tool at
micro-scale locations. The proposed method is based on a thorough spatial analysis of
relevant environmental spatial criteria (vegetation, soil, and topography) in GIS, which is
used in land management activities in Croatia.

2. Materials and Methods
2.1. Study Area and Fieldwork

The steppe in Bilje is located in the central part of a cemetery and covers an area of
0.63 ha, representing the last remnant of the steppe-like grassland in Croatia (Figure 1).
There is a significant share of the xerothermic elements from the eastern European steppes,
for which this study area represents a westernmost limit of distribution [7]. Research in
the past thirty years has confirmed that there were more such habitats in eastern Croatia
but they have mostly disappeared due to land-use transformation into arable land or
overgrowing with shrubs [10].
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Figure 1. The current and projected areas of steppe-like grassland in Bilje with locations of detected
flora species.

Data collection in the steppe-like grassland in Bilje was carried out in ten iterations
during 2021: 28 January, 15 February, 1 March, 18 March, 30 March, 14 April, 30 April,
14 May, 1 June, and 14 June 2021 (Figure 2). A DJI P4 Multispectral UAS was used for the
remote sensing imaging in the blue (B), green (G), red (R), red-edge (RE), and near-infrared
(NIR) spectral bands. The imaging for all iterations was performed using the same mission
and parameters, with 35 m relative altitude, 4.0 m s−1 fight speed, 80% front overlap, 70%
side overlap, and imaging at nadir angle. The images were directly georeferenced based
on the Global Navigation Satellite System (GNSS), using the Croatian Positioning System
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(CROPOS) Very-High Precision Positioning (VPPS) service, which enabled positioning accu-
racy of 2 cm horizontally and 4 cm vertically [30]. The digital orthophoto and digital surface
model were created in the Agisoft Metashape Professional software v1.5.2 (St. Petersburg,
Russia), based on the structure-from-motion process from dense point cloud. A digital
orthophoto was created for each of the imaging sets with a spatial resolution of 2.0 cm
from the 1.9 cm ground sample distance, processed as the multispectral image band stack.
The digital surface model used for calculations of the topographic indicators of microrelief
was determined using UAS imagery sensed on 28 January 2021 with a spatial resolution
of 7.5 cm, when canopy height was at its lowest in the study period. Soil sampling was
performed using an Eijkelkamp soil and water penetrometer at 72 randomly selected soil
samples distributed across the study area.
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Figure 2. The timeline of the performed fieldwork at the steppe-like grassland in Bilje, during 2021.

A total of 129 individual flora units across the study area were identified in the field
and georeferenced (Table 1, Figure 3). A Trimble R8s global navigation satellite system
(GNSS) receiver was used for the real-time kinematic (RTK) georeferencing, using the
CROPOS VPPS service. The IUCN classes representing vulnerability on the national level
were evaluated in the Flora Croatica database [11]. Among the evaluated existing flora
species, the vulnerability classes consisted of critically endangered (CR), endangered (EN),
vulnerable (VU), near threatened (NT), and least concern (LC).

2.2. Spatial Modeling of Environmental Criteria

The habitat suitability prediction of endangered steppe flora species in Bilje’s steppe-
like grassland was performed using three groups of independent environmental criteria:
vegetation, soil, and topography. These criteria groups have been commonly used in
spatial predictions, as the most relevant environmental criteria [31]. While these criteria
groups represent structural ecosystem parameters [32], only those criteria which showed
variability in the study area were selected for suitability prediction. Although climate
conditions are among the recommended criteria [31], the variability of climate conditions
over the study area could not be quantified due to sparse spatial resolution of available
climate data [33]. Spearman correlation coefficients were used to determine the mutual re-
lationships of individual environmental covariates. The spatial modeling of environmental
criteria was performed using the open-source GIS software SAGA GIS v7.3.0 (Göttingen,
Germany) [34], which was georeferenced in the Croatian Terrestrial Reference System
(HTRS96/TM, EPSG: 3765).

Table 1. Endangered flora species detected during the fieldwork.

