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Abstract: As China’s railways continue to expand into the Qinghai–Tibet Plateau, the number
of deep-buried long tunnels is increasing. Tunnel-damaging geothermal disasters have become
a common problem in underground engineering. Predicting the potential geothermal disaster
areas along the Yunnan–Tibet railway project is conducive to its planning and construction and
the realization of the United Nations Sustainable Development Goals (SDGs)—specifically, the
industry, innovation and infrastructure goal (SDG 9). In this paper, the Yunnan–Tibet railway project
was the study area. Landsat-8 images and other spatial data were used to investigate causes and
distributions of geothermal disasters. A collinearity diagnosis of environmental variables was carried
out. Twelve environmental variables, such as land surface temperature, were selected to predict
potential geothermal disaster areas using four niche models (MaxEnt, Bioclim, Domain and GARP).
The prediction results were divided into four levels and had different characteristics. Among them,
the area under receiver operating characteristic curve (AUC) and kappa values of the MaxEnt model
were the highest, at 0.84 and 0.63, respectively. Its prediction accuracy was the highest and the
algorithm results are more suitable for the prediction of geothermal disasters. The prediction results
show that the geothermal disaster potential is greatest in the Markam-Deqen, Zuogong-Zayu and
Baxoi-Zayu regions. Through jack-knife analysis, it was found that the land surface temperature,
active faults, water system distribution and Moho depth are the key environmental predictors of
potential geothermal disaster areas. The research results provide a reference for the design and
construction of the Yunnan–Tibet railway project and associated sustainable development.

Keywords: Yunnan–Tibet railway; geothermal disaster; sustainable development; Landsat-8; niche model

