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Abstract: Marine phytoplankton are the basis of the whole marine ecosystem, and different groups
of phytoplankton play different roles in the biogeochemical cycle. Satellite remote sensing is widely
used in the retrieval of marine phytoplankton over a wide range and long time series, but not yet
for taxonomical composition. In this study, we used coincident in situ measurement data from
high-performance liquid chromatography (HPLC) and remote sensing reflectance (Rrs) to investigate
the empirical relationships between phytoplankton groups and satellite measurements. A non-
parametric model, generalized additive model (GAM), is introduced to establish inversion models
of various marine phytoplankton groups. Seven inversion models (two sizes classes among the
microphytoplankton and nanophytoplankton and four groups among the diatoms, dinoflagellates,
chrysophytes, and cryptophytes) are applied to the South China Sea (SCS) for 2020, and satellite
images of phytoplankton sizes and groups are presented. Microphytoplankton prevails in the coastal
and continental shelf, and nanophytoplankton prevails in oligotrophic oceans. Among them, the
dominant contribution of microphytoplankton comes from diatoms, and nanophytoplankton comes
from chrysophytes. Diatoms (nearshore) and chrysophytes (outside the continental shelf) are the
dominant groups in the SCS throughout the year. Dinoflagellates only become dominant in some
coastal areas, while cryptophytes rarely become dominant.

Keywords: marine phytoplankton sizes and groups; remote sensing inversion; generalized additive
model (GAM); South China Sea; spatial–temporal variation

1. Introduction

The ocean plays an important role in the earth’s carbon cycle, and marine phytoplank-
ton, which uses dissolved inorganic carbon to photosynthesize organic matter, are the main
primary producer in the marine ecosystem [1]. Generating approximately half of the plane-
tary primary productivity, marine phytoplankton affects the abundance and diversity of
marine organisms, drive marine energy flow and the material cycle, and promote the work
of marine ecosystems [1–3]. In the contemporary ocean, photosynthetic carbon fixation by
marine phytoplankton leads to the formation of 45 gigatons of organic carbon every year,
of which 16 gigatons are exported to the ocean interior [1]. For such a huge productivity
output, the variation in marine phytoplankton can affect global climate change [2–4].

In recent decades, the most commonly used indicator of phytoplankton biomass has
been the total chlorophyll a concentration (Chl a, mg·m−3) [5]. However, phytoplankton
often consist of hundreds of species, and different groups have different roles in biogeo-
chemical processes (such as silicon absorption and carbon and nitrogen fixation). Thus, it is
not sufficient to quantify the composition information of the phytoplankton community
structure by total chlorophyll a concentration [6].
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To better understand the role of different phytoplankton groups in the global carbon
cycle, researchers have proposed the concept of phytoplankton functional types (PFTs) [7,8].
The division of PFTs is not necessarily related to physiological characteristics but is based on
the common biogeochemical function or other characteristics of phytoplankton in the food
web [9]. At present, the division of PFTs is mainly based on size class and biogeochemical
function [10]. According to size class, PFTs can be partitioned into three size classes:
microphytoplankton (>20 µm), nanophytoplankton (2–20 µm), and picophytoplankton
(<2 µm) [11]. PFT measurements in situ can be determined by a variety of methods,
including microscopy, flow cytometry, spectral fluorescence, and high-performance liquid
chromatography (HPLC). Although these methods are time-consuming and laborious for
field survey and sample analyses and unsuitable for continuous spatial observation, they
can provide an accurate data basis on the phytoplankton composition for satellite water
color remote sensing.

At present, most current knowledge of the geographical distribution and seasonal
cycle of photosynthesis of marine organisms at the global scale mainly comes from satellite
observations [12,13]. The algorithm based on a spectral ratio of remote sensing reflectance
(Rrs) historically has been used as the default algorithm formulation to produce global
chlorophyll a products from measurements made by satellite instruments [14]. In the field
of ocean color remote sensing, there are two approaches to retrieve phytoplankton groups
from space. One is to perform a large number of in-water radiative computations with
various amounts on phytoplankton cells of different sizes. The size, shape, and pigment
composition of the cells are used to simulate the inherent optical properties (IOPs) of
phytoplankton and interpret their variability in the biological state of the phytoplankton
population [15,16]. The other is to establish an empirical relationship between a large
amount of in situ pigment data and simultaneously measured ocean water color spectrum
data [12,16,17]. Compared with the in-water radiative computations approach, the empiri-
cal approach has the advantages of simple operation and quick application. As a kind of
empirical approach, a generalized additive model (GAM) also can describe complex and
non-linear relationship between response and predictor variables and do not require prior
knowledge of the shape of the response function [3,18]. Here, we use a set of in situ HPLC
data and Rrs data between 2001 and 2021 from multiple cruises of the SeaWiFS Bio-optical
Archive and Storage System (SeaBASS system). Then, we introduce the nonparametric
regression analysis model, GAM, to establish an empirical relationship between marine
phytoplankton sizes and groups and Rrs. It explores the applicability of GAM in remote
sensing inversion of marine phytoplankton sizes and groups. Furthermore, the models
are applied to the South China Sea (SCS) to analyze the spatial distribution and seasonal
variation of different phytoplankton groups.

