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Abstract: Airborne light detection and ranging (LiDAR) and unmanned aerial vehicle-structure from
motion (UAV-SfM) provide point clouds with unprecedented resolution and accuracy that are well
suited for the digital characterization of rock outcrops where direct contact measurements cannot be
obtained due to terrain or safety constraints. Today, however, how to better apply these techniques to
the practice of geostructural analysis is a topic of research that must be further explored. This study
presents a processing procedure for extracting three-dimensional (3D) rock structure parameters
directly from point clouds using open-source software and a three-dimensional distinct element
code-assisted (3DEC) simulation of slope failure based on carbonate rock cliffs in the Jiuzhaigou
Scenic Area. The procedure involves (1) processing point clouds obtained with different remote
sensing techniques; (2) using the Hough transform to estimate normals for the hue, saturation, and
value (HSV) rendering of unstructured point clouds; (3) automatically clustering and extracting
the set-based point clouds; (4) estimating set-based geometric parameters; and (5) performing a
subsequent stability analysis based on rock structure parameters. The results show that integrating
different remote sensing techniques and rock structure computing can provide a quick way for slope
engineers to assess the safety of blocky rock masses.

Keywords: airborne LiDAR; UAV; point clouds; 3D rock structure; rock kinematics

1. Introduction

Rock slopes are usually formed by primary (i.e., bedding planes) or secondary (i.e.,
joints, faults) discontinuities. Rock mass behaviour is controlled by intact rock properties
and by the discontinuities present in the rock mass. The generation of rock mass anisotropy
by discontinuities increases the complexity of the gradual failure of rock slopes [1,2].
Detailed and accurate characterization of set-based in situ discontinuities is therefore
particularly important.

Traditional contact-based field measurement methods, such as scanline and window
mapping of near-vertical rock slope faces, are particularly complex and inaccessible [3–6].
Thus, the measured data are not always representative of the whole investigated slope due
to the acquisition of rock structure information in the few accessible rock outcrops [7–14].
Hazardous conditions, especially in rugged karst areas, may preclude direct contact mea-
surements. The discontinuities that exist in carbonate rock outcrops are generally accompa-
nied by dissolution, weathering, and karst processes, making measurements and analyses
more complex [15–19]. Combining field monitoring data allows the identification of com-
plex hydrological processes involving moisture information in surface soils and shallow
groundwater systems developed in limestone bedrock that control conditions that may
predispose slopes to landslides [20,21]. Currently, there is great interest in the application
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of terrestrial or airborne LiDAR and close-range photogrammetry techniques for rock slope
investigations and the accurate detection of location-dependent rock structures from point
clouds. For instance, several works have illustrated the main advantages and limitations of
using the different remote sensing techniques described above to detect, characterize, and
monitor rockfall sources at the local outcrop scale or regional scale [22–24]. The relevant
parameters of discontinuities required for evaluating the stability of slopes and kinematic
failure mode analysis of massive rock masses are extracted from the acquired point cloud
by using semiautomatic or fully automatic methods. Several researchers have proposed
different solutions to derive an irregular triangular mesh model from a 3D point cloud and
then calculate the best fit of the plane to identify the discontinuity sets [25–27]. Another ap-
proach is to acquire 3D rock structure information directly from raw or processed 3D point
clouds [28–31]. As introduced above, the methods of acquiring rock structure information
by different remote sensing techniques have been greatly developed in recent years. How-
ever, how to better apply these techniques to the practice of geological engineering requires
further research. This is especially true in environments with complex geological structures
and high geological risks, which pose a serious threat to human activities and infrastructure
in places of high tourist attraction. International experience, e.g., [32], has shown that the
location-dependent topographical details and the spatial organization of discontinuities
in the formation of kinematically unstable blocks are indispensable information both for
the risk assessment of rock slopes and for rehabilitation measures. In this article, we show
how to process remote sensing data to obtain parameters of slope topography and rock
mass structure, and use them for slope stability evaluation in Jiuzhaigou County, Sichuan
Province, China.

