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Abstract: In this study, we propose integrating unmanned aerial systems (UASs) and machine learn-
ing classification for suitability prediction of expanding habitats for endangered flora species to pre-
vent further extinction. Remote sensing imaging of the protected steppe-like grassland in Bilje using 
the DJI P4 Multispectral UAS ensured non-invasive data collection. A total of 129 individual flora 
units of five endangered flora species, including small pasque flower (Pulsatilla pratensis (L.) Miller 
ssp. nigricans (Störck) Zämelis), green-winged orchid (Orchis morio (L.)), Hungarian false 
leopardbane (Doronicum hungaricum Rchb.f.), bloody cranesbill (Geranium sanguineum (L.)) and 
Hungarian iris (Iris variegate (L.)) were detected and georeferenced. Habitat suitability in the pro-
jected area, designated for the expansion of the current area of steppe-like grassland in Bilje, was 
predicted using the binomial machine learning classification algorithm based on three groups of 
environmental abiotic criteria: vegetation, soil, and topography. Four machine learning classifica-
tion methods were evaluated: random forest, XGBoost, neural network, and generalized linear 
model. The random forest method outperformed the other classification methods for all five flora 
species and achieved the highest receiver operating characteristic (ROC) values, ranging from 0.809 
to 0.999. Soil compaction was the least favorable criterion for the habitat suitability of all five flora 
species, indicating the need to perform soil tillage operations to potentially enable the expansion of 
their coverage in the projected area. However, potential habitat suitability was detected for the crit-
ically endangered flora species of Hungarian false leopardbane, indicating its habitat-related poten-
tial for expanding and preventing further extinction. In addition to the current methods of predict-
ing current coverage and population count of endangered species using UASs, the proposed 
method could serve as a basis for decision making in nature conservation and land management. 

Keywords: nature conservation; random forest; environmental criteria; classification; multispectral 
imaging 
 

1. Introduction 
In recent years, and especially after the accession of the Republic of Croatia to the 

European Union, there have been significant changes in the needs related to 
environmental monitoring and management in Croatia. These changes primarily include: 
(1) greater importance to the aspect of nature protection, for which the main instrument 
is the European ecological network Natura 2000 [1] and (2) the need for a detailed 
evaluation of environmental and natural resources, especially water, air, and soil, given 
the expected consequences of climate change [2]. The loss of natural habitats due to 
climate change, intensive agricultural production, drainage of wetlands, urban 
development, and environmental contamination are the main reasons for endangering 
various flora species worldwide [3,4]. In order to monitor the status and protection of 
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flora, the International Union for Conservation of Nature (IUCN) has prescribed rules and 
criteria for assessing the endangerment of wild species and has set standards for the 
preparation of red lists [5]. 

All these conditions place additional demands on land management of protected 
natural areas in Croatia; under the new circumstances, a detailed inventory is required for 
the purpose of spatial planning [6]. The most recent study, in 2016, on the flora of the 
steppe-like grassland in Bilje reported a total of 109 plant species detected from 35 families 
[7]. The steppe-like grassland in Bilje was protected in 2001 under the category of natural 
monument and it represents an integral part of the ecological habitat network of the 
Republic of Croatia within the Natura 2000 [7]. Due to the human-made habitat 
degradation caused by suboptimal land management over the years, an initiative was 
started for the expansion of steppe-like grassland in Bilje. To perform such a procedure, 
due to the narrow ecological gradients of the present flora species, an accurate evaluation 
of the habitat suitability according to relevant abiotic factors is necessary [8]. These abiotic 
factors generally include climate, soil, and topography environmental components, which 
are continuously interacting with vegetation [9]. 