2. Materials and Methods
2.1. Data Sources

High-quality in situ measurements are a prerequisite for satellite data product vali-
dation, algorithm development, and many climate-related inquiries. As such, the NASA
Ocean Biology Processing Group (OBPG) maintains a repository of in situ oceanographic
and atmospheric data (SeaWiFS biooptical archive and storage system, SeaBASS) to support
regular scientific analyses [19,20]. The archived data of SeaBASS include measurements of
apparent and inherent optical properties (AOPs & IOPs), phytoplankton pigments, and
other relevant marine and atmospheric data, such as water temperature, salinity, and aerosol
optical thickness. The download website of SeaBASS data is https://seabass.gsfc.nasa.gov/
search_results#job_table_div (accessed on 24 May 2022).

HPLC and Rrs data of the past 20 years (2001–2021) were downloaded from the
SeaBASS system (https://seabass.gsfc.nasa.gov/search_results#job_table_div (accessed
on 24 May 2022)). Then, 669 coincident in situ data were collected at different depths. The
locations are shown in Figure 1.

https://seabass.gsfc.nasa.gov/search_results#job_table_div
https://seabass.gsfc.nasa.gov/search_results#job_table_div
https://seabass.gsfc.nasa.gov/search_results#job_table_div
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Figure 1. Locations of the 669 coincident in situ data with the cruise name displayed in the legend. 

Among the 669 coincident data, the time range includes 2001, 2005–2010, 2012–2014, 
and 2016–2017. The matching stations are mainly located in the Pacific Ocean and the At-
lantic Ocean, including both Case I and Case II waters. 

In addition, there were four cruises with HPLC data but without synchronized in situ 
Rrs data in the western Pacific Ocean. Therefore, Moderate Resolution Imaging Spectrora-
diometer (MODIS)-Terra Level 3 binned daily products with a spatial resolution of 4 km 
were used to obtain the synchronous Rrs at 412, 443, 488, 555, and 667 nm. The MODIS 
Level 3 product used in this study was atmospheric corrected by the data distributor. The 
atmospheric correction process removes atmospheric signal impacts. MODIS remote sens-
ing reflectance has been validated by Zhao et al. [21]. The synchronous Rrs is coincident 
with these four cruises’ HPLC data. Finally, 32 coincident satellite data were selected at 
near-surface depths (<10 m) using the nearest method, as shown in Figure 2. The time 
range includes 2009, 2011, 2013, and 2016. 

 
Figure 2. Locations of 32 in situ HPLC and synchronized satellite data, with the cruise name dis-
played in the legend. 

2.2. Phytoplankton Taxonomy from HPLC Pigments 
2.2.1. Diagnostic Pigment Analysis (DPA) 

Figure 1. Locations of the 669 coincident in situ data with the cruise name displayed in the legend.

Among the 669 coincident data, the time range includes 2001, 2005–2010, 2012–2014,
and 2016–2017. The matching stations are mainly located in the Pacific Ocean and the
Atlantic Ocean, including both Case I and Case II waters.

In addition, there were four cruises with HPLC data but without synchronized in situ
Rrs data in the western Pacific Ocean. Therefore, Moderate Resolution Imaging Spectrora-
diometer (MODIS)-Terra Level 3 binned daily products with a spatial resolution of 4 km
were used to obtain the synchronous Rrs at 412, 443, 488, 555, and 667 nm. The MODIS
Level 3 product used in this study was atmospheric corrected by the data distributor. The
atmospheric correction process removes atmospheric signal impacts. MODIS remote sens-
ing reflectance has been validated by Zhao et al. [21]. The synchronous Rrs is coincident
with these four cruises’ HPLC data. Finally, 32 coincident satellite data were selected at
near-surface depths (<10 m) using the nearest method, as shown in Figure 2. The time
range includes 2009, 2011, 2013, and 2016.
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2.2. Phytoplankton Taxonomy from HPLC Pigments
2.2.1. Diagnostic Pigment Analysis (DPA)

Phytoplankton pigments can be divided into three categories: chlorophyll (a, b, and
c), carotenoids, and phycobiliprotein (phycoerythrin, phycocyanin, and allophycocyanin).
Except for chlorophyll a, a pigment ubiquitous in all phytoplankton, some pigments only
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exist in one or several groups. Many of these pigments are thus used as biomarker pigments
of specific phytoplankton groups [22].

To identify the three size classes (Micro, Nano, and Pico) and quantify their relative
proportions, Vidussi et al. [23] selected seven major pigments as diagnostic pigments (DPs)
for distinct phytoplankton groups. These seven pigments are fucoxanthin (Fuco), peridinin
(Perid), 19′-hexanoyloxyfucoxanthin (Hex-Fuco), 19′-butanoyloxyfucoxanthin (But-Fuco),
alloxanthin (Allo), chlorophyll b (Chl b), and zeaxanthin (Zea). The proportion of the three
size classes is represented by the ratio of concentrations:

[Micro] = ([Fuco] + [Perid])/DP (1)

[Nano] = ([Hex-Fuco] + [But-Fuco] + [Allo])/DP (2)

[Pico] = ([Chl b] + [Zea])/DP (3)

DP = [Fuco] + [Perid] + [Hex-Fuco] + [But-Fuco] + [Allo] + [Chl b] + [Zea] (4)

However, this is based on the fact that each taxonomic pigment has the same con-
tribution to chlorophyll a. Obviously, this does not strictly reflect the true size of the
phytoplankton communities, because some taxonomic pigments might be shared by var-
ious phytoplankton groups. Therefore, Uitz et al. [11] combined the multiple regression
approach of Gieskes et al. [24] to determine the weight of seven pigments in chlorophyll a,
∑DPw, according to