On 8 August 2017, a magnitude 7.0 earthquake struck Jiuzhaigou County, triggering
thousands of geological disasters, mainly small-scale rockfalls and rockslides, and causing
the Jiuzhaigou Scenic Area to enter a three-year closure. The background of the study area
is explained in the second section. Due to the inability to conduct on-site rock structure
measurements on near-vertical slopes with heights exceeding hundreds of metres, we
surveyed the typical dangerous rock masses and surrounding slopes using UAV and aerial
laser scanning (ALS), respectively. The applied digital acquisition based on ALS and UAV-
SfM is presented in the third section, which mainly covers the survey of 3D point clouds of
different scales from the carbonate cliffs at the entrance of the Jiuzhaigou tourist attraction.
The methods for extracting rock structures, based on our recent developments and the
Discontinuity Set Extractor (DSE) software [33], are also explained in the third section.
Finally, we use the extracted 3D rock structure parameters for rock slope stability analysis
and as input for 3D distinct element analysis to simulate the potential movement of the
dangerous rock mass. The results of this study, especially the proven effectiveness of our
open-source procedure for processing rock structure information applied to block stability
assessment, contribute to risk assessment related to possible rockfalls and secondary
geohazards in the Jiuzhaigou Scenic Area.

2. Study Site Description

The Jiuzhaigou tourist attraction is located in the north of Sichuan province, approxi-
mately 400 km away from Chengdu (Figure 1a). Three years after the Ms 7.0 earthquake
on 8 August 2017, the Jiuzhaigou Scenic Area is now open to the public again. Shallow
landslides, collapses, and rockfalls frequently occurred in this area after the earthquake,
raising concerns about the safe operation of the G544 national road to the scenic area [34,35].
The nearly erect slope studied is located north of the entrance of the scenic spot, next to the
G544 national road (Figure 1b). The approximately 1000-metre-high slope is subvertical
(ranging between 2070 m and 3100 m a.s.l.). Although it was impossible for us to conduct
field-based measurements of the complete fracture network of the slope, which is necessary
to investigate how the in situ 3D rock structure controls slope stability, we were able to
establish the spatial distribution between the main discontinuity sets through different
remote sensing techniques.
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The terrain of the study area is dominated by tectonically controlled steep valleys.
Through the analysis of geological data, the large-scale WNW-directed strike-slip Tazang
fault and Wenxian fault were detected (Figure 2). The Minjiang fault is a thrust fault
that generally strikes N–S and extends for approximately 100 km [36,37]. The overall
tectonic characteristics of Jiuzhaigou Valley are basically the same as those of SSW–NNE
or WNW–ESE, which fully indicates the controlling effect of tectonic development. The
main strata of the studied slope have the following sequences from the top down: (1) the
massive limestone of the Permian Xiawula (Dx) and Yiguigou (Dcy) Formations, (2) the
bioclastic limestone and dolomitic limestone of the Carboniferous Minhe (Cm1 and Cm2)
and Daguanshan (Cpd) Formations, and (3) the sandstone and slate of the Triassic Zhaga
(Tzg) and Zagunao (Tz) Formations.
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Figure 2. Geological map of the study area.

Field investigation and preliminary analysis showed that the typical dangerous rock
mass at the slope of the newly built road at the entrance of the scenic spot is formed by
three main joint sets (Figure 3a). The volume of this dangerous rock mass was evaluated
as 3000–4000 m3; its detachment, with sliding and toppling phenomena, would involve
at first the entrance of the scenic spot and, afterward, the G544 road directly. As shown
in Figure 3b, three highly persistent discontinuity sets were identified based on the field
documentation. Due to the inaccessibility and danger of the slope, it was difficult to
accurately measure their orientation of the discontinuities with a compass in the field. This
is one of the reasons why we decided to use airborne LiDAR combined with the UAV
close-range photogrammetry technique to determine the local rock structure parameters.
Joint set J1 cuts obliquely into the slope, with a dip direction of 200–230◦ and a dip angle of
70–80◦. Based on its long-term persistence and orientation parallel to the Baishui River, J1
is clearly controlled by the Tazang fault. Joint set J2 is persistent and forms the slope face
with a nearly east–west strike, dipping to the south with a dip angle of 70–85◦. Together, J1
and J2 form the boundary of the dangerous rock mass. Joint set J3 is another discontinuity
group cutting obliquely into the slope, with a dip direction of 40–60◦ and a dip of 20–40◦.
The low-angle J3 discontinuity group plays a decisive role in the stability of rock outcrops.
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3. Data and Methods
3.1. 3D Point Cloud Acquisition and Processing