1. Introduction

China is constructing railways in the Qinghai–Tibet Plateau, which will promote
economic development and sustainable development goals [1]. Deep-buried long tunnels
are required for this railway, which are prone to geothermal disasters. The Sichuan–Tibet
Railway is under construction in a Mediterranean Himalayan subtropical zone. Around 15
tunnels are judged to have experienced geothermal disasters. The highest rock temperature
measured during the excavation of the Sangzhuling Tunnel on the Lalin Railway was 86 ◦C.
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Geothermal disasters deteriorate the construction environment and threaten the health
and safety of construction personnel and the efficiency and progress of tunnel projects.
They are also detrimental to the safety and durability of tunnel lining structures and the
stability and safety of subsequent railway operations [2]. The Yunnan–Tibet railway is
located in Southwestern China. It leads northward from Shangri La Station to Deqen
County, then extends northwestward to Rawu Station and, finally, connects with the
Sichuan–Tibet Railway, which is under construction in Bome County and has a total length
of around 490 km [1]. The line crosses the famous “Three Parallel Rivers” area of the
Hengduan Mountains. The terrain elevation difference across the whole line is significant,
the geological conditions are complex, the ecological environment is fragile, and the project
is huge and arduous (Figure 1). Restricted by the topographic elevation difference and
geomorphology, the Yunnan–Tibet railway passes through a mountain–canyon area via
a tunnel. The construction of a deep-buried long tunnel will greatly reduce the traffic
distance and obtain a large decrease in elevation within a short distance, but will inevitably
face a series of geological disasters, especially geothermal disasters [3]. Achieving the
United Nations Sustainable Development Goals (SDGs) is desirable by governments and
society. The industry, innovation and infrastructure goals (SDG 9) emphasize the building
of disaster-resistant infrastructure. The sustainable cities and communities goal (SDG 11)
calls for the building of inclusive, safe, disaster-resilient and sustainable cities and human
settlements. Therefore, the construction of infrastructure such as railways plays a vital role
in achieving the SDGs [4,5].
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There have been many studies of geothermal disasters in plateau-based linear en-
gineering projects such as the Yunnan–Tibet railway. For example, Yan Jian studied the
characteristics of high ground temperatures in the Sangzhuling tunnel of the Sichuan–Tibet
Railway in 2019 and analyzed its impact on tunnel engineering [6]. Luo Feng analyzed
the ground temperature characteristics of an underground project in the north wall of the
Lhari fault on the Qinghai–Tibet Plateau in 2021 and summarized its relationship with
the Lhari fault [7]. In addition, research on the influences on geothermal disasters shows
that the ground temperature and ground temperature gradient characteristics are closely
related to earth thermal processes, tectonism, climate change and formation lithology [8–11].
However, most of the above studies have focused on the influences of ground temperature
distributions and geothermal disasters on engineering projects, while few have predicted
potential geothermal disaster areas. The terrain along the Yunnan–Tibet railway project
is difficult and dangerous and much of the area is covered by ice and snow, making it
very difficult to conduct conventional large-area ground geothermal surveys. Instead,
satellite-acquired thermal infrared remote sensing images can provide high monitoring
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accuracy and are relatively unrestricted by ground conditions. Accordingly, we used them
to determine ground temperature anomalies in the study area. Using the GIS platform
and spatial information technology, predictive models, such as the evidence weight, de-
terministic coefficient, maximum entropy and random forest methods, have been used
in many fields, such as for the prediction of metallogenic provinces, landslide disasters,
suitable species habitats and geothermal resources [12–15]. For example, Zhang Shuai used
a maximum entropy and random forest model to predict the presence of gold deposits in
the West Qinling region of China in 2018 [16]. In 2020, Abuzied used Bayesian statistical
models in the coastal area of the Gulf of Suez, Egypt, to identify potential geothermal
areas [17]. In 2021, Abdel-Fattah pointed out the possible locations of geothermal reservoirs
by using information value and evidence weight analyses [18]. In earlier research, we
used eight environmental variables to construct a traditional entropy weight information
model and an evidence weight information model of geothermal anomalies along the
Sichuan–Tibet railway in China [19]. On the basis of previous research, this study analyzed
the causes of disasters along the Yunnan–Tibet railway, increased the number of environ-
mental variables to 15, introduced an emerging niche model for prediction and, finally,
defined key areas for analysis. The niche model was initially applied to species prediction
and analysis. In recent years, it has been widely used to predict the distribution ranges
of disasters such as landslides, debris flows and floods [16]. Using data on the known
distribution of disasters and disaster-causing environmental variables, the model uses an
algorithm to project operation results into different times and spaces to predict potential
disaster-prone areas [20]. When the niche model is applied to the prediction of potential
areas of geothermal disaster, the known geothermal spots in the study area are considered
equivalent to the known distribution data of disasters, and the corresponding environmen-
tal variables are the structural prediction variables. At present, there are many commonly
used niche models. Each model can independently predict potential disaster-prone areas,
but each has a certain preference [21]. Using the idea of an ensemble prediction system
and integrating the prediction results of various models, the false-negative or false-positive
risk of using a single model can be reduced as much as possible. At the same time, the
defects in one model may be compensated for by another model to improve the robustness
of prediction [22,23].

Based on niche models that use four different algorithms (MaxEnt, Bioclim, Domain
and GARP), taking 15 disaster-causing factors as environmental variables, and in combina-
tion with the ArcGIS platform, this study predicts potential areas of geothermal disaster
along the proposed Yunnan–Tibet railway project. It compares the prediction results of
different models, analyzes the relationships between geothermal disasters and environmen-
tal variables and reveals the dominant factors determining the potential distributions of
geothermal disasters. It provides a scientific basis and technical support for the engineering
planning, route optimization and sustainable development of the Yunnan–Tibet railway. It
also provides a reference for the survey, design and engineering construction of complex
and dangerous mountainous railways in areas such as Sichuan–Tibet, China–Nepal and
Xinjiang–Tibet.