∑DPw = 1.41 × ([Fuco] + [Perid]) + 1.27 × [Hex-Fuco] + 0.35 × [But-Fuco] + 0.6 × [Allo] + 1.01 × [Chl b] + 0.86 × [Zea] (5)

The fractions of the chlorophyll a concentration associated with each of the three size
classes are subsequently derived according to

fMicro = 1.41 × ([Fuco] + [Perid])/∑DPw (6)

fNano = (1.27 × [Hex-Fuco] + 0.35 × [But-Fuco] + 0.6 × [Allo])/∑DPw (7)

fPico = (1.01 × [Chl b] + 0.86 × [Zea])/∑DPw (8)

The actual chlorophyll a concentration associated with each of three size classes is
derived according to

[Micro] = fMicro × [Chl a] (9)

[Nano] = fNano × [Chl a] (10)

[Pico] = fPico × [Chl a] (11)

2.2.2. High–Performance Liquid Chromatography—CHEMical TAXonomy
(HPLC-CHEMTAX)

The existence of biomarker pigments is the basis for the qualitative analysis of phy-
toplankton groups [22]. Some key pigments are only in one or two groups. For example,
Fuco, Perid, Chl b, prasinoxanthin (Pras), zeaxanthin (Zea), and Allo are the diagnostic
pigments for diatoms, dinoflagellates, chlorophyceae, prasinophyceae, cyanobacteria, and
cryptophytes, respectively. However, some pigments are present in several phytoplankton
groups. Overlapping pigment compositions can further complicate the quantification of
phytoplankton groups [25].

Thanks to the development of statistical tools, such as CHEMTAX [26], the problem
has been improved. CHEMTAX applies matrix factorization to HPLC pigment data to
estimate the contribution of phytoplankton groups to Chl a. The input of the CHEMTAX
program includes two matrices: one is the pigment concentrations matrix, S, obtained from
HPLC data, and the other is the ratios of each phytoplankton group matrix, F. The initial
matrix, F, given by a “steepest descent algorithm”, is iterated within a certain range. Finally,
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the optimal solution satisfying the set conditions is given to determine the composition of
the phytoplankton matrix, C.

S = F × C (12)

The initial pigment ratios of the major algal groups used in this study were obtained
from the literature [26–30]. Eight algal groups were loaded in the CHEMTAX program:
diatoms, dinoflagellates, chrysophytes, prymnesiophytes, chlorophyceae, prasinophyceae,
cyanobacteria, and cryptophytes. The genus Prochlorococcus was discriminated from the
other cyanobacteria based on the existence of divinyl chlorophyll a (DV Chl a). Thus,
cyanobacteria in this study do not include Prochlorococcus.

2.3. Generalized Addictive Model (GAM)

In 1990, Hastie and Tibshirani [31] proposed a group of nonparametric models, gener-
alized additive models (GAMs), which are extensions of generalized linear models (GLMs),
which do not require prior knowledge of the shape of the response function. A GAM has
the advantage of addressing complex nonlinear response relationships and allows one
response variable to be fitted by several predictors in an additive manner [32,33]. The
general equation of GAM is

g(Y) = ε+ ∑n
i = 1 si(Xi) (13)

where Y is the response variable, X is the predictor, n is the number of predictors, ε is the
random error term, and si() is a nonparametric smooth function (it can be a smooth spline
function, kernel function, or local regression smooth function).

The model uses parameters including effective degree of freedom (EDF), F statistical
value, p value of the F test, generalized cross validation (GCV), adjusted R2 (adj-R2), and
deviance explained (DE) to describe the statistical results of the model. Among them, EDF
represents the linear relationship between the response variables and predictor (EDF = 1,
indicating that response variables and predictor have a linear relationship; EDF > 1, indicat-
ing a nonlinear relationship—the greater the value, the stronger the nonlinear relationship);
the greater the statistical value of F, the greater the relative importance of the predictor;
adj-R2 and DE are the interpretation rate of model for the overall change of the response
variable.

In marine science, GAMs have been used in modeling phytoplankton biomass. How-
ever, most of researchers applied GAM to freshwater lakes to explore the relationship
between Chl a and environmental factors (such as temperature, salinity, nitrogen and
phosphorus) [33–36]. Therefore, our study used Rrs as the predictor and established a GAM
of each marine phytoplankton group to deeply explore the relationship between them.
Model establishment and statistical analysis were conducted using the ‘mgcv’ package in R
software version 4.1.

2.4. Statistical Approach

The model prediction accuracy was evaluated by several statistical parameters: (1) co-
efficient of determination (R2) calculated through 1 minus the ratio of the sum of square
due to error (SSE) and the total sum of square (SST); (2) median absolute percentage er-
ror (MED); and (3) root mean squared error (RMSE)—according to Equations (14)–(18),
respectively:

R2 = 1 − SSE/SST (14)

SST = ∑n
i = 1

(
yi − y′i

)2 (15)

SSE = ∑n
i = 1(yi − y)2 (16)

MED = Median
∣∣∣∣yi − y′i

yi

∣∣∣∣ × 100% (17)
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RMSE =

√
1
n ∑n

i = 1

(
yi − y′i

)2 (18)

where yi is the true value in sample i, y′i is the predicted value in sample i, and y is the
average of the true values.

3. Results and Discussion
3.1. Evaluation of Phytoplankton Groups

A descriptive summary of all phytoplankton groups is presented in Table 1.