For the dangerous rock mass at the entrance of the scenic spot, a detailed investigation
was carried out using UAV, and the whole slope was scanned by airborne LiDAR. The pur-
pose of using these two remote sensing techniques was to obtain comprehensive structural
parameters of the investigated slope (Figure 4). Although the limited accessibility of the
terrain makes it difficult to conduct the direct mapping of some rock structure parameters,
such as set-based orientation, spacing, and persistence, the deployed digital acquisition
based on ALS and UAV-SfM in this study overcame this difficulty very well.

3.2. Airborne LiDAR Data

The large-scale airborne LiDAR dataset was collected on 13 August 2018, one year after
the earthquake. Airborne LiDAR enables regional measurements with an orthographic
view and penetrates vegetation to minimize occluded areas in alpine terrains. An AS350
helicopter was equipped with a Leica ALS80-HP airborne LiDAR system suitable for
high mountain areas to obtain point cloud data with echo information (Figure 4a). The
specifications of the LiDAR system are shown in Table 1. During the measurement process,
the flight platform performed a varying-altitude flight within 1500–3500 m to realize
laser measurement and synchronously acquire digital photos. At the same time, multiple
georeferenced ground control points (GCP) and global positioning system (GPS) receivers
were set up around the study area. The airborne LiDAR datasets effectively filter out
vegetation and provide high-precision real topography to help detect rock structures
around investigated slopes. By using the TerraScan module in Terrasolid software, various
types of point clouds were classified by using related macros, and finally, a high-resolution
ground point cloud was obtained (Figure 4b). The LiDAR ground point cloud had a mean
point spacing of 0.5 m and was georeferenced in the EPSG: 32648 WGS84/UTM zone 49N
(data: World Geodetic System 1984) metric coordinate system.
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Table 1. Key technical specifications.

ALS system

Flying platform AS350 helicopter

LiDAR type ALS80-HP (Leica)

Pulse frequency 50–1000 kHz

Scanning angle 0–72◦

Scanning method Linear

UAV
(DJI Phantom 4 RTK)

Weight 1391 g

Dimension 289.5 × 289.5 × 213 mm

GNSS mode GPS/BDS/Galileo

Sensor type FC6310 (1” CMOS)

Sensor size FOV 84◦ 8.8 mm/24 mm

3.3. UAV-SfM Data

A scaled and oriented SfM point cloud model was reconstructed using UAV pho-
togrammetry for the dangerous rock mass found in the field survey above the scenic
entrance road. The relevant parameters of the DJI Phantom 4 Real Time Kinematic (RTK)
system are shown in Table 1. Considering that the rock outcrops are inaccessible and
dangerous, a total of 377 high-resolution photographs with coordinate information were
obtained under manual control via overlapping. The DJI was equipped with a global navi-
gation satellite system/inertial measurement unit (GNSS/IMU) and network RTK modules,
and all the acquired images were georeferenced in a WGS84/UTM zone 49N metric coor-
dinate system. By ContextCapture, we generated a true-colour point cloud and a reality
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model using a series of high-resolution photographs with coordinate information obtained
by DJI (Figure 4c). The processing steps are summarized below, which were completed on
a graphics workstation with a 2.20 GHz CPU and 128 GB RAM. Aerial triangulation fully
calibrated all images by automatically identifying the relative position and orientation of
each image. The orientation and magnitude of the camera position uncertainty calculated
by aerial triangulation are shown in Table 2. The final aerial triangulation results show that
375 of the 377 images were calibrated and that the ground coverage area was 0.131 km2.
The reconstructed sparse (low-density) 3D point cloud model (Figure 4c) had an average
ground resolution of 19.18 mm/pixel and a reprojection error (RMS) of 0.54 pixels. There
were a total of 56,203 tie points and a median of 44,924 key points per image. A dense point
cloud with point sampling of approximately 0.019 m was generated. The final true-colour
point cloud model was exported as an LAS file, and each point was georeferenced in the
set coordinate system (X = east, Y = north, positive Z = up). All points were assigned red,
green, and blue (RGB) colour values. The alignment was performed using the open-source
software CloudCompare v.2.11. Based on the airborne LiDAR data shown in Figure 4d, the
SfM point cloud was matched by manually selecting multiple pairs of common points and
then by adopting the iterative closest point (ICP) best-fitting algorithm [38–40].