2. Materials and Methods
2.1. Study Area

The area was located in Southwest China along the Yunnan–Tibet railway between
27◦25′–30◦05′N and 95◦15′–100◦15′E. It includes the Southeastern Tibet Tibetan Autonomous
Region and Northern Yunnan Province and covers an area of approximately 143,009 km2

(Figure 1). This area has a plateau humid monsoon climate with an annual average temper-
ature of 6.3–12.5 ◦C, a large daily temperature difference and a minimum temperature of
–27.4 ◦C. The whole year is dry and wet, with an average annual rainfall of 449.19–726.4
mm, which is concentrated from May to September. The railway line passes through four
geomorphic units: the Zhongdian fault depression basin area, the Hengduan Mountain
high mountain canyon area, the Southeast Tibet high mountain deep canyon area and the
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Parlung Zangbo River Valley area. The trend of the mountain range is consistent with that
of the regional structural belt. The landform has alternating gullies and mountains, and the
terrain is generally high in the northwest and low in the southeast. The elevation of the
river valley is 2700–3300 m, that of the mountains is 3000–6700 m, and the relative height
difference is 1000–3000 m. The canyon areas are mostly V-shaped with cutting depths of
1000–2000 m and bank slope gradients of 30–70◦ on both sides. Meili Snow Mountain is the
highest peak near the line, with an altitude of around 6740 m [1]. The basic topographic
conditions are shown in Figure 1.

The eastern part of the study area is the Deqen-Weixi stratigraphic division of the
Qiangtang-Qamdo stratigraphic area, and the central and western parts are the Biru-
Lhorong and Lhasa-Bome stratigraphic divisions of the Gangdise-Nianqing Tanggula
stratigraphic area (Figure 2). The exposed strata are Quaternary to Precambrian, and their
distribution is mainly controlled by their structure. The Quaternary strata are mainly
sandy soil, gravel soil and cohesive soil; the underlying sedimentary rocks, metamor-
phic rocks and intrusive rocks are distributed alternately, and the lithology is mixed and
changeable [24]. Due to the strong collision and compression of plates and the uplift of the
Qinghai–Tibet Plateau, the fault zones in the region are extremely developed and include
the Jinsha River fault zone, Lancang River fault zone, Bangong Lake Nujiang suture zone,
Jiali fault zone and Yarlung Zangbo River suture zone. The Yunnan–Tibet railway passes
through six faults, which, from west to east, are the Deqen Zhongdian fault, Jinshajiang
fault, Lancang River fault, Basu fault, Nujiang fault and Lhari fault (Figure 2). The area is
characterized by its large scale and fault bandwidth, strong tectonic environment, complex
structure and strong activities since the Holocene. It has a seismogenic structure of medium–
strong and mega-earthquakes, with the risk of strong earthquakes, and the engineering
geological conditions are extremely complex [25]. The engineering problems caused by
active faults mainly include catastrophic structural creep and dislocation-induced earth-
quakes, resulting in secondary disasters such as slope instability and destructive debris
flows, and the harm of high-temperature hot springs distributed along the fault zone.
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The railway runs through the Yunnan–Tibet geothermal zone in the great bend geother-
mal activity area of Yarlung Zangbo. It belongs to the Himalayan geothermal zone, which
has the strongest geothermal activity in Mainland China. Geothermal activity is mainly
distributed in beads along active fault zones or is exposed in fault basins and fault valleys.
The geothermal outcrops along the line are mainly hot springs with low salinity. The maxi-
mum water temperature exceeds 80 ◦C and is relatively stable and unaffected by climate. It
is an area with an extremely high land surface temperature [26] (Figure 2). The line crosses
many seismic zones, such as the Xianshuihe East Yunnan seismic zone, Southwest Yunnan
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seismic zone, Central Tibet seismic zone and Himalayan seismic zone. It is the largest
seismic area in China and is extremely active, with frequent high-intensity earthquakes [27].
The epicenter in Figure 2 is the center of earthquakes with magnitudes ≥ 4 that occurred in
the study area from 2300 BC to AD 2000.

The distribution of the river system along the line is controlled by the structure, and
its flow direction is consistent with the structural trend (Figure 2). The railway crosses the
Jinsha, Lancang, Nujiang and Parlung Zangbo Rivers, among others, from east to west.
Water is abundant and seasonal. The runoff is greatest in summer, the rivers are highly
sloped, and the water flow is turbulent. Rivers are mainly recharged by precipitation,
groundwater and ice meltwater [1]. The fault, hot spring, epicenter and water system data
were obtained from the China Geological Survey (https://geocloud.cgs.gov.cn/, accessed
on 1 March 2022).