Table 1. Descriptive summary of the phytoplankton groups. Min and Max represent the minimum
and maximum values, respectively. N is the number of samples. The unit for all groups is mg·m−3.

Groups Min Max Mean Median N

Chl a 0.03000 70.21330 3.05817 0.47500 669
Micro 0.00221 52.16976 2.17843 0.19170 666
Nano 0.00334 6.66332 0.34310 0.15553 669
Pico 0.00355 15.10031 0.54641 0.11859 669

Diatoms 0.00014 36.51595 1.44788 0.16101 668
Dinoflagellates 0.00037 10.53531 0.35053 0.03609 667
Chrysophytes 0.00177 4.38621 0.26240 0.11799 667

Prymnesiophytes 0.00091 0.23894 0.01999 0.01730 168
Chlorophyceae 0.00001 0.51881 0.02215 0.00850 80
Prasinophyceae 0.00014 0.84589 0.03367 0.01568 409
Cyanobacteria 0.00257 11.80883 0.42606 0.07831 668
Cryptophytes 0.00061 11.81432 0.54931 0.05385 667

Note: Chl a = chlorophyll a; Micro = microphytoplankton; Nano = nanophytoplankton; Pico = picophytoplankton.

As the distribution frequency of each phytoplankton group (including Chl a, Micro,
Nano, Pico, diatoms, dinoflagellates, chrysophytes, prymnesiophytes, chlorophyceae,
prasinophyceae, cyanobacteria, and cryptophytes) was left-skewed, we log-transformed
them to log10 to satisfy a roughly normal distribution. The normal distribution tests for
each group were accomplished using density and quantile–quantile (Q–Q) plots, provided
in Figure S1 (in the Supplementary Material).

3.2. Establishment of GAMs

The in situ Rrs at 412, 443, 490, 555, and 670 nm (corresponding to the SeaWiFS band
setting) were used as the predictors and the in situ Chl a was used as the response variable.

The fitted GAM result for Chl a is summarized in Table 2. The Chl a GAM-fitted results
show that the five predictors explained 79.2% of the total variance, with all the covariates
being highly significant (p value < 0.01). The EDF value of the five predictors indicated that
each of them has a nonlinear relationship with the change in Chl a. The adj-R2 (0.781) and
GCV (0.106 mg·m−3) showed that the Chl a GAM has a good fitting effect.

Table 2. Statistical summary of the fitted Chl a GAM. EDF, F, GCV, DE, and N represent the effective
degrees of freedom, F statistical value, generalized cross validation, deviance explained, and number
of samples, respectively (the same below).

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 4.240 33.422 <0.001

0.106 0.781 79.20% 669
Rrs443 6.345 22.792 <0.001
Rrs490 5.829 7.853 <0.001
Rrs555 8.377 36.488 <0.001
Rrs670 7.906 3.860 <0.001

Similar to the Chl a GAM, the GAM was also used to fit the phytoplankton groups (Mi-
cro, Nano, Pico, diatoms, dinoflagellates, chrysophytes, prymnesiophytes, chlorophyceae,
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prasinophyceae, cyanobacteria and cryptophytes). The result of each fitted GAM is sum-
marized in Tables 3–13.

Table 3. Statistical summary of the fitted Micro GAM.

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 3.028 21.989 <0.001

0.191 0.795 80.51% 666
Rrs443 7.353 14.825 <0.001
Rrs490 6.148 9.846 <0.001
Rrs555 8.858 33.444 <0.001
Rrs670 8.325 4.387 <0.001

Table 4. Statistical summary of the fitted Nano GAM.

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 6.985 12.086 <0.001

0.154 0.454 47.50% 669
Rrs443 4.942 11.433 <0.001
Rrs490 5.025 1.429 0.200
Rrs555 7.583 16.424 <0.001
Rrs670 1.000 1.467 0.226

Table 5. Statistical summary of the fitted Pico GAM.

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 5.639 32.896 <0.001

0.140 0.671 68.29% 669
Rrs443 6.754 27.847 <0.001
Rrs490 3.671 11.940 <0.001
Rrs555 4.235 36.468 <0.001
Rrs670 3.172 8.109 <0.001

Table 6. Statistical summary of the fitted diatoms GAM.

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 4.334 21.069 <0.001

0.167 0.803 81.35% 668
Rrs443 6.635 19.642 <0.001
Rrs490 6.334 13.590 <0.001
Rrs555 8.846 31.716 <0.001
Rrs670 7.999 3.742 <0.001

Table 7. Statistical summary of fitted dinoflagellates GAM.

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 5.034 24.350 <0.001

0.183 0.726 73.70% 667
Rrs443 6.575 20.102 <0.001
Rrs490 5.784 8.344 <0.001
Rrs555 8.522 34.915 <0.001
Rrs670 1.000 12.106 <0.001

Table 8. Statistical summary of the fitted chrysophytes GAM.

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 6.316 19.716 <0.001

0.106 0.613 62.76% 667
Rrs443 5.566 17.550 <0.001
Rrs490 5.173 3.625 0.001
Rrs555 7.793 28.675 <0.001
Rrs670 1.000 1.635 0.201
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Table 9. Statistical summary of the fitted prymnesiophytes GAM.

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 1.577 0.642 0.583

0.067 0.593 62.82% 168
Rrs443 1.373 0.590 0.414
Rrs490 4.951 1.862 0.100
Rrs555 5.513 5.055 <0.001
Rrs670 1.181 0.036 0.936

Table 10. Statistical summary of the fitted chlorophyceae GAM.