Among the previously detected flora species in Bilje's steppe-like grassland, there are 
five endangered flora species that are protected by the nature protection acts of Croatia 
[10]. These are small pasque flower (Pulsatilla pratensis (L.) Miller ssp. nigricans (Störck) 
Zämelis), green-winged orchid (Orchis morio (L.)), Hungarian false leopardbane 
(Doronicum hungaricum Rchb.f.), bloody cranesbill (Geranium sanguineum (L.)), and 
Hungarian iris (Iris variegata (L.)) [10,11]. The small pasque flower is a perennial 
herbaceous plant and a geophyte [12], which, at the beginning of the 1990s, had the status 
of a regionally extinct (RE) species in Croatia [12]. It was detected again, later in the 
decade, but still has the status of a critically endangered species and is strictly protected 
in Croatia. The green-winged orchid is a perennial herbaceous plant and a geophyte [13], 
which is found in pastures and grasslands individually or in small groups throughout 
Central and Southern Europe [13]. The Hungarian false leopardbane is a perennial 
herbaceous plant and a hemicryptophyte [14], which specifically inhabits dry grasslands, 
with the steppe-like grassland in Bilje being its only habitat in Croatia. The bloody 
cranesbill is a perennial herbaceous plant and a hemicryptophyte, which grows in dry, 
moderately acidic soils, as well as in sunny to semi-shady locations [15]. The Hungarian 
iris is a perennial herbaceous plant and a geophyte, specific for its narrow ecological 
valence regarding topographic conditions [16]. 

The conventional approach to habitat suitability studies include subjective methods 
with marginal reproducibility as they are dominantly affected by expert assumptions. 
Geographic information system (GIS)-based multicriteria anaylsis in combination with 
individual weight determination methods, such as analytic hierarchy procedure, enables 
flexible suitability calculations but is deficient with regard to computational efficiency and 
reliability [9]. To overcome these limitations while maintaining flexibility and 
straightforwardness in spatial prediction, machine learning methods have been 
increasingly adopted in habitat suitability analyses [17]. Since this approach requires a 
number of input enviromental criteria, the role of remote sensing imaging becomes even 
more valuable in serving as a fundamental data source. Due to the sensitivity of 
endangered flora species and the need to not affect their natural habitat, remote sensing 
imaging methods are particularly suitable for habitat suitability prediction and nature 
conservation in general [18,19]. Moreover, remote sensing imaging in red-edge and near-
infrared spectral bands is sensitive to plants’ photosynthetic activities that might vary 
over time [20]. It enables the detection of minor variabilities in vegetation properties of 
endangered flora species, as well as of vegetation in general, providing the reliability and 
robustness of suitability predictions [21]. To provide an efficient multispectral imaging 
solution with high spatial resolution in restricted locations, unmanned aerial systems 
(UASs) have been successfully implemented in various nature conservation studies, 
specifically ensuring non-invasive data collection in sensitive study areas [22]. Various 
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machine learning classification algorithms have recently been established as state-of-the-
art methods for suitability prediction in various disciplines, such as agriculture [9], 
forestry [23], nature and environment conservation [24], including land and marine 
contamination studies [25,26]. While these methods have been successfully utilized in 
previous studies [27,28], habitat suitability prediction methods according to 
environmental criteria have been relatively unexplored, especially for the purpose of 
extending the habitat of endangered flora species [29]. 

The aim of this study was to propose and evaluate a method for habitat suitability 
prediction of endangered steppe flora species based on UAS imaging and machine 
learning classification, which could be applied as a nature conservation decision-making 
tool at micro-scale locations. The proposed method is based on a thorough spatial analysis 
of relevant environmental spatial criteria (vegetation, soil, and topography) in GIS, which 
is used in land management activities in Croatia. 

2. Materials and Methods 
2.1. Study Area and Fieldwork 

The steppe in Bilje is located in the central part of a cemetery and covers an area of 
0.63 ha, representing the last remnant of the steppe-like grassland in Croatia (Figure 1). 
There is a significant share of the xerothermic elements from the eastern European 
steppes, for which this study area represents a westernmost limit of distribution [7]. 
Research in the past thirty years has confirmed that there were more such habitats in 
eastern Croatia but they have mostly disappeared due to land-use transformation into 
arable land or overgrowing with shrubs [10]. 

 
Figure 1. The current and projected areas of steppe-like grassland in Bilje with locations of detected 
flora species. 