Table 2. Quality report of aero triangulation.

Photo Position Uncertainties
Tie Point
Position

Uncertainties

Tie Point
Resolution

Reprojection
Errors per Tie Point

X (m) Y (m) Z (m) (m) (m/pixel) (pixels)
Mean 0.00332 0.00409 0.00044 0.12131 0.02119 0.49

Minimum 0.00059 0.00043 0.00312 0.00142 0.00383 0.01
Maximum 0.06873 0.11417 0.04736 4.09669 0.18652 1.90

3.4. Extraction of Rock Structure from Point Clouds

As a result, to directly extract the discontinuity sets from a 3D point cloud, the normal
components of each point and its nearest neighbours were first calculated. The normal
components of the initial point cloud were calculated using the Hough transform algorithm
in CloudCompare and were directly converted to the dip angle and dip direction of its
corresponding planes. The relevant parameters used to calculate the transformed normal
direction for each point are defined in Table 3. The advantage of the Hough transform for
computing point normals is that millions of points can be processed, and the normal of a
point on a sharp intersecting edge can be reconstructed [41].

Table 3. Parameters used in the Hough transform algorithm.

Neighbourhood
Size Number of Planes Accumulator

Steps
Number of
Rotations Tolerance Angle

Neighbourhood
Size for Density

Estimation

10 1000 15 5 90◦ 5

COLTOP-3D is a software that can be intuitively used to visually identify disconti-
nuities, faults, and cliffs in digital elevation models (DEMs) and point clouds [42,43]. The
HSV-coloured point clouds facilitate visualization of the spatial distributions of set-based
discontinuities [44,45]. Next, to clearly perceive and visualize 3D rock structures in point
clouds, we used the open-source Python scripting language to build our HSV colour wheel
for fracture normals. Once the normal components were calculated using the Hough algo-
rithm, the point cloud data rendering was fully automated by a Python script. Hue (H) was
linked to the dip direction of the normal of a discontinuity, and saturation (S) was linked to
the dip angle of the normal (Figure 5a). The lightness value (V) was fixed at V = 0.75 so that
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the HSV wheel had uniform brightness. According to the above concept, in the HSV colour
wheel for the fractures, each pole representing the orientation of a discontinuous normal
was assigned a unique HSV colour. Both the dip direction and dip angle had a resolution
of 1◦ in equal-angle and low-hemisphere projections (Figure 5b).
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The third step of the open-source processing procedure was to use the R package
spherical k-means to extract the main discontinuity sets based on the point cloud normal
components [46,47]. This package uses the cosine angle between the vectors minus 1 as
the dissimilarity judgement, clusters the normal orientations, and divides the entire point
cloud into subclasses. The silhouette plot helps to identify the best number of clusters for
the set-based point clouds [48]. After the clustering calculation was completed, the points
assigned to the same set had similar HSV colours. The result of the set membership of
each point and the HSV colour was added to a single txt file that can be visualized with
CloudCompare. In the next section, the rock structure parameters such as orientation and
spacing information based on the set-based point cloud are extracted by the open-source R
package “RFOC” and Discontinuity Set Extractor (DSE), respectively.