Shallow geothermal energy resources are abundant in the area. Their generation is
closely related to the strong solar radiation, complex geological and geomorphic conditions
and extreme natural climate of the area. At the same time, they are restricted by geological
conditions such as stratigraphic structure, structure, groundwater distribution and rock
thermophysical properties [28–30]. Under certain circumstances, under the influences of
deep heat sources and fractures, places with abundant high temperatures at shallow depths
are potential locations of geothermal disasters that could affect the tunnel [11].

2.2. Materials
2.2.1. Geothermal Sample Points

The Yunnan–Tibet tropical zone is located at the collision junction of the Indian Ocean
and Eurasian plates. It has the characteristics of long extension distance, grand scale and
strong geothermal activity. Hot springs in this area account for more than half of the total
number in China. The distribution of abnormal areas of geothermal activity along the
railway is related to the activity of active faults. The hot springs exposed on the surface
can be regarded as the ground characterization of geothermal disasters. Within an area
of 10 km2, they may belong to the same geothermal system, and high-temperature hot
springs are likely to be concentrated. Therefore, the hot spring points exposed at the surface
in the study area were taken as known geothermal sampling points for the predictive
model [12]. The data on geothermal sampling points were obtained from a 1:4 million
scale map of geothermal resources in China [31], from which 108 geothermal sampling
points were selected (Figure 2). Among them, 75% of the points were randomly selected as
a training set, and the remaining 25% of sampling points as well as random background
points (10 times the number of total sampling points) were selected as the test set. To
compare the differences in the predictions of the four models, 10 groups of training datasets
and corresponding test datasets were randomly generated. The training set was used for
model prediction and the test set was used for model verification.

2.2.2. Selection and Processing of Environmental Variables

Considering the geological structure, geophysics, natural climate, landform and hy-
drogeological conditions of the study area [12], 15 factors were selected as environmental
variables: land surface temperature, buffer distance to fault, fault density, combined en-
tropy of geological formation, earthquake peak acceleration, epicentral nucleus density,
aeromagnetic anomaly, Bouguer gravity anomaly, Moho depth, terrestrial heat flow, near-
surface temperature, snow depth, degree of permafrost, amount of precipitation and buffer
distance to a river (Table 1).

https://geocloud.cgs.gov.cn/
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Table 1. Environmental variables.

Code Environment Variable Unit

Bio1 Land surface temperature °C
Bio2 Buffer distance to fault km
Bio3 Fault density km/km2

Bio4 Combined entropy of geological formation -
Bio5 Earthquake peak acceleration g
Bio6 Epicentral nucleus density -
Bio7 Aeromagnetic anomaly nT
Bio8 Bouguer gravity anomaly mgal
Bio9 Moho depth km
Bio10 Terrestrial heat flow mW/m2

Bio11 Near-surface temperature °C
Bio12 Snow depth m
Bio13 The degree of permafrost -
Bio14 Amount of precipitation mm
Bio15 Buffer distance to river km

The land surface temperature (LST) can provide high-quality and high-efficiency
heat information on the land surface and provide a basis for the prediction of geothermal
disasters. The terrain of the study area is complex and covers a large area. One of the
most effective methods is to obtain surface temperatures through thermal infrared remote
sensing inversion [12]. The Landsat-8 satellite has a thermal infrared sensor with a 100 m
spatial resolution. From its L1T level data, the land surface temperature anomalies in the
study area were extracted with high quality and efficiency. Thermal infrared data were
obtained from the U.S. Geological Survey (https://earthexplorer.usgs.gov/, accessed on 1
March 2022) [12]. Finally, the single-window algorithm was used to retrieve the surface
temperatures according to the formula

Ts = {a(1 − Ci − Di) + [b(1 − Ci − Di) + Ci + Di]Tb − Di Ta}/Ci (1)

Ci= εiτi (2)

Di = (1 − τi)[1 + τi(1 − εi)] (3)

where a and b are linear regression coefficients related to the temperature range in the study
area, C and D are intermediate variables, Ta is the average atmospheric temperature (K), Tb
is the brightness temperature (K) obtained by the sensor, Ts is LST, τ is the atmospheric
transmittance, and ε is the surface emissivity [12].