Data collection in the steppe-like grassland in Bilje was carried out in ten iterations 
during 2021: 28 January, 15 February, 1 March, 18 March, 30 March, 14 April, 30 April, 14 
May, 1 June, and 14 June 2021 (Figure 2). A DJI P4 Multispectral UAS was used for the 
remote sensing imaging in the blue (B), green (G), red (R), red-edge (RE), and near-
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infrared (NIR) spectral bands. The imaging for all iterations was performed using the 
same mission and parameters, with 35 m relative altitude, 4.0 m s–1 fight speed, 80% front 
overlap, 70% side overlap, and imaging at nadir angle. The images were directly 
georeferenced based on the Global Navigation Satellite System (GNSS), using the Croa-
tian Positioning System (CROPOS) Very-High Precision Positioning (VPPS) service, 
which enabled positioning accuracy of 2 cm horizontally and 4 cm vertically [30]. The 
digital orthophoto and digital surface model were created in the Agisoft Metashape 
Professional software v1.5.2 (St. Petersburg, Russia), based on the structure-from-motion 
process from dense point cloud. A digital orthophoto was created for each of the imaging 
sets with a spatial resolution of 2.0 cm from the 1.9 cm ground sample distance, processed 
as the multispectral image band stack. The digital surface model used for calculations of 
the topographic indicators of microrelief was determined using UAS imagery sensed on 
28 January 2021 with a spatial resolution of 7.5 cm, when canopy height was at its lowest 
in the study period. Soil sampling was performed using an Eijkelkamp soil and water 
penetrometer at 72 randomly selected soil samples distributed across the study area. 

 
Figure 2. The timeline of the performed fieldwork at the steppe-like grassland in Bilje, during 
2021. 

A total of 129 individual flora units across the study area were identified in the field 
and georeferenced (Table 1, Figure 3). A Trimble R8s global navigation satellite system 
(GNSS) receiver was used for the real-time kinematic (RTK) georeferencing, using the 
CROPOS VPPS service. The IUCN classes representing vulnerability on the national level 
were evaluated in the Flora Croatica database [11]. Among the evaluated existing flora 
species, the vulnerability classes consisted of critically endangered (CR), endangered 
(EN), vulnerable (VU), near threatened (NT), and least concern (LC). 

Table 1. Endangered flora species detected during the fieldwork. 

English Name Latin Name Family IUCN Class Units Detected 

Small pasque flower 
Pulsatilla pratensis (L.) Miller ssp.  

nigricans (Störck) Zämelis Ranunculaceae CR 7 

Green-winged orchid Orchis morio (L.) Orchidaceae NT 29 
Hungarian false leopard-

bane 
Doronicum hungaricum Rchb.f. Asteraceae CR 20 

Bloody cranesbill Geranium sanguineum (L.) Geraniaceae LC 61 
Hungarian iris Iris variegata (L.) Iridaceae NT 12 
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Figure 3. Images of the detected endangered flora species. 

2.2. Spatial Modeling of Environmental Criteria 
The habitat suitability prediction of endangered steppe flora species in Bilje’s steppe-

like grassland was performed using three groups of independent environmental criteria: 
vegetation, soil, and topography. These criteria groups have been commonly used in spa-
tial predictions, as the most relevant environmental criteria [31]. While these criteria 
groups represent structural ecosystem parameters [32], only those criteria which showed 
variability in the study area were selected for suitability prediction. Although climate con-
ditions are among the recommended criteria [31], the variability of climate conditions over 
the study area could not be quantified due to sparse spatial resolution of available climate 
data [33]. Spearman correlation coefficients were used to determine the mutual relation-
ships of individual environmental covariates. The spatial modeling of environmental cri-
teria was performed using the open-source GIS software SAGA GIS v7.3.0 (Göttingen, 
Germany) [34], which was georeferenced in the Croatian Terrestrial Reference System 
(HTRS96/TM, EPSG: 3765). 

2.2.1. Vegetation Criteria 
The vegetation criteria included vegetation indices derived from multitemporal UAS 

imaging, that allowed the assessment of biophysical vegetative properties, such as chlo-
rophyll content [35]. Two vegetation indices were selected to represent vegetation criteria, 
i.e., the normalized difference vegetation index (NDVI) [36] and the normalized difference 
red-edge index (NDRE) [37]. Their calculation was performed according to Equations (1) 
and (2) as follows: 

NDVI = 
NIR − R
NIR + R ,  (1) 

NDRE = 
RE − R
RE + R . (2) 
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These are the two of the most well-known and globally documented vegetation indi-
ces, with very wide application and high accuracy in monitoring the properties of vegeta-
tion in previous studies [38–40]. The differences of vegetation indices over the study pe-
riod were evaluated using the paired t-test, calculated from all combinations of consecu-
tive NDVI and NDRE observations. 