4. Results
4.1. Extraction of the Set-Based Points

The initial point cloud was processed according to the above steps, and the rock struc-
ture based on Hough’s normal rendering was visualized. Figure 6a,c show the 3D digital
models of the ALS and SfM point clouds processed by the Hough algorithm, respectively.
In this step, the normals pointing outwards are shown as white, whereas others pointing
inwards are shown as black. This rendering facilitates the detection of discontinuities
and their spatial distribution relationships in the in situ slope face. A specific HSV colour
was automatically assigned to the normal orientation of the corresponding point through
a Python script to display the in situ rock structure more clearly. The HSV rendering
shows that on the unvegetated slope, the ALS ground point cloud shows that the surface
topography includes joint planes in the nonoverhanging golden and purple areas that form
the main slope face (Figure 6b). For the outcrops of the dangerous rock mass, although
there are noise points, such as vegetation, the golden and purple sets of high-persistence
discontinuities were also detected (Figure 6d). In the following, we extracted in situ rock
structures based on HSV colour-coding using an R script for clustering calculations.
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normal using HSV wheel.

The three sets of joints were directly extracted from the slope-scale ALS point cloud in
Figure 6b. The golden areas in the same orientation as the Tazang fault were clustered into
one set (Figure 7a). The purple areas were clustered into a second set (Figure 7b). These
two main sets of joint distribution form the topography of a slope surface. The green areas
constituted the third set (Figure 7c). For the outcrop-scale SfM point cloud, even with the
presence of vegetation, the HSV colour distribution indicated the existence of three joint
sets. The golden areas were also clustered into one set, but with a slightly higher saturation
than those extracted by the ALS points (Figure 7d). The purple areas constituted the second
set (Figure 7e). The third set corresponded to the light purple areas with relatively low
point density (Figure 7f). The orientations of joint sets J1 and J2 were very similar between
the different datasets. Notably, the orientations of the third set J3 extracted from the two
datasets were significantly different. In addition, the joint set J3 obliquely cut into the slope
with a dip direction of 280–290◦ in the ALS data but was undetectable in the SfM data.
This discrepancy in results is attributable to the scale of observation for the two acquisition
techniques.
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4.2. Discontinuity Orientations

To calculate the set-based orientation parameters, such as the mean dip angle, dip
direction, and dispersion (Fisher’s K), the extracted joint set points were processed by using
the R algorithm eigen [49]. The extracted set-based point dip directions and dip angles
were then plotted in a stereo projection using the R package RFOC. The main difference
between the joint set orientations extracted using ALS and SfM point clouds is shown in
Figure 8. According to the results of the joint sets extracted from the two datasets, the mean
dip direction difference of J1 and J2 was approximately 7◦ and 2◦, respectively. The largest
difference of the discontinuity sets was in the dip angles of J1 and J2 with a discrepancy of
14◦ and 18◦, which was steeper in the SfM data when compared with the ALS data. The
most likely explanation for this difference is that the point cloud data of the subvertical rock
face area and overhanging area could be accurately obtained due to the viewing direction of
the airborne laser scanner. In addition, the scale of observation of the UAV photogrammetry
is smaller than that of the ALS and could more accurately capture structural geometry
data based on rock mass outcrop conditions. Joint set J3 was independently detected and
extracted from the two point datasets. The relevant parameters of the three sets of joints
extracted from the two types of point clouds are shown in Table 4. Non-persistent and fully
persistent spacing was calculated using DSE’s normal spacing plugin.
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Figure 8. Stereographic projection plot based on set-based mean orientation as poles (lower-
hemisphere and equal-area projection). (a) Joint sets extracted from ALS points. (b) Joint sets
extracted from SfM points.

Table 4. Summary of the geometrical orientation and spacing of the main joint sets.

Acquisition
Technique Joint Set Mean Dip (◦) Mean Dip

Direction (◦) Fisher’s K Mean Spacing,
Non-Persistent (m)

Mean Spacing,
Fully Persistent (m)