To reduce the influence of complex terrain on LST inversion, terrain correction was
conducted. The empirical statistical method was used, with the formulas

cos(i) = cos(z) cos(S) + sin(z) sin(S) cos(Φ x − Φn) (4)

LT = m cos(i) + b, (5)

LH = LT − [m cos(i) + b]+LT (6)

where S is the tilt angle of a pixel; i is the effective incidence angle of the sun; Φn is the
tilt angle of a pixel; Φx is the azimuth of the sun; z is the zenith angle of the sun; LT is
the radiation value of the ground object before correction; LH is the corrected radiation
value of the ground feature; LT is the theoretical radiation value of ground objects in a
flat area without topographic relief; and b and m are parameters obtained by regression
analysis [12].

A total of 90 long-time-series Landsat-8 data images from 2013 to 2021 were down-
loaded and the multi-year average winter LST was calculated.

In terms of geological structure, geothermal disasters are prone to occur in areas
with complex fault structures and a high degree of rock fragmentation [12,31]. The fault

https://earthexplorer.usgs.gov/
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zone forms a channel to the underground heat source so that the groundwater is heated
and gushes back to the surface, causing geothermal disasters [12,32]. Fault data were
transformed into fault buffer distances and fault line densities using the buffer zone
analysis and density analysis tools in ArcGIS software. The fault data were obtained
from the China Geological Survey’s 1:5 million scale structural map of China and its
adjacent areas (https://geocloud.cgs.gov.cn/, accessed on 1 March 2022). The formation
combination entropy was calculated from formation lithology data. It is a basic form of
geological anomaly [19], which represents the entropy anomaly of different properties of
the same geological body or a combination of different geological bodies in a volume or
unit area [12,33]. The formation lithology data were obtained from the China Geological
Survey’s 1:4 million scale geological map of China (https://geocloud.cgs.gov.cn/, accessed
on 1 March 2022). The steps used to calculate the formation combination entropy were as
follows. The lithological map was divided into grid elements for consideration of their
long-axis direction, size and shape. The shape of the grid elements should correspond
to the shape of the formation. After a grid element was determined, the independent
lithological areas in the element were calculated. Then, the sum of their areas in the element
was calculated and the ratio xi (i = 1, 2, 3..., n) of each lithological area in the element to the
unit area was calculated. Finally, the formation combination entropy was calculated as

Ejk = −
n

∑
i=1

xi ln xi/ ln n (7)

where n is the lithology type existing in the grid unit, and j and k are the row and column
numbers of the unit.

In terms of geophysics, the epicenter density and ground motion peak acceleration
can measure the level of seismic and hydrothermal activity in the study area to a certain
extent [12,34]. The epicenter data were transformed into epicenter densities using the
density analysis tool in ArcGIS. The epicenter is the center of earthquakes with magnitudes
≥ 4 that occurred in the study area from 2300 BC to AD 2000. The seismic peak acceleration
and epicenter data were obtained from the 1:5 million scale seismic peak acceleration
zoning map of China and the seismic epicenter distribution map of China, respectively.
Aeromagnetic anomaly distributions are often used to describe groundwater thermal
activity areas with large changes in tectonic load [12,35]. Aeromagnetic anomaly data were
obtained from the 1:6 million scale aeromagnetic anomaly map of China and adjacent sea
areas. Gravity anomalies are caused by uneven distributions of underground rock masses
and mineral density, or the density difference between a geological body and surrounding
rock. A Bouguer gravity anomaly map can be used to understand regional structures and
delineate large fault structures and local anomalies that may be related to a geothermal
system [12,36]. Bouguer gravity anomaly data were obtained from a 1:4 million scale
Bouguer gravity anomaly map of China. Moho depth distribution characteristics are of
great significance to lithospheric structures, crust–mantle tectonic evolution and geothermal
distributions [37]. Moho depth data were obtained from a Moho depth map of the China
Sea and land areas. Terrestrial heat flow refers to the heat transmitted from the Earth’s
interior to the surface in terms of heat conduction per unit time and unit area, which is
then emitted into space. According to this definition, the Earth’s heat flow contains thermal
information of the Earth from deep to shallow [37]. The terrestrial heat flow data were
obtained from the terrestrial heat flow data compilation of the Chinese Mainland (Fourth
Edition). The above geophysical data were obtained from the China Geological Survey
(https://geocloud.cgs.gov.cn/, accessed on 1 March 2022).