2.2.2. Soil Criteria 
Soil criteria included the physical parameter of soil compaction determined by using 

a soil penetrometer at a discrete set of locations, since it was the only soil property which 
was determined to be heterogeneous in the study area. Soil compaction, as a limiting fac-
tor in the development of the root system of endemic flora species [41], was selected as an 
indicator of the physical component of soil suitability. Soil compaction was sampled at 
three soil depths: 0–5 cm, 5–10 cm, and 10–15 cm, which included vertical soil stratification 
of the utmost importance for the development of the root system of detected flora species 
[11]. Spatial interpolation of soil compaction in the entire study area was performed by 
geostatistical data processing using the inverse distance weighting interpolation method 
with a power parameter of 2 due to the lack of spatial autocorrelation, normality, and 
stationarity of input data, as was recommended in previous studies [42,43]. 

2.2.3. Topographic Criteria 
Topographic criteria were calculated in the GIS environment based on the applica-

tion of empirical algorithms of the digital relief model values [44]. The topographic pa-
rameters of digital surface model, slope, total potential annual insolation, and flow accu-
mulation were selected as the main indicators of microrelief, according to their compli-
mentary representation of topographic properties [44,45]. The terrain slope and the flow 
accumulation model were specifically selected to model water retention in soil after pre-
cipitation [46], according to moderate depressions in the central part of the current cover-
age of the steppe-like grassland. The flow accumulation was calculated using the multiple 
flow direction method with a top-down process and sink removal in preprocessing [47]. 
The total potential annual insolation is a fundamental indicator of the impact of microre-
lief on the availability of sunlight [48], providing mutually complementary information to 
the aforementioned indicators. 

2.3. Habitat Suitability Prediction Using Machine Learning 
The aggregated suitability of the study area for endangered flora species was deter-

mined by supervised binomial classification methods, and included evaluation of the ran-
dom forest, XGBoost, neural network, and generalized linear model methods. The most 
accurate method was selected for each of the individual flora species, based on the highest 
receiver operating characteristic (ROC) value, with displayed sensitivity and specificity 
as its components. The optimal parameters of the machine learning classification methods 
were determined on the iterative basis, using the combination of parameters which pro-
duced the highest ROC values as the most accurate variant. Machine learning classifica-
tion and accuracy assessment were performed using R x64 v4.0.3 in RStudio v2021.09.2 
(Boston, MA, USA) with “caret” library [49]. The prediction was performed with all three 
groups of environmental criteria (vegetation, topography, and soil). Training samples 
consisted of georeferenced locations of flora species detected in the field for the individual 
species, combined with the 27 random samples, to match the number of input environ-
mental covariates. The random samples were generated with 10 m mutual distance and 
at least 2 m from the nearest flora unit. The number of training data varied according to 
the number of detected flora units, as displayed in Table 1. The total number of training 
data was 88 for bloody cranesbill, 56 for green-winged orchid, 39 for Hungarian iris, 47 
for Hungarian false leopardbane, and 34 for small pasque flower. The classification results 
included two classes: one class, representing area with higher suitability for flora species 
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relative to the random locations in the study area and a second class, representing pres-
ently non-suitable area. The variable importance was determined for each classification 
variant per flora species, quantifying the scaled variable importance with the maximum 
value of 100. The proposed habitat suitability prediction method for endangered flora spe-
cies is summarized in Figure 4. 

 
Figure 4. The proposed method for habitat suitability prediction based on unmanned aerial vehicle 
remote sensing and machine learning classification. 

3. Results 
The results of paired t-test from all combinations of consecutive NDVI and NDRE 

observations are presented in Table 2. The spectral signatures of detected flora species, as 
mean values per spectral band in five bands are shown in Appendix A. A period of smaller 
changes in the values of the vegetation indices (until 12 April 2021), and then an increase 
in the indices and higher variability caused by latter growth stages of flora species (after 
12 April 2021) were observed (Figure 5). The vegetation criteria represented by the NDVI 
and NDRE vegetation indices resulted in individual value spikes for the majority of the 
observed flora species, which could be differentiated from the rest of the study area. The 
largest increases in vegetation indices as compared with the previous observations oc-
curred for Hungarian false leopardbane and Hungarian Iris on 30 April 2021, as well as 
for green-winged orchid and small pasque flower on 1 June 2021. 