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 1.000 4.695 0.034

0.540 0.208 27.19% 80
Rrs443 1.855 6.569 0.002
Rrs490 1.000 9.522 0.003
Rrs555 1.000 0.558 0.458
Rrs670 1.471 0.671 0.592

Table 11. Statistical summary of the fitted prasinophyceae GAM.

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 5.656 9.357 <0.001

0.190 0.436 48.00% 409
Rrs443 6.285 8.198 <0.001
Rrs490 8.148 4.663 <0.001
Rrs555 7.792 6.219 <0.001
Rrs670 3.788 2.412 0.039

Table 12. Statistical summary of the fitted cyanobacteria GAM.

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 5.183 38.564 <0.001

0.122 0.749 75.78% 668
Rrs443 7.478 29.685 <0.001
Rrs490 5.680 9.820 <0.001
Rrs555 3.036 67.767 <0.001
Rrs670 2.490 24.344 <0.001

Table 13. Statistical summary of the fitted cryptophytes GAM.

Predictors EDF F p Value GCV adj-R2 DE N

Rrs412 4.941 21.939 <0.001

0.167 0.761 77.09% 667
Rrs443 5.877 21.254 <0.001
Rrs490 5.963 10.505 <0.001
Rrs555 8.688 36.253 <0.001
Rrs670 1.000 12.602 <0.001

In the establishment of models, except for Nano, Chlorophyceae, and prasinophyceae,
the deviance explained by the chlorophyll a, Micro, Pico, diatoms, dinoflagellates, chrys-
ophytes, prymnesiophytes, cyanobacteria, and cryptophytes fitted model is more than
60%.

The different cell sizes of the phytoplankton present different spectral features, includ-
ing their absorption and backscattering properties in a wide band range from 400 to 700 nm.
This difference in the absorption and backscattering induces the variability in spectral
shape of remote sensing reflectance [37]. Li et al. [17] found that the spectral features with
particular importance around 440–555 nm have a significant response to phytoplankton
size. Brewin et al. [38] found there are contrasting spectral shapes between the three phy-
toplankton sizes in the green part of the spectrum (500–600 nm). It is consistent with our
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results that Rrs555 has a significant response to micro-, nano- and picophytoplankton con-
centrations (the F value is high in Tables 3–5). Rrs412, Rrs443, and Rrs555 have a significant
contribution for estimation of all three sizes’ concentration. In addition, Brewin et al. [38]
also demonstrated that nanophytoplankton has a distinct absorption at ~450 nm. In our
study, the nanophytoplankton GAM (adj-R2 = 0.454) is a little worse than the pico- and
microphytoplankton model (adj-R2 = 0.671 and adj-R2 = 0.795). Rrs412, Rrs443, and Rrs555
contribute significantly in estimating the nanophytoplankton concentration, while Rrs490
and Rrs670 have a limited contribution to nanophytoplankton estimation (Table 4). In
the blue-green part of the spectrum (400–600 nm), Rrs490 has a lower contribution to the
phytoplankton size GAM compared with other spectral bands, especially for the nanophy-
toplankton retrieval model. Sun et al. [39] applied remote sensing reflectance at 488 nm
and 555 nm to obtain the phytoplankton size. They found that the microphytoplankton
retrievals show a greater sensitivity than that of the nano- and picophytoplankton on
Rrs488 or Rrs555. In the red part of the spectrum, Roy et al. [40] developed a semi-analytical
algorithm based on phytoplankton absorption features at a red wavelength (676 nm) to
obtain the phytoplankton size distribution. However, our results illustrate that Rrs670
have the smallest (not significant) contribution to the micro-, nano- and picophytoplankton
retrieval estimation.

Satellites detect some phytoplankton species (such as cyanobacteria, diatoms, dinoflag-
ellates, etc.) with a similar chlorophyll biomass, provided they have contrasting optical
signatures. Some studies demonstrated that satellite spectra have a distinct response for
cyanobacteria and diatoms [41,42]. Isada et al. [43] found that diatom and cyanobacteria
have differences in absorption in the green-red part of the spectrum. The diatoms ab-
sorption normalized at 443 nm is higher in the green-red part of the spectrum than that
of cyanobacteria, resulting in lower remote sensing reflectance for diatoms. Our results
demonstrate that the contribution of Rrs(670) to the diatom model is lower than that for
cyanobacteria (Tables 6 and 12). Aguirre-Gomez et al. [44] also indicated that cyanobacteria
has a more obvious optical signal at ~670 nm than diatoms. Stuart et al. [45] found that the
absorption at 443 and 490 nm normalized at 555 nm is significantly lower for the diatom-
dominated population than for the prymnesiophyte-rich population, indicating that there
are larger Rrs443 and Rrs490 for the diatom-dominated population. The prymnesiophytes
GAM model developed in this study is mainly contributed by Rrs490 and Rrs555. It was
thought that diatoms and dinoflagellates contain some of the same pigments, and there-
fore their light absorption features are similar [46]; however, their optical backscattering
features are different due to their structure difference. Discriminating between these two
groups depends on the variability in the Rrs spectral shape induced by backscattering [47].
In fact, there are some difference in the absorption between these two groups. The ab-
sorption peak of the dinoflagellates at ~440 nm is steeper than that of diatoms. In the
case of absorption peaks of the same magnitude, the absorption curve of dinoflagellates
drops faster at ~490 nm. It is also found that dinoflagellates have a stronger absorption
at ~670 nm [48]. Our results indicate that, compared with diatoms, the contribution of
Rrs490 for the dinoflagellates model decreases and the contribution of Rrs670 increases
(Tables 6 and 7). Based on the steeper absorption peak characteristics of the dinoflagellates,
Bracher et al. [49] also retrieved cyanobacteria and diatoms based on their spectral vari-
ability within 429–495 nm. Sadeghi et al. [50] retrieved diatoms, coccolithophores, and
dinoflagellates based on a spectral absorption difference over the 429–521 nm spectral
range. Relatively little research has been done on remote sensing of chrysophytes and
cryptophytes. In this study, their retrieval accuracy performs well. Rrs412, Rrs443, and
Rrs555 have larger contributions for chrysophytes estimation (Table 8). Rrs at all five bands
demonstrate a more near-equivalent contribution for cryptophytes estimation (Table 13).
Compared to other species models, the contribution of Rrs at 490 and 670 nm also increases.