English Name Latin Name Family IUCN Class Units Detected

Small pasque flower Pulsatilla pratensis (L.) Miller ssp.
nigricans (Störck) Zämelis Ranunculaceae CR 7

Green-winged orchid Orchis morio (L.) Orchidaceae NT 29
Hungarian false leopardbane Doronicum hungaricum Rchb.f. Asteraceae CR 20

Bloody cranesbill Geranium sanguineum (L.) Geraniaceae LC 61
Hungarian iris Iris variegata (L.) Iridaceae NT 12
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Figure 3. Images of the detected endangered flora species.

2.2.1. Vegetation Criteria

The vegetation criteria included vegetation indices derived from multitemporal UAS
imaging, that allowed the assessment of biophysical vegetative properties, such as chloro-
phyll content [35]. Two vegetation indices were selected to represent vegetation criteria,
i.e., the normalized difference vegetation index (NDVI) [36] and the normalized difference
red-edge index (NDRE) [37]. Their calculation was performed according to Equations (1)
and (2) as follows:

NDVI =
NIR − R
NIR + R

, (1)

NDRE =
RE − R
RE + R

. (2)

These are the two of the most well-known and globally documented vegetation indices,
with very wide application and high accuracy in monitoring the properties of vegetation in
previous studies [38–40]. The differences of vegetation indices over the study period were
evaluated using the paired t-test, calculated from all combinations of consecutive NDVI
and NDRE observations.

2.2.2. Soil Criteria

Soil criteria included the physical parameter of soil compaction determined by using a
soil penetrometer at a discrete set of locations, since it was the only soil property which was
determined to be heterogeneous in the study area. Soil compaction, as a limiting factor in the
development of the root system of endemic flora species [41], was selected as an indicator of
the physical component of soil suitability. Soil compaction was sampled at three soil depths:
0–5 cm, 5–10 cm, and 10–15 cm, which included vertical soil stratification of the utmost
importance for the development of the root system of detected flora species [11]. Spatial
interpolation of soil compaction in the entire study area was performed by geostatistical
data processing using the inverse distance weighting interpolation method with a power
parameter of 2 due to the lack of spatial autocorrelation, normality, and stationarity of input
data, as was recommended in previous studies [42,43].

2.2.3. Topographic Criteria

Topographic criteria were calculated in the GIS environment based on the appli-
cation of empirical algorithms of the digital relief model values [44]. The topographic
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parameters of digital surface model, slope, total potential annual insolation, and flow
accumulation were selected as the main indicators of microrelief, according to their compli-
mentary representation of topographic properties [44,45]. The terrain slope and the flow
accumulation model were specifically selected to model water retention in soil after precip-
itation [46], according to moderate depressions in the central part of the current coverage
of the steppe-like grassland. The flow accumulation was calculated using the multiple flow
direction method with a top-down process and sink removal in preprocessing [47]. The
total potential annual insolation is a fundamental indicator of the impact of microrelief
on the availability of sunlight [48], providing mutually complementary information to the
aforementioned indicators.

2.3. Habitat Suitability Prediction Using Machine Learning

The aggregated suitability of the study area for endangered flora species was de-
termined by supervised binomial classification methods, and included evaluation of the
random forest, XGBoost, neural network, and generalized linear model methods. The most
accurate method was selected for each of the individual flora species, based on the highest
receiver operating characteristic (ROC) value, with displayed sensitivity and specificity as
its components. The optimal parameters of the machine learning classification methods
were determined on the iterative basis, using the combination of parameters which pro-
duced the highest ROC values as the most accurate variant. Machine learning classification
and accuracy assessment were performed using R x64 v4.0.3 in RStudio v2021.09.2 (Boston,
MA, USA) with “caret” library [49]. The prediction was performed with all three groups
of environmental criteria (vegetation, topography, and soil). Training samples consisted
of georeferenced locations of flora species detected in the field for the individual species,
combined with the 27 random samples, to match the number of input environmental co-
variates. The random samples were generated with 10 m mutual distance and at least 2 m
from the nearest flora unit. The number of training data varied according to the number
of detected flora units, as displayed in Table 1. The total number of training data was 88
for bloody cranesbill, 56 for green-winged orchid, 39 for Hungarian iris, 47 for Hungarian
false leopardbane, and 34 for small pasque flower. The classification results included two
classes: one class, representing area with higher suitability for flora species relative to the
random locations in the study area and a second class, representing presently non-suitable
area. The variable importance was determined for each classification variant per flora
species, quantifying the scaled variable importance with the maximum value of 100. The
proposed habitat suitability prediction method for endangered flora species is summarized
in Figure 4.
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3. Results