Table 2. The results of the paired t-test from all combinations of consecutive NDVI and NDRE ob-
servations. 

First Observation Second Observation 
NDVI NDRE 

t p t p 
28 January 2021 15 February 2021 5.2524 <0.0001 5.8283 <0.0001 

15 February 2021 1 March 2021 2.1964 0.0290 0.9416 0.3472 
1 March 2021 18 March 2021 −2.9588 0.0034 −2.7005 0.0074 
18 March 2021 30 March 2021 −2.8197 0.0052 −4.9542 <0.0001 
30 March 2021 12 April 2021 −6.4170 <0.0001 −7.021 <0.0001 
12 April 2021 30 April 2021 −1.6302 0.1043 −0.5633 0.5737 
30 April 2021 14 May 2021 −5.8383 <0.0001 −6.2335 <0.0001 
14 May 2021 01 June 2021 0.6704 0.5032 0.9132 0.3620 
01 June 2021 14 June 2021 9.0903 <0.0001 9.9859 <0.0001 
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Figure 5. Boxplots of the NDVI and NDRE vegetation indices in the study period (black dots rep-
resent outliers). 

Overall, the study area showed a wide range of values for all four topographic crite-
ria. The current habitats of the endangered flora species showed narrow value ranges up 
to 0.30 of the normalized value interval, representing the ecological valence of individual 
species (Figure 6). The topographic criteria indicated the presence of two distinct features 
within the study area: a depression in the central part of the current area of Bilje’s steppe-
like grassland and a hill in the northern part of the projected area (Figure 7). The habitats 
of observed species mutually differentiated primarily in the elevation from the digital sur-
face model and total potential insolation values. Particular species had very distinct topo-
graphic properties, including elevation of Hungarian iris and Hungarian false leopard-
bane, as well as the total potential insolation for Hungarian iris. 

 
Figure 6. Boxplots of topographic indices per flora species (black dots represent outliers). 
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Figure 7. The four components of the topographic criteria group. 

The average soil compaction values of the current flora species habitats were in line 
with the general value distribution in the current area (Figure 8), while Hungarian iris had 
noticeably lower soil compaction values than other species in all three soil layers. While 
the majority of considered soil properties had no significant variability in the study area, 
soil compaction values resulted in very high value ranges (Figure 9). The current area of 
the steppe-like grassland in Bilje had continuously low soil compaction in the upper soil 
layer, with a gradual increase in soil compaction in deeper soil layers. However, the pro-
jected area had two distinct areas with extreme soil compaction values regardless of soil 
depth, i.e., very low soil compaction in the hilly section in the northern part and very high 
soil compaction in the southern part. 

 
Figure 8. Boxplots of soil compaction at three soil depth layers per flora species (black dots repre-
sent outliers). 
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Figure 9. The soil compaction at three soil depth layers. 

Overall, the vegetative criteria had positive mutual correlations during the entire 
study period, especially during late March and mid-April (Figure 10). While the value 
ranges of soil compaction were distinct relative to the soil depth layers, their values in-
creased proportionally with soil depth, resulting in a high positive correlation. The digital 
surface model and terrain slope had negative correlations with total potential insolation 
and flow accumulation, indicating complimentary information regarding the microrelief. 
Individual criteria from the vegetation, soil, and topography criteria groups produced no 
positive correlation for any combination of the individual criteria. 
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Figure 10. The correlation plot for input environmental criteria. 

The binomial classification accuracy per flora species is presented in Table 3. The 
random forest method produced superior classification accuracy relative to the evaluated 
machine learning methods for all five flora species, closely followed by XGBoost in four 
cases. Flora species with the lowest number of input samples, i.e., small pasque flower 
and Hungarian iris, produced the lowest and the highest classification accuracy, respec-
tively. 

Table 3. Accuracy assessment of binomial classification per flora species. 