To test the effectiveness of the GAM, we used random sampling to extract 70% of the
data as the training data set and the remaining 30% of the data as the test data set and
randomly cycle 1000 times to test the prediction accuracy. This helps to test whether our
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models are effective or an effect caused by the randomness of the data set. We take the root
mean squared error (RMSE), median absolute percentage error (MED), and coefficient of
determination (R2) as the indicators of the models’ prediction accuracy.

From the training results of various phytoplankton GAM (Table 14), eight GAM mod-
els achieve a good fitted effect (R2 > 0.5). They are chlorophyll a, Micro, Pico, diatoms,
dinoflagellates, chrysophytes, cyanobacteria, and cryptophytes models. The prymnesio-
phytes model performs a little worse than the above eight models with an R2 of 0.403. The
correlation coefficient is relatively small for the Nano, chlorophyceae, and prasinophyceae
models.

Table 14. Training results of the GAM. Note: RMSE, MED, R2, and N represent the root mean
squared error, median absolute percentage error, coefficient of determination, and number of samples,
respectively. The adjusted R2 statistic can take on any value less than or equal to 1, with a value closer
to 1 indicating a better fit. Negative values can occur when the model contains terms that do not help
to predict the response.

GAM RMSE MED R2 N

Chl a 0.3578 35.76% 0.688 201
Micro 0.5042 32.54% 0.666 200
Nano 0.4071 22.67% 0.379 201
Pico 0.3817 25.14% 0.642 201

Diatoms 0.4768 31.42% 0.667 201
Dinoflagellates 0.4689 16.21% 0.563 201
Chrysophytes 0.3425 18.26% 0.540 201

Prymnesiophytes 0.2900 8.65% 0.403 51
Chlorophyceae 0.8111 21.73% −0.273 24
Prasinophyceae 0.4568 14.49% 0.311 123
Cyanobacteria 0.3627 20.51% 0.715 201
Cryptophytes 0.4491 19.55% 0.683 201

In addition, the GAM of the various marine phytoplankton groups studied and
developed in this paper was constructed based on different depths. Therefore, theoretically,
as long as the Rrs data at different depths can be accurately obtained, the distribution
information of the phytoplankton groups in the research area can be estimated by using
the marine phytoplankton group GAM developed in this study, whether it is surface or
deep water [51].

3.3. Comparison between GAMs and Other Algorithms

In addition to the training models, the GAM models are also compared with other in-
version algorithms. The empirical ocean chlorophyll (OC) algorithm from O’Reilly et al. [52]
is the current default chlorophyll a algorithm for SeaWiFS and MODIS. The OC algorithm
is a fourth-order polynomial calculated using an empirical relationship derived from in
situ measurements of Chl a and Rrs in the blue-to-green region of the visible spectrum.

log10 Chl a = a0 + ∑n
i = 1 ai(log10(Rrs(λblue)/R(rsλgreen))) (19)

where a0–a4 are the empirical regression coefficients, for which the current values of OC4v6
(the ocean chlorophyll 4 algorithm vision 6) are 0.3272, 2.9940, 2.7218, 1.2259, and 0.5683,
respectively.

To compare with the GAM, the data set used for the OC4v6 algorithm was also taken
from 669 coincident in situ data points corresponding to the GAM. From the comparison
results of the Chl a GAM and OC4v6 algorithms (Figure 3), it can be seen that the OC4v6-
retrieved Chl a showed a lower coefficient of determination (R2 = 0.542, n = 669) and higher
RMSE and MED from the in situ Chl a (RMSE = 0.46 mg·m−3, MED = 46.93%). Indeed,
as the current default chlorophyll a algorithm, the OC algorithm has achieved acceptable
inversion results in most Case I waters, but it has limitations in some areas, such as coastal
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waters with complex optical characteristics. The data set in this study was collected in both
Case I waters and coastal waters, which may be the reason for the poor performance of the
OC algorithm.
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Similar to the OC algorithm, Pan et al. [25] adopted a set of third-order polynomial
functions to develop algorithms for individual pigment concentrations from Rrs ratios:

log(Pigment) = A0 + A1X + A2X2 + A3X3 (20)