The results of paired t-test from all combinations of consecutive NDVI and NDRE
observations are presented in Table 2. The spectral signatures of detected flora species,
as mean values per spectral band in five bands are shown in Appendix A. A period of
smaller changes in the values of the vegetation indices (until 12 April 2021), and then an
increase in the indices and higher variability caused by latter growth stages of flora species
(after 12 April 2021) were observed (Figure 5). The vegetation criteria represented by the
NDVI and NDRE vegetation indices resulted in individual value spikes for the majority of
the observed flora species, which could be differentiated from the rest of the study area.
The largest increases in vegetation indices as compared with the previous observations
occurred for Hungarian false leopardbane and Hungarian iris on 30 April 2021, as well as
for green-winged orchid and small pasque flower on 1 June 2021.

Table 2. The results of the paired t-test from all combinations of consecutive NDVI and NDRE observations.

First Observation Second Observation
NDVI NDRE

t p t p

28 January 2021 15 February 2021 5.2524 <0.0001 5.8283 <0.0001
15 February 2021 1 March 2021 2.1964 0.0290 0.9416 0.3472

1 March 2021 18 March 2021 −2.9588 0.0034 −2.7005 0.0074
18 March 2021 30 March 2021 −2.8197 0.0052 −4.9542 <0.0001
30 March 2021 12 April 2021 −6.4170 <0.0001 −7.021 <0.0001
12 April 2021 30 April 2021 −1.6302 0.1043 −0.5633 0.5737
30 April 2021 14 May 2021 −5.8383 <0.0001 −6.2335 <0.0001
14 May 2021 1 June 2021 0.6704 0.5032 0.9132 0.3620
1 June 2021 14 June 2021 9.0903 <0.0001 9.9859 <0.0001
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Figure 5. Boxplots of the NDVI and NDRE vegetation indices in the study period (black dots
represent outliers).

Overall, the study area showed a wide range of values for all four topographic criteria.
The current habitats of the endangered flora species showed narrow value ranges up to 0.30
of the normalized value interval, representing the ecological valence of individual species
(Figure 6). The topographic criteria indicated the presence of two distinct features within
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the study area: a depression in the central part of the current area of Bilje’s steppe-like
grassland and a hill in the northern part of the projected area (Figure 7). The habitats of
observed species mutually differentiated primarily in the elevation from the digital surface
model and total potential insolation values. Particular species had very distinct topographic
properties, including elevation of Hungarian iris and Hungarian false leopardbane, as well
as the total potential insolation for Hungarian iris.
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The average soil compaction values of the current flora species habitats were in line
with the general value distribution in the current area (Figure 8), while Hungarian iris had
noticeably lower soil compaction values than other species in all three soil layers. While the
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majority of considered soil properties had no significant variability in the study area, soil
compaction values resulted in very high value ranges (Figure 9). The current area of the
steppe-like grassland in Bilje had continuously low soil compaction in the upper soil layer,
with a gradual increase in soil compaction in deeper soil layers. However, the projected
area had two distinct areas with extreme soil compaction values regardless of soil depth,
i.e., very low soil compaction in the hilly section in the northern part and very high soil
compaction in the southern part.
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Figure 9. The soil compaction at three soil depth layers.

Overall, the vegetative criteria had positive mutual correlations during the entire study
period, especially during late March and mid-April (Figure 10). While the value ranges
of soil compaction were distinct relative to the soil depth layers, their values increased
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proportionally with soil depth, resulting in a high positive correlation. The digital surface
model and terrain slope had negative correlations with total potential insolation and flow
accumulation, indicating complimentary information regarding the microrelief. Individual
criteria from the vegetation, soil, and topography criteria groups produced no positive
correlation for any combination of the individual criteria.
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The binomial classification accuracy per flora species is presented in Table 3. The
random forest method produced superior classification accuracy relative to the evaluated
machine learning methods for all five flora species, closely followed by XGBoost in four
cases. Flora species with the lowest number of input samples, i.e., small pasque flower and
Hungarian iris, produced the lowest and the highest classification accuracy, respectively.

Table 3. Accuracy assessment of binomial classification per flora species.