Flora Species Metric Random Forest XGBoost Neural Network 
Generalized 

Linear Model 

Bloody cranesbill 
ROC 0.964 0.956 0.914 0.694 

Sensitivity 0.567 0.617 0.517 0.500 
Specificity 0.967 0.933 0.902 0.883 

Green-winged orchid 
ROC 0.967 0.956 0.922 0.964 

Sensitivity 0.900 0.817 0.683 0.783 
Specificity 0.933 0.933 0.867 0.967 

Hungarian false 
leopardbane 

ROC 0.999 0.967 0.958 0.825 
Sensitivity 0.967 0.933 0.733 0.633 
Specificity 0.950 0.900 0.950 0.900 

Hungarian iris 
ROC 0.999 0.999 0.999 0.850 

Sensitivity 0.999 0.950 0.867 0.650 
Specificity 0.999 0.999 0.999 0.999 

Small pasque flower 
ROC 0.809 0.738 0.762 0.607 

Sensitivity 0.933 0.867 0.633 0.700 
Specificity 0.429 0.143 0.857 0.714 

The most accurate results per classification are shown in bold. 

The complete representation of the predicted habitat suitability is presented in Figure 
11. The suitability levels of bloody cranesbill predominated, followed by Hungarian false 
leopardbane and green-winged orchid, indicating the presence of suitable environmental 
conditions. The small pasque flower and Hungarian iris resulted in narrow ecological var-
iances of the observed criteria, which were met in a very limited part of the projected area 
of expansion. 
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Figure 11. Display of predicted habitat suitability of the most accurate classification method per 
flora species. 

The variable importance of classified suitability for five flora species indicated a wide 
range of crucial environmental criteria, as well as the UAS imaging periods (Figure 12). 
The random forest classification results, as the most accurate evaluated classification var-
iant, were selected for the assessment of the variable importance. Vegetation indices dom-
inated among the most important criteria for all flora species, especially those collected in 
late March and early to mid-June. Soil compaction was represented at all three soil depth 
layers, while total potential insolation and the digital surface model were the most im-
portant topographic criteria. 
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Figure 12. The top ten important variables of the most accurate classification method per flora spe-
cies. 

4. Discussion 
The field detection of flora units from this study indicated an increase in the popula-

tion count of endangered flora species, with the number of detected flora units increasing 
to 129 as compared with 109 units five years prior [7]. To potentially extend their habitat 
to neighboring areas, we proposed a habitat suitability prediction method based on non-
invasive field observations from remote sensing imaginh using a UAS multispectral cam-
era system and machine learning classification. Since the evaluated environmental condi-
tions, including vegetation, soil, and topography criteria, impact the ecological gradient 
of both flora and fauna species [50–52], the proposed approach should be applicable to a 
wide variety of endangered species. Moreover, the application of the UAS mounted mul-
tispectral camera system ensured that flora and fauna species would be minimally dis-
turbed in their natural habitat during the field observations and non-invasive population 
count [53]. However, the proposed suitability calculation approach presently does not in-
clude environmental conditions which are difficult to model in the GIS environment but 
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are impactful on habitat suitability of flora species. These include random grazing or 
browsing by animals or soil invertebrate fauna [54]. 

The random forest classification method utilized the three groups of environmental 
criteria with the highest prediction accuracy. To include spatial data that would highlight 
the existing variability in the environmental conditions of the study area, the inclusion of 
additional remote sensing sensors could potentially upgrade the existing suitability re-
sults. In addition to the presently utilized multispectral sensors, previous research has 
indicated that hyperspectral sensors [55] and LiDAR [56] could provide supplementary 
spatial information of predominately structural environmental conditions and could be 
successfully integrated with machine learning classification methods. UASs have also en-
sured high prediction accuracy in related studies for nature conservation, such as flora 
species population count and coverage area prediction [57,58]. Although machine learn-
ing classification methods, such as those evaluated in this study, are generally resistant to 
overfitting which might occur in the process, overfitting still might occur due to exagger-
ated pruning [59]. Since the abovementioned studies focused on the detection of environ-
mental conditions present during the data collection period, the proposed approach for 
habitat suitability prediction extends the present possibilities of land management for pro-
tected natural areas. The approach of integrating machine learning with multispectral im-
ages acquired using UASs has been proven to be successful regardless of the study area 
location at many other locations around the globe, with the only notable disadvantage of 
relatively small imaging coverage [60]. Due to the requirements of high imaging spatial 
resolution and flight altitude restrictions implemented by the majority of countries, this 
approach is likely to remain applicable only for smaller areas. For larger study areas, 
global open-data multispectral satellite missions and digital elevation models could be 
primary data sources that ensure a moderate spatial resolution [61]. However, these data 
do not allow any type of classification at the individual plant or herbaceous species level. 