X = log(Rrs490/Rrs555) or X = log(Rrs490/Rrs670) (21)

where A0–A3 are the empirical regression coefficients.
Therefore, similar to O’Reilly et al. [52] and Pan et al. [25], we constructed a third-

order polynomial algorithm for individual groups of phytoplankton. The statistical results
(Figures 4 and 5) of R2 and RMSE show that the third-order polynomial algorithm based on
the Rrs490/Rrs555 band ratio is better than the Rrs490/Rrs670 band ratio. In the comparison
results between the GAM and third-order polynomial algorithm, the GAM performs better
than the third-order polynomial algorithm, with a higher R2 and lower RMSE. The RMSE
of the third-order polynomial algorithm generally exceeds 0.3 mg·m−3. In addition, the
poor performance (R2 < 0.5) of the Nano, chlorophyceae, and prasinophyceae models can
be seen concisely and clearly from Figures 4 and 5.
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3.4. Model Evaluation Using Satellite Data

In Section 3.2, we established the GAM of the marine phytoplankton groups using
in situ data, and obtained nine models with good performance, namely, chlorophyll a,
Micro, Pico, diatoms, dinoflagellates, chrysophytes, prymnesiophytes, cyanobacteria, and
cryptophytes. In addition, although the R2 of the Nano model is only 0.454, it is also
included in the scope of the discussion in this section. In Section 2.1, we mentioned that
there are four cruises without in situ Rrs data matching the HPLC data in the western Pacific
Ocean. Therefore, these four cruises (a total of 32 coincident satellite data) independent of
the construction GAM data are very suitable for evaluating the performance of the GAM in
remote sensing satellites.

Ten models were applied to the ocean color satellite Level 3 binned Rrs products of
MODIS-Terra, and the derived values were compared with the in situ data. Rrs488 and
Rrs667 in MODIS were assumed to be equal to their values at 490 and 670 nm (SeaWiFS
band setting).

The evaluation results (Figure 6) of seven groups (Chl a, Micro, Nano, diatoms, di-
noflagellates, chrysophytes, and cryptophytes) showed a good tendency towards accuracy
(R2 > 0.5 and MED < 20%). However, the evaluation results of Pico, premnesiophytes, and
cyanobacteria exhibit dispersion and poor statistical correlation. The R2 value of the three
groups are −0.826, −0.141, and −0.66, respectively. A negative value of R2 indicates that
the sum of squares of errors (SSE) in the predicted value of the model is much greater than
the sum of squares of the total deviations (SST). We are surprised by the performance of
the Pico and cyanobacteria models in this comparison, because they perform well in the
previous in situ measurements.

3.5. Application of GAMs in the South China Sea

The seven models with good performance in Section 3.4 were applied to the SCS, to
obtain the spatial–temporal distribution and seasonal variation map of each phytoplankton
group in 2020. Among them, December to February is winter, March to May is spring, June
to August is summer, and September to November is autumn.

The open deep basin of the South China Sea is characterized as an oligotrophic water
type, which is similar with that of the oligotrophic western Pacific water. Furthermore, the
seawater in the coastal area of the South China Sea has the typical optical complex water
characteristics of the coastal waters in China. According to the results of the dominant
optical water class by Jackson et al. [53], the central deep basin of the South China Sea has
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the same optical water class as the lower and middle latitude waters of the western Pacific.
Coastal water of the South China Sea has the same optical water class as some areas of the
Yellow River region of China. In addition, due to the water exchange between the western
Pacific and the South China Sea, the distribution and concentration of the algae type in the
western Pacific Ocean are closely related to that of the South China Sea [54].
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Figure 7 shows that the Chl a abundance generally decrease from the inner shelf to
outer shelf and the higher abundance in the inner shelf is strongly influenced by river
discharge (e.g., Pearl River, Red River, and Mekong River). The shallow water depths
near the shore and the rich nutrient supplements are very suitable for the growth and
reproduction of phytoplankton [55]. Higher Chl a abundance in the winter relative to
the summer are consistent with a previous study in the SCS [56]. The higher abundance
of Chl a are associated with lower temperature and higher nutrients, and temperature
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and nutrients are usually the limiting factors for phytoplankton growth [22]. In winter
and spring, Figure 7 clearly shows that there is a high abundance of chlorophyll in the
southwestern Taiwan Strait, northern Luzon Island, and western Hainan Island, with an
average concentration of 1 mg·m−3. There is a strong northeast monsoon prevailing in
the SCS from October to April, which makes the seawater offshore Ekman transport in
these areas, causing the upwelling of low-temperature and high-nutrient seawater from
the bottom. The violent agitation of the monsoon also enhances the vertical mixing of
seawater, resulting in high chlorophyll levels in the SCS in winter and spring. In summer,
the southwest monsoon prevailing in the SCS leads to the emergence of upwelling areas
along the coast of Guangdong, the east of Hainan Island, and Vietnam. In addition, in
eastern Vietnam, approximately 12◦N usually forms a chlorophyll belt from the upwelling
of Vietnam to the SCS basin. This is because an offshore jet from southwest to northeast is
formed between the cold and warm eddies to transport the cold-water mass generated in
the upwelling area to the SCS basin [57–59].
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Among the two size classes retrieved by our model, both Micro (Figure 8a) and Nano
(Figure 8b) show the distribution characteristics of high abundance in winter and low
abundance in summer. The distribution map of the dominant group (Figure 8c) shows
well-defined and persistent large-scale structures characterized to the first order by the
dominance of Nano in oligotrophic waters; the average concentration reached 0.1 mg·m−3,
whereas Micro prevails in the coastal and continental shelf, and the average concentration
reaches 0.5 mg·m−3. The main groups of Micro are diatoms and dinoflagellates, which
generally occupy an absolute advantage in the nearshore [60]. These patterns are consistent
with the expected nutrient conditions in these regions, as diatoms are favored under more
nutrient-replete conditions, while Nano is favored in nutrient-depleted water [22,61]. The
higher efficiency of nutrient utilization due to their small size (higher surface-to-volume
ratio) permits Nano to grow faster than Micro in nutrient-poor waters [25]. These results
are also consistent with those estimated from field samples [30,62]. In addition, it is also
indicated that turbid coastal water conditions with limited light intensity may stimulate the
growth of microphytoplankton, possibly due to large superficial areas of these large-sized
algal particles that possess stronger light availability than small one [63,64]. The small-sized
nanophytoplankton growth would be suppressed by the turbid coastal water.