Flora Species Metric Random Forest XGBoost Neural Network Generalized
Linear Model

Bloody cranesbill
ROC 0.964 0.956 0.914 0.694

Sensitivity 0.567 0.617 0.517 0.500
Specificity 0.967 0.933 0.902 0.883

Green-winged orchid
ROC 0.967 0.956 0.922 0.964

Sensitivity 0.900 0.817 0.683 0.783
Specificity 0.933 0.933 0.867 0.967

Hungarian
false leopardbane

ROC 0.999 0.967 0.958 0.825
Sensitivity 0.967 0.933 0.733 0.633
Specificity 0.950 0.900 0.950 0.900

Hungarian iris
ROC 0.999 0.999 0.999 0.850

Sensitivity 0.999 0.950 0.867 0.650
Specificity 0.999 0.999 0.999 0.999

Small pasque flower
ROC 0.809 0.738 0.762 0.607

Sensitivity 0.933 0.867 0.633 0.700
Specificity 0.429 0.143 0.857 0.714

The most accurate results per classification are shown in bold.



Remote Sens. 2022, 14, 3054 11 of 19

The complete representation of the predicted habitat suitability is presented in Figure 11.
The suitability levels of bloody cranesbill predominated, followed by Hungarian false
leopardbane and green-winged orchid, indicating the presence of suitable environmental
conditions. The small pasque flower and Hungarian iris resulted in narrow ecological
variances of the observed criteria, which were met in a very limited part of the projected
area of expansion.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 20 
 

 

 

Figure 11. Display of predicted habitat suitability of the most accurate classification method per 

flora species. 

The variable importance of classified suitability for five flora species indicated a wide 

range of crucial environmental criteria, as well as the UAS imaging periods (Figure 12). 

The random forest classification results, as the most accurate evaluated classification var-

iant, were selected for the assessment of the variable importance. Vegetation indices dom-

inated among the most important criteria for all flora species, especially those collected in 

late March and early to mid-June. Soil compaction was represented at all three soil depth 

layers, while total potential insolation and the digital surface model were the most im-

portant topographic criteria. 

Figure 11. Display of predicted habitat suitability of the most accurate classification method per
flora species.

The variable importance of classified suitability for five flora species indicated a wide
range of crucial environmental criteria, as well as the UAS imaging periods (Figure 12). The
random forest classification results, as the most accurate evaluated classification variant,
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were selected for the assessment of the variable importance. Vegetation indices dominated
among the most important criteria for all flora species, especially those collected in late
March and early to mid-June. Soil compaction was represented at all three soil depth layers,
while total potential insolation and the digital surface model were the most important
topographic criteria.
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4. Discussion

The field detection of flora units from this study indicated an increase in the population
count of endangered flora species, with the number of detected flora units increasing to
129 as compared with 109 units five years prior [7]. To potentially extend their habitat
to neighboring areas, we proposed a habitat suitability prediction method based on non-
invasive field observations from remote sensing imaginh using a UAS multispectral camera
system and machine learning classification. Since the evaluated environmental conditions,
including vegetation, soil, and topography criteria, impact the ecological gradient of
both flora and fauna species [50–52], the proposed approach should be applicable to
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a wide variety of endangered species. Moreover, the application of the UAS mounted
multispectral camera system ensured that flora and fauna species would be minimally
disturbed in their natural habitat during the field observations and non-invasive population
count [53]. However, the proposed suitability calculation approach presently does not
include environmental conditions which are difficult to model in the GIS environment
but are impactful on habitat suitability of flora species. These include random grazing or
browsing by animals or soil invertebrate fauna [54].