ALS
J1 59 211 49.5 13.42 1.66
J2 57 136 54.3 14.04 2.17
J3 43 285 44.6 15.37 4.88

UAV
J1 73 218 71.4 0.78 0.08
J2 76 138 30.1 0.82 0.10
J3 38 133 24.5 0.89 0.10

4.3. Spacing of Joint Sets

The open-source Discontinuity Set Extractor (DSE) is practical software for analysing
the spacing of joint sets from 3D point cloud datasets. Non-persistent and fully persistent
spacing were automatically calculated using DSE’s normal spacing plugin based on the
set-based points extracted in the previous step. A histogram of the relative frequency distri-
bution of the calculated results shows a significant difference between the two different
remote measurement techniques (Figure 9). Considering the non-persistence hypothesis,
the spacing values for the discontinuity sets calculated from both datasets were signif-
icantly higher than those of the persistence hypothesis. The estimated non-persistent
spacings for each joint set in the ALS points varied between 2 and 45 m, with an average
of approximately 14 m (Figure 9a). However, for fully persistent joints, the spacing was
between approximately 1 and 9 m (Figure 9b). The results of the SfM point cloud were
much lower than those calculated from the ALS technique. The spacing values of the three
joint sets from the SfM point cloud were generally low, under non-persistent and persistent
conditions, within the range of 0.1–4 m (Figure 9c,d). The normal spacing values of the
discontinuity sets extracted from the two point clouds with DSE are reported in Table 4.
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4.4. Kinematic Analysis

The outcrop-scale kinematic analysis was performed using discontinuous orientations
extracted from the SfM point cloud. The purpose of this analysis was to identify the
potential failure modes of a typical dangerous rock mass. This preliminary analysis was
based on a stereographic technique for quickly identifying the possibility of failure of
blocks by considering the geometric relationships between the slope face and joint sets. The
friction angle along all discontinuities was assumed to be 30◦, and the lateral limit was ±20◦.
Figure 10a shows that plane sliding is feasible on the J3 discontinuity set. Considering the
limitation of the scale of the SfM points, wedge failure should be considered less feasible in
this area, but marginally feasible at the slope scale (Figure 10b). Figure 10c highlights that
the flexural toppling failure mechanism is marginally feasible on the J2 discontinuity set.
The toppling failure mechanism, including direct and oblique toppling modes, is feasible
on the major J2 and J3 joint sets (Figure 10d).



Remote Sens. 2022, 14, 3044 13 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 18 
 

 

was ±20°. Figure 10a shows that plane sliding is feasible on the J3 discontinuity set. Con-
sidering the limitation of the scale of the SfM points, wedge failure should be considered 
less feasible in this area, but marginally feasible at the slope scale (Figure 10b). Figure 10c 
highlights that the flexural toppling failure mechanism is marginally feasible on the J2 
discontinuity set. The toppling failure mechanism, including direct and oblique toppling 
modes, is feasible on the major J2 and J3 joint sets (Figure 10d). 

 
Figure 10. Kinematic analysis using the poles of discontinuous orientations measured in SfM point 
clouds of dangerous rock mass (lower-hemisphere and equal-area projection). (a) Planar failure; (b) 
wedge failure; (c) flexural toppling; (d) direct toppling. 

To identify potential modes of failures of the investigated slope, a kinematic analysis 
of large areas was performed through the open-source algorithm rock slope kinematic 
analysis (ROKA). The advantage of this method is that the effect of slope faces in different 
orientations can be considered and failure modes can be directly visualized on a 3D point 
cloud [50]. In particular, the size and spatial distribution of each extracted set of disconti-
nuities must be provided to the algorithm as input data before execution. With the points 
of each set extracted as outlined above, the in situ geometric information about the dis-
continuities required for input can be efficiently obtained. The features of the discontinu-
ities required for ROKA processing were mapped from the extracted set-based point 
cloud by CloudCompare’s compass plugin. For example, the position, size, and orienta-
tion of each discontinuity were exported as normalized Excel files required for ROKA 
calculation. A total of 1397 discontinuities were mapped. The ALS point cloud was sub-
sampled to 1,227,806 points before applying the algorithm. Subsequently, the analysis was 
performed using a scan radius of 10 m and assuming that the friction angle and lateral 
limit were 30° and 20°, respectively. The results of the ROKA algorithm show the critical 

Figure 10. Kinematic analysis using the poles of discontinuous orientations measured in SfM point
clouds of dangerous rock mass (lower-hemisphere and equal-area projection). (a) Planar failure;
(b) wedge failure; (c) flexural toppling; (d) direct toppling.