Among the four groups retrieved by our model, the four groups show the characteris-
tics of a gradually decreasing abundance from winter to summer, especially in the open
ocean, while the abundance of the four groups increased toward the coast. Among them,
diatoms (Figure 9a) are mainly distributed in the nearshore, and the average concentration
can reach 0.3 mg·m−3. Indeed, silicate is very important for the growth of diatoms, and the
rivers bring abundant silicate to the nearshore [65]. In addition, the distribution range of
diatoms gradually decreases from winter to summer, but diatoms are still common in the
upwelling area year-round, and the concentration is greater than 0.1 mg·m−3. Dinoflagel-
lates (Figure 9b) also mainly occur in the nearshore area with abundant nutrients, with an
average concentration of approximately 0.1 mg·m−3 and approximately 0.03 mg·m−3 in the
upwelling area. Aiken et al. [66] also found the diatom and dinoflagellate populations are
located in shallow water or upwelled water. Nanophytoplankton chrysophytes (Figure 9c)
and cryptophytes (Figure 9d) also have a high abundance in the oligotrophic ocean in
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summer, with average concentrations of approximately 0.025 mg·m−3 and 0.01 mg·m−3,
respectively. In autumn and winter, the average concentrations reached 0.063 mg·m−3 and
0.031 mg·m−3, respectively. In the seasonal upwelling area, the average concentrations of
chrysophytes and cryptophytes can reach 0.158 mg·m−3 and 0.056 mg·m−3, respectively.
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The distribution map of the dominant groups (Figure 9e) shows that diatoms (nearshore)
and chrysophytes (outside the continental shelf) are the dominant groups in the SCS
throughout the year. Dinoflagellates only become dominant in some coastal areas, but
compared with diatoms, dinoflagellates have a limited dominant range. Among the four
groups, cryptophytes rarely become the dominant group in the SCS. Compared with the
chrysophytes, cryptophytes contribute less to Nano, but the sum of their abundance makes
individual areas dominated by Micro change to Nano. Combined with the dominant groups
of Micro and Nano, it can be seen that the main contribution of Micro comes from diatoms,
while Nano comes from chrysophytes. The suitable growth conditions near the shore make
the groups with large size classes, such as diatoms and dinoflagellates, dominant, while
nanophytoplankton, such as chrysophytes and cryptophytes, are dominant offshore, where
there are fewer nutrients. In addition, a clear seasonal cycle is also evidenced west of
Hainan Island, where chrysophytes dominate in summer and large-scale diatom blooms
occur in winter. These consistencies validate our inversion models proposed in this study
for estimating the phytoplankton sizes and groups from satellite remote sensing.

The satellite retrievals of phytoplankton sizes and groups using our empirical models
were relatively successful. However, some models show instability in the process of training
the models and evaluation using satellite data. This instability might be partly explained by
the differences in the dynamic range of the measured data (spatial mismatch exists between
in situ and satellite data) or because there was not enough matching data [67]. In addition,
there might be some possible sources of uncertainty: (1) we assumed Rrs488 and Rrs667 to
be equal to Rrs490 and Rrs670; and (2) we quantified the phytoplankton composition and
abundance by using the proposed modified classification (DPA and HPLC-CHEMTAX).
The regression coefficient in DPA comes from the regression results in the ocean pigment
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data, and CHEMTAX also depends on the initial input pigment ratio. These factors may
have induced the deviations in our models.
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indicate the diatoms, chrysophytes, cryptophytes, and dinoflagellates, respectively.

4. Conclusions

We used coincident in situ measurement data from HPLC and Rrs to investigate the
empirical relationships between phytoplankton groups and satellite measurements. A non-
parametric model, GAM, was introduced to establish inversion models of various marine
phytoplankton groups. Nine models performed well based on the in situ data. Among
them, seven models were relatively stable in satellite remote sensing inversion. Therefore,
we only used these seven models (two size classes among the microphytoplankton and
nanophytoplankton and four groups among the diatoms, dinoflagellates, chrysophytes,
and cryptophytes) to retrieve the phytoplankton groups in the South China Sea. The results
indicate that microphytoplankton prevails in the coastal and continental shelf, and nanophy-
toplankton prevails in the oligotrophic oceans. Among them, the dominant contribution to
microphytoplankton comes from diatoms, and for nanophytoplankton from chrysophytes.
Among the four groups retrieved by our model, diatoms (nearshore) and chrysophytes
(outside the continental shelf) are the dominant groups in the SCS throughout the year.
Dinoflagellates only become dominant in some coastal areas while cryptophytes rarely
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become dominant. These results are spatially coherent and consistent with the current
knowledge of this region in terms of both phytoplankton abundance and distribution.
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