The climatic and hydrological factors of near-ground temperature, snow depth and
frozen soil distribution are the material basis for the formation of shallow ground tem-
perature fields, which together constitute thermal energy storage sites and transportation
channels [28]. Average annual near-surface temperature data were obtained from the
China Ecological Science Data Centre’s (http://www.nesdc.org.cn/, accessed on 1 March
2022) dataset of near-surface temperatures in China from 1979 to 2018 [38]. The data on

https://geocloud.cgs.gov.cn/
https://geocloud.cgs.gov.cn/
https://geocloud.cgs.gov.cn/
http://www.nesdc.org.cn/
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permafrost and average annual snow depth were obtained from the China Qinghai–Tibet
Plateau Scientific Data Centre (http://data.tpdc.ac.cn/, accessed on 1 March 2022). A
newly drawn frozen soil distribution map of the Qinghai–Tibet Plateau [39] and a dataset
of 0.05◦ daily snow depths on the Qinghai–Tibet Plateau from 2000 to 2018 [40] were also
obtained. The study area has high precipitation and numerous rivers, which provide a
water source for the formation of geothermal anomalies. Average annual precipitation data
were obtained from the China Ecological Science Data Centre (http://www.nesdc.org.cn/,
accessed on 1 March 2022). A spatial interpolation dataset of fine-grid meteorological data
was obtained every 8 days at 1 km resolution for China from 2000 to 2018 [41]. River buffer
distances were obtained by processing the hydrological data, which were obtained from
the China Geological Survey (https://geocloud.cgs.gov.cn/, accessed on 1 March 2022) 1:3
million Chinese Hydrogeological Atlas.

When applying the model, the size of the grid unit should take into account the scale
range of the study area, the similarity of the geological environment of the grid unit and
the processing and calculation ability, so all layers were resampled to a 100 × 100 m grid,
which was uniformly converted to ASCII format through the ArcGIS platform.

2.2.3. Collinearity Diagnosis of Environmental Variables

To avoid overfitting of the modeling results caused due to collinearity between envi-
ronmental factors [42], this study first input all variables into the MaxEnt model to obtain
preliminary simulation results and the contributions of each factor. Then, a Spearman
rank correlation analysis of environmental factors was conducted [43] and those with low
correlations (Spearman coefficient < 0.75) were screened out, combined with the contri-
butions of each factor in the simulation results of all factors. Then, we considered the
environmental conditions of geothermal samples used in this paper, excluding the factors
with high correlation, low contribution and low impact [44] (Figure 3).
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Figure 4. Environmental variables: (a) Land surface temperature, (b) Buffer distance to fault,
(c) Combined entropy of geological formation, (d) Earthquake peak acceleration, (e) Epicentral
nucleus density, (f) Aeromagnetic anomaly, (g) Moho depth, (h) Terrestrial heat flow, (i) Near-surface
temperature, (j) Snow depth, (k) The degree of permafrost, (l) Buffer distance to river.

2.3. Methods
2.3.1. Prediction Models

Niche models were initially applied to the prediction and analysis of species distribu-
tion. In recent years, they have been widely used to predict the distribution and dynamics
of landslides, debris flows, floods and other disasters [18]. When a niche model is applied
to predict potential geothermal disaster areas, the known geothermal locations in the study
area are considered to be equivalent to the known distribution of disaster locations, and
environmental variables are used as prediction variables. At present, there are many com-



Remote Sens. 2022, 14, 3036 11 of 22

monly used niche models. Each can independently predict potentially vulnerable areas
and each has a certain bias [21]. By using the idea of a set prediction system and integrating
the prediction results of various models, the false-negative or false-positive effects caused
by empirically selecting a model can be minimized [22,23]. Finally, the best model can be
selected to predict potential geothermal disaster areas for analysis.