The random forest classification method utilized the three groups of environmental
criteria with the highest prediction accuracy. To include spatial data that would highlight
the existing variability in the environmental conditions of the study area, the inclusion
of additional remote sensing sensors could potentially upgrade the existing suitability
results. In addition to the presently utilized multispectral sensors, previous research has
indicated that hyperspectral sensors [55] and LiDAR [56] could provide supplementary
spatial information of predominately structural environmental conditions and could be
successfully integrated with machine learning classification methods. UASs have also
ensured high prediction accuracy in related studies for nature conservation, such as flora
species population count and coverage area prediction [57,58]. Although machine learning
classification methods, such as those evaluated in this study, are generally resistant to
overfitting which might occur in the process, overfitting still might occur due to exaggerated
pruning [59]. Since the abovementioned studies focused on the detection of environmental
conditions present during the data collection period, the proposed approach for habitat
suitability prediction extends the present possibilities of land management for protected
natural areas. The approach of integrating machine learning with multispectral images
acquired using UASs has been proven to be successful regardless of the study area location
at many other locations around the globe, with the only notable disadvantage of relatively
small imaging coverage [60]. Due to the requirements of high imaging spatial resolution
and flight altitude restrictions implemented by the majority of countries, this approach is
likely to remain applicable only for smaller areas. For larger study areas, global open-data
multispectral satellite missions and digital elevation models could be primary data sources
that ensure a moderate spatial resolution [61]. However, these data do not allow any type
of classification at the individual plant or herbaceous species level.

Although bloody cranesbill exhibited the highest ecological valence and distribution
area among the studied flora species, three distinct sets of environmental criteria clearly
had the highest importance. These criteria consisted of soil compaction across all soil
depths, vegetation indices in mid-June, and the same indices in mid- to late March. While
the observations in May and June coincide with the flowering period, with consequently
rapid changes in spectral signatures, the importance of March observation implies the
necessity of its further exploration in future studies. The green-winged orchid had similar
criteria sets and respective time periods as that of the most important bloody cranesbill,
with more emphasized topographic criteria of the digital surface model and the terrain
slope. This observation aligns with their natural habitat in the study area, where it was
found exclusively on flat terrain with lower elevation than their surroundings. Hungarian
false leopardbane had the highest requirements for a narrow range of total insolation, as
well as soil compaction at deeper soil layers. Vegetation criteria also had two distinct time
periods which had the greatest effect on classification, which included March and early
June. Contrary to the most important study periods of the bloody cranesbill, vegetation
indices from the flowering period in April and early May did not have a major impact on
the classification results. Although Hungarian iris was detected in a very small part of
the study area in a minor terrain depression, as a very distinct section of the microrelief,
no topographic criteria were among the most important variables. The vegetation indices
with the greatest importance were collected over the entire study period, indicating that
Hungarian iris requires fieldwork in regular study periods for its effective monitoring. The
vegetation indices collected during late March and mid- to late June were among the most
important variables for habitat suitability classification for the small pasque flower. As a
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flora species which was detected in the widest area among studies species, it also showed a
dependency on total insolation and soil compaction in the uppermost soil layer.

The extension of potential habitat areas for the five observed endangered flora species
produced varying results, regarding the individual species and environmental conditions
in the study area. The predicted habitat suitability area for the endangered flora species
was the highest for bloody cranesbill, being the only species in the LC category, which will
likely remain due to its wide ecological optimum in the study area. Among the critically
endangered species, Hungarian false leopardbane resulted in a suitability potential for
expanding its habitat in the projected area, which is especially encouraged for both flora
and fauna species in the CR category [62]. Since the existing habitats of Hungarian iris are
grouped in a relatively small current area, as well as being the least represented species in
the projected area, special attention should be placed on protecting it from further extinction.
Soil compaction is a specific occurrence which is among the few abiotic components that
can be affected by adopting soil tillage adjustment operations, unlike climate conditions
or topography, that which require land management to fully adjust to these conditions
without the possibility of altering them directly [63]. This indicates a positive impact of
including environmental conditions in suitability analyses which can be altered by human
activity, but should be approached with caution as it might negatively affect other flora
species in the study area.