Although bloody cranesbill exhibited the highest ecological valence and distribution 
area among the studied flora species, three distinct sets of environmental criteria clearly 
had the highest importance. These criteria consisted of soil compaction across all soil 
depths, vegetation indices in mid-June, and the same indices in mid- to late March. While 
the observations in May and June coincide with the flowering period, with consequently 
rapid changes in spectral signatures, the importance of March observation implies the ne-
cessity of its further exploration in future studies. The green-winged orchid had similar 
criteria sets and respective time periods as that of the most important bloody cranesbill, 
with more emphasized topographic criteria of the digital surface model and the terrain 
slope. This observation aligns with their natural habitat in the study area, where it was 
found exclusively on flat terrain with lower elevation than their surroundings. Hungarian 
false leopardbane had the highest requirements for a narrow range of total insolation, as 
well as soil compaction at deeper soil layers. Vegetation criteria also had two distinct time 
periods which had the greatest effect on classification, which included March and early 
June. Contrary to the most important study periods of the bloody cranesbill, vegetation 
indices from the flowering period in April and early May did not have a major impact on 
the classification results. Although Hungarian iris was detected in a very small part of the 
study area in a minor terrain depression, as a very distinct section of the microrelief, no 
topographic criteria were among the most important variables. The vegetation indices 
with the greatest importance were collected over the entire study period, indicating that 
Hungarian iris requires fieldwork in regular study periods for its effective monitoring. 
The vegetation indices collected during late March and mid- to late June were among the 
most important variables for habitat suitability classification for the small pasque flower. 
As a flora species which was detected in the widest area among studies species, it also 
showed a dependency on total insolation and soil compaction in the uppermost soil layer. 

The extension of potential habitat areas for the five observed endangered flora spe-
cies produced varying results, regarding the individual species and environmental con-
ditions in the study area. The predicted habitat suitability area for the endangered flora 
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species was the highest for bloody cranesbill, being the only species in the LC category, 
which will likely remain due to its wide ecological optimum in the study area. Among the 
critically endangered species, Hungarian false leopardbane resulted in a suitability poten-
tial for expanding its habitat in the projected area, which is especially encouraged for both 
flora and fauna species in the CR category [62]. Since the existing habitats of Hungarian 
iris are grouped in a relatively small current area, as well as being the least represented 
species in the projected area, special attention should be placed on protecting it from fur-
ther extinction. Soil compaction is a specific occurrence which is among the few abiotic 
components that can be affected by adopting soil tillage adjustment operations, unlike 
climate conditions or topography, that which require land management to fully adjust to 
these conditions without the possibility of altering them directly [63]. This indicates a pos-
itive impact of including environmental conditions in suitability analyses which can be 
altered by human activity, but should be approached with caution as it might negatively 
affect other flora species in the study area. 

5. Conclusions 
The habitat suitability analysis for endangered flora species of the protected natural 

monument steppe-like grassland in Bilje for the purpose of extending their coverage zone 
determined the presence of five endangered flora species: small pasque flower, green-
winged orchid, Hungarian false leopardbane, bloody cranesbill, and Hungarian iris. 
Three groups of environmental criteria , i.e., inducing vegetation, soil, and topography, 
were all represented in the variable importance analysis, justifying their selection and en-
suring a complimentary suitability analysis from various ecological aspects. The vegeta-
tion criteria included multitemporal values of complementary vegetation indices (NDVI 
and NDRE), which indicated the possibility of detecting eco-physiologically similar loca-
tions in the current and projected area of the steppe-like grassland in Bilje. The variable 
importance from the machine learning classification results enabled the selection of the 
most important time periods for UAS imaging for particular flora species, enabling addi-
tional insight into the importance of flora species’ growth stages and more economical 
fieldwork planning in the future. The topography criteria of the microrelief analysis in-
cluded the influence of terrain on the basic abiotic factors that determine the growth of 
plant species, emphasizing the influence of total potential insolation and the potential 
benefit of including additional complimentary indices. The soil criteria included the phys-
ical parameter of soil compaction at three soil depth layers, which enabled suitability as-
sessment for all five flora species, regarding the required soil depth for root development. 
The random forest method outperformed the XGBoost, neural network and the general-
ized linear model methods in the binomial classification of suitability for evaluating all 
flora species. On the basis of the random forest results, the conclusions were made about 
the possibilities of extending the coverage area of the steppe-like grassland in Bilje. Ac-
cording to the predicted suitability levels, the habitat coverage of bloody cranesbill and 
green-winged orchid could be extended presently. The proposed method also has high 
potential for implementation in habitat suitability assessments of other flora species, since 
vegetation, soil, and topography conditions impact the ecological gradient for a variety of 
similar species. 
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Appendix A 