To identify potential modes of failures of the investigated slope, a kinematic analysis
of large areas was performed through the open-source algorithm rock slope kinematic
analysis (ROKA). The advantage of this method is that the effect of slope faces in different
orientations can be considered and failure modes can be directly visualized on a 3D
point cloud [50]. In particular, the size and spatial distribution of each extracted set of
discontinuities must be provided to the algorithm as input data before execution. With
the points of each set extracted as outlined above, the in situ geometric information about
the discontinuities required for input can be efficiently obtained. The features of the
discontinuities required for ROKA processing were mapped from the extracted set-based
point cloud by CloudCompare’s compass plugin. For example, the position, size, and
orientation of each discontinuity were exported as normalized Excel files required for
ROKA calculation. A total of 1397 discontinuities were mapped. The ALS point cloud
was subsampled to 1,227,806 points before applying the algorithm. Subsequently, the
analysis was performed using a scan radius of 10 m and assuming that the friction angle
and lateral limit were 30◦ and 20◦, respectively. The results of the ROKA algorithm show
the critical portions of the investigated rock slope and show the critical values of the
discontinuity intersections for different potential modes of failure (Figure 11). Due to the
limitation of the angle of the airborne LiDAR sensor, the points of the overhang area could
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not be obtained; thus, the potential failure modes of plane sliding and direct toppling
were almost undetectable (Figure 11a,d). (Figure 11b) highlights that sliding along the
steeper discontinuity wedge intersections of J1/J3 and J2/J3 is marginally feasible in the
southeast-facing section of the investigated slope. Obviously, controlled by the Tazang
fault, the flexural failure toppling mechanism is feasible in the southwest-facing sections of
the investigated slope (Figure 11c).
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investigated rock slope. (a) Planar failure; (b) wedge failure; (c) flexural toppling; (d) direct toppling.

4.5. Distinct Element Modelling

The main objective of the 3DEC simulation was to evaluate the potential movement
behaviour of a dangerous rock mass controlled by joint sets. In this study, we adopted the
Mohr–Coulomb strength criterion and assumed that the kinematically removable blocks
are regarded as rigid blocks; the input parameters are presented in Table 5. The cohesion
and friction angles were derived from the results of a geomechanical investigation, and the
normal and shear stiffnesses were derived from measured JRC and JCS parameters and
were within the range of values reported in the literature [51–53]. A more realistic slope
geometry was obtained from the ALS point cloud, and the plugin Griddle for Rhinoceros
6.0 was used to create volume meshes, which were then imported into 3DEC. Based on the
statistical parameters from the UAV-SfM point cloud, three sets of joints were generated
in the dangerous rock mass (Figure 12). In addition, the construction scope of the model
was limited to the dangerous rock mass; thus, the ALS only provided the topographical
details and did not use the relevant parameters extracted from it for numerical calculation.
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Due to the existence of obvious intact rock bridges, it could increase the cohesion and
tensile strength of the initial failure surface of the dangerous rock mass [54]. Combined
with the field survey, Figure 3a,b clearly show that no set was fully persistent, and a
persistence factor of 0.5 was assigned to each of the three joint sets. Additionally, the results
were simulated by DSE automatic calculation using the set-based non-persistent spacing
extracted from the UAV dataset.

Table 5. Physical and mechanical properties used in the 3DEC model.

Material Property

Density (kg/m3) 2700

Constitutive model Rigid blocks

Discontinuity properties

Friction angle (◦) 30

Cohesion (MPa) 0

Tensile strength (MPa) 0

Shear stiffness (GPa/m) 1

Normal stiffness (GPa/m) 5
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After reaching the equilibrium state, a further simulation was performed. As the 3D
numerical simulation results show (Figure 13), the deformation of a dangerous rock mass
consists of complex failure models rather than simple plane sliding or toppling failure.
The numerical results show that after the first 9000 cycles, the right side of the dangerous
rock mass exhibits a gradually increasing displacement from bottom to top (Figure 13a,b).
Under the action of gravity, plane sliding failure first occurs at the bottom. Obviously,
under the action of gravity, plane sliding failure occurs first at the bottom, which creates
space for the next movement. As the cycle continues, it is clear that after the failure of the
key block at the bottom causes the propagation to become unstable, this space is available
for other blocks to move, and the blocks in the middle area gradually direct toppling to
the southeast face of the slope (Figure 13c,d). During steps 36,000–60,000, the remaining
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blocks on the slope have the kinematics of simultaneous sliding and toppling, and some
blocks are deposited on the toe of the slope (Figure 13e,f). The results of the numerical
model show the whole process of dangerous rock mass deformation to failure and predict
the mechanism of failure and location of the unstable portion of the slope.
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5. Discussion