5. Conclusions

The habitat suitability analysis for endangered flora species of the protected natural
monument steppe-like grassland in Bilje for the purpose of extending their coverage zone
determined the presence of five endangered flora species: small pasque flower, green-
winged orchid, Hungarian false leopardbane, bloody cranesbill, and Hungarian iris. Three
groups of environmental criteria, i.e., inducing vegetation, soil, and topography, were all
represented in the variable importance analysis, justifying their selection and ensuring a
complimentary suitability analysis from various ecological aspects. The vegetation criteria
included multitemporal values of complementary vegetation indices (NDVI and NDRE),
which indicated the possibility of detecting eco-physiologically similar locations in the
current and projected area of the steppe-like grassland in Bilje. The variable importance
from the machine learning classification results enabled the selection of the most important
time periods for UAS imaging for particular flora species, enabling additional insight into
the importance of flora species’ growth stages and more economical fieldwork planning
in the future. The topography criteria of the microrelief analysis included the influence of
terrain on the basic abiotic factors that determine the growth of plant species, emphasizing
the influence of total potential insolation and the potential benefit of including additional
complimentary indices. The soil criteria included the physical parameter of soil compaction
at three soil depth layers, which enabled suitability assessment for all five flora species,
regarding the required soil depth for root development. The random forest method out-
performed the XGBoost, neural network and the generalized linear model methods in the
binomial classification of suitability for evaluating all flora species. On the basis of the
random forest results, the conclusions were made about the possibilities of extending the
coverage area of the steppe-like grassland in Bilje. According to the predicted suitabil-
ity levels, the habitat coverage of bloody cranesbill and green-winged orchid could be
extended presently. The proposed method also has high potential for implementation in
habitat suitability assessments of other flora species, since vegetation, soil, and topography
conditions impact the ecological gradient for a variety of similar species.
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Appendix A

Table A1. The spectral signatures of detected flora species, as mean values per spectral band in five
bands, for imaging dates during year 2021.

Flora Species Bands
Mean Digital Number (DN) Values Divided by a Maximum DN Value

28.01. 15.02. 01.03. 18.03. 30.03. 12.04. 30.04. 14.05. 01.06. 14.06.

Small pasque flower

B 0.198 0.198 0.175 0.210 0.208 0.181 0.134 0.119 0.094 0.111
G 0.213 0.209 0.172 0.214 0.212 0.193 0.176 0.159 0.150 0.165
R 0.193 0.186 0.159 0.183 0.180 0.164 0.134 0.108 0.101 0.130

RE 0.242 0.265 0.220 0.255 0.265 0.256 0.246 0.213 0.246 0.211
NIR 0.233 0.259 0.216 0.246 0.250 0.243 0.233 0.203 0.248 0.220

Green-winged orchid

B 0.231 0.224 0.206 0.199 0.189 0.170 0.141 0.124 0.091 0.132
G 0.230 0.226 0.201 0.198 0.195 0.181 0.184 0.174 0.140 0.187
R 0.217 0.223 0.187 0.178 0.181 0.161 0.154 0.130 0.103 0.190

RE 0.267 0.252 0.253 0.238 0.250 0.240 0.248 0.223 0.283 0.235
NIR 0.268 0.244 0.245 0.240 0.248 0.240 0.232 0.221 0.296 0.237

Hungarian false leopardbane

B 0.183 0.147 0.167 0.139 0.162 0.117 0.094 0.074 0.105 0.109
G 0.199 0.160 0.166 0.150 0.193 0.155 0.134 0.150 0.199 0.178
R 0.184 0.150 0.163 0.139 0.170 0.128 0.135 0.104 0.157 0.158

RE 0.283 0.234 0.232 0.238 0.273 0.255 0.227 0.232 0.252 0.229
NIR 0.291 0.253 0.239 0.244 0.267 0.266 0.275 0.252 0.259 0.235

Bloody cranesbill

B 0.198 0.178 0.175 0.213 0.219 0.167 0.135 0.105 0.093 0.111
G 0.197 0.177 0.172 0.216 0.231 0.190 0.164 0.159 0.156 0.163
R 0.164 0.155 0.159 0.191 0.201 0.155 0.134 0.116 0.108 0.112

RE 0.248 0.222 0.221 0.252 0.293 0.262 0.239 0.251 0.249 0.236
NIR 0.239 0.213 0.210 0.247 0.279 0.253 0.234 0.252 0.250 0.236

Hungarian iris

B 0.116 0.124 0.150 0.194 0.238 0.172 0.064 0.082 0.079 0.123
G 0.145 0.143 0.167 0.195 0.228 0.197 0.140 0.191 0.142 0.211
R 0.115 0.116 0.145 0.181 0.178 0.171 0.087 0.123 0.091 0.136

RE 0.234 0.207 0.246 0.231 0.257 0.275 0.271 0.302 0.267 0.264
NIR 0.232 0.209 0.236 0.212 0.229 0.235 0.300 0.296 0.279 0.283
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