Table A1. The spectral signatures of detected flora species, as mean values per spectral band in 
five bands, for imaging dates during year 2021. 

Flora Species Bands 
Mean Digital Number (DN) Values Divided by a Maximum DN Value 

28.01. 15.02. 01.03. 18.03. 30.03. 12.04. 30.04. 14.05. 01.06. 14.06. 

Small pasque flower 

B 0.198 0.198 0.175 0.210 0.208 0.181 0.134 0.119 0.094 0.111 
G 0.213 0.209 0.172 0.214 0.212 0.193 0.176 0.159 0.150 0.165 
R 0.193 0.186 0.159 0.183 0.180 0.164 0.134 0.108 0.101 0.130 

RE 0.242 0.265 0.220 0.255 0.265 0.256 0.246 0.213 0.246 0.211 
NIR 0.233 0.259 0.216 0.246 0.250 0.243 0.233 0.203 0.248 0.220 

Green-winged orchid 

B 0.231 0.224 0.206 0.199 0.189 0.170 0.141 0.124 0.091 0.132 
G 0.230 0.226 0.201 0.198 0.195 0.181 0.184 0.174 0.140 0.187 
R 0.217 0.223 0.187 0.178 0.181 0.161 0.154 0.130 0.103 0.190 

RE 0.267 0.252 0.253 0.238 0.250 0.240 0.248 0.223 0.283 0.235 
NIR 0.268 0.244 0.245 0.240 0.248 0.240 0.232 0.221 0.296 0.237 

Hungarian false 
leopardbane 

B 0.183 0.147 0.167 0.139 0.162 0.117 0.094 0.074 0.105 0.109 
G 0.199 0.160 0.166 0.150 0.193 0.155 0.134 0.150 0.199 0.178 
R 0.184 0.150 0.163 0.139 0.170 0.128 0.135 0.104 0.157 0.158 

RE 0.283 0.234 0.232 0.238 0.273 0.255 0.227 0.232 0.252 0.229 
NIR 0.291 0.253 0.239 0.244 0.267 0.266 0.275 0.252 0.259 0.235 

Bloody cranesbill 

B 0.198 0.178 0.175 0.213 0.219 0.167 0.135 0.105 0.093 0.111 
G 0.197 0.177 0.172 0.216 0.231 0.190 0.164 0.159 0.156 0.163 
R 0.164 0.155 0.159 0.191 0.201 0.155 0.134 0.116 0.108 0.112 

RE 0.248 0.222 0.221 0.252 0.293 0.262 0.239 0.251 0.249 0.236 
NIR 0.239 0.213 0.210 0.247 0.279 0.253 0.234 0.252 0.250 0.236 

Hungarian iris 

B 0.116 0.124 0.150 0.194 0.238 0.172 0.064 0.082 0.079 0.123 
G 0.145 0.143 0.167 0.195 0.228 0.197 0.140 0.191 0.142 0.211 
R 0.115 0.116 0.145 0.181 0.178 0.171 0.087 0.123 0.091 0.136 

RE 0.234 0.207 0.246 0.231 0.257 0.275 0.271 0.302 0.267 0.264 
NIR 0.232 0.209 0.236 0.212 0.229 0.235 0.300 0.296 0.279 0.283 
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Figure A1. The display of the average spectral signatures of detected flora species in five spectral 
bands during the study period. 
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