Remotely measured point clouds, such as those obtained with different remote sensing
techniques, play an important role in rock engineering in blocky rock masses, especially
when the terrain or security constraints preclude direct contact measurements. With this
study, we performed a comparative analysis of point clouds obtained by ALS and UAV
photogrammetry and extracted relevant rock mass parameters for numerical calculation.
The ALS method allows the acquisition of detailed point clouds over a range of up to
several thousand square meters in a relatively short time, but the measurement process is
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relatively expensive. UAV photogrammetry surveys at the outcrop scale can help engineers
understand the rock mass structural characteristics in key areas of interest in detail.

The use of airborne LiDAR and UAV-SfM in this study allowed for a more representa-
tive and detailed analysis of geological structures, and due to their complementarity, these
two methods could be combined to fully characterize the investigated rock slope. Fur-
thermore, the points of overhanging areas and flat-lying fractures could not be effectively
acquired by ALS in the case study, and the occlusion was caused by the view direction of
the laser scanner. Compared to the results of the UAV-SfM dataset, the first two sets (J1
and J2) of the three discontinuity sets identified by ALS had almost the same orientation,
whereas the orientations of the third set (J3) were completely different due to the observa-
tion scale of the different sampling techniques. Specifically, it was found that the J1 and J2
orientations differed by 7◦ and 2◦, respectively, whereas the largest difference in dip angle
was almost 18◦. This may be an issue with the distortion and low density of the point clouds
acquired by the ALS method in poorly accessible and steep sites. The UAV close-range
photogrammetry technique requires more steps to execute the SfM program, which may
take several hours to process. SfM point clouds generally include dense vegetation cover
noise, which is time consuming to address in the preprocessing stage. Therefore, it is
very useful to integrate the point clouds obtained by different remote sensing techniques
for geostructural analysis. The potential failure mode of the slope where the dangerous
rock mass is located was evaluated by large-scale ALS data combined with the ROKA
algorithm. It can be an effective reference for large-scale risk assessment of slopes. Taking
into account the inaccessibility of dangerous rock mass, UAV photogrammetry was used
to determine the morphology and discontinuity distribution characteristics. Combined
with numerical calculation, the potential failure mode of dangerous rock mass and the
resulting risk situation was inferred. This provides important data for appropriate remedial
measures for future slope design to protect scenic entry-road infrastructure work.

6. Conclusions

Geomatics techniques such as ALS and UAV photogrammetry can acquire engineering
rock outcrops as point clouds with unprecedented resolution and accuracy. Especially in
the bare karst areas of popular tourist attractions such as Jiuzhaigou Scenic Area, due to
the rugged topography, personnel cannot safely approach, which leads to the limitations of
conventional field methods for rock slope investigations. This study proposed a workflow
for the direct recognition, extraction, and characterization of 3D rock structures from point
clouds by using open-source software. The extracted set-based point clouds can be used to
identify location-dependent discrete fracture networks, which are useful for performing
efficient rock slope stability analysis.

The proposed workflow involves (1) using the Hough transform to estimate normals
for the HSV rendering of unstructured point clouds; (2) automatically clustering and
extracting the set-based point clouds; and (3) using set-based geometric parameters as
input for 3D numerical model analysis. Moreover, the results of the numerical model
can show the whole deformation and failure process of a dangerous rock mass, predict
the mechanism of failure, and predict the location of the unstable portion of the slope.
The practicality of the introduced procedure for rock structure processing was verified
and applied to the risk assessment of possible rockfalls and secondary geohazards in
the Jiuzhaigou Scenic Area. Additionally, the introduced open-source procedures can
be improved to help engineers instantly identify risks and make better decisions, as the
location-dependent topographical details and the spatial organization of discontinuities in
the formation of kinematically unstable blocks are indispensable information both for the
risk assessment of rock slopes and for rehabilitation measures.
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