In recent years, the maximum entropy (MaxEnt) model has attracted extensive at-
tention in the field of machine learning [16]. It simulates the geographical distribution
of species based on correlations between environmental variables and the locations of
target species [45]. The maximum entropy theory holds that, on the premise of meeting
the existing conditions, the real state of the research object should be the state when the
system entropy is maximal. That is, when predicting an unknown distribution according to
known species locations and meeting the constraints of these samples, the real distribution
of the target species in the study area is obtained when the unknown distribution entropy
is maximal, to obtain the ecological environment distribution or climate suitability of the
target species [46]. When the maximum entropy model is applied to the prediction of
geothermal disasters, the known geothermal hot spring locations in the study area are
equivalent to species locations, and the corresponding influences are the environmental
variables of the model. The calculation formula is

H(π̂) = −∑
x∈X

π̂(x) · lnπ̂(x) (8)

The unknown probability distribution is defined as π̂. For a finite element (X) in the
study area, each element point (x) is assigned a non-negative probability, which sums to 1.
The estimated probability distribution is π̂, and then H (π̂) is the entropy.

In this study, the MaxEnt model was used to simulate the distribution of geothermal
disasters. Ten groups of training datasets and environmental variable datasets were used
in the model. The maximum number of iterations was set to 500 and the maximum number
of background points was 10,000. Weights were tested by the jack-knife method.

The Bioclim model is a framework model that extracts a limited range of environmen-
tal factors from known species distributions and then summarizes the environmental needs
of the species into an “environmental envelope” [47]. By studying the climate parameters
of the known distributions of species, the Bioclim model summarizes their ecological char-
acteristics into a rectangular environmental envelope. Finally, many single envelopes form
a group of environmental envelopes, which are then projected onto the target area. Each
climate variable in the target area is compared with the environmental envelope system. If
the position of a point in the envelope system space is within the environmental envelope,
the model determines that the point is a potential distribution point [48]. The greater the
number of species distribution points, the higher the accuracy of the model in predicting
the suitable species habitat. However, due to the characteristics of the Bioclim model’s
prediction process, when a species distribution presents a discrete trend, the predictions
will contain errors, which will often overestimate the habitat range of the species.

The Domain model uses an environmental similarity matrix between points for simu-
lation and prediction [49]. Its core idea is the Gower distance between points, which is the
distance between two points in Euclidean geometric space. It was introduced into applied
ecology to judge the similarity between a target area and a known distribution of a species.
The Gower distance is treated by variance standardization or range standardization to
ensure that its contribution in each dimension is the same. In the case of different samples,
variance standardization can better avoid the error caused by it [50]. It only uses the
existing species distribution and has a good effect when there are few predictive variables.

Based on the DIVA-GIS platform, this study simulated the potential distribution
of geothermal disasters by importing 10 groups of training datasets and environmental
variable datasets into the Bioclim and Domain models, respectively, in the Modeling
module, and then made forecasts [50].
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With the development of machine learning, a genetic algorithm for the rule set produc-
tion (GARP) model was proposed. The operation principle of GARP is based on a regular
genetic algorithm. During the operation of the model, the environmental factors affecting a
species distribution are automatically selected, and all the selected factors are mapped to a
certain area. Through superposition analysis, the non-random relationship between the
known species distribution and study area is explored. The basic niche of the research target
is determined and, finally, the potential geographical distribution of the research target
is simulated and predicted [51,52]. In general, it uses the rule combination of the genetic
algorithm to model the local environment and predict the species distribution [53]. It can
well predict the suitable habitat of discrete species, which has advantages in this regard.

This study simulated the potential distribution of geothermal disasters based on the
Desktop GARP platform. We imported 10 groups of training datasets and environmental
variable datasets into the model, randomly created 10 repetitions, set the convergence limit
to 0.01 and the maximum number of iterations to 1000 and, finally, added and stacked them
in ArcGIS to obtain a predicted distribution map of geothermal disasters.

2.3.2. Test of Model Prediction Results

Using 10 groups of test sets obtained in the random segmentation step, the receiver
operating characteristic (ROC) and kappa coefficient were calculated to verify the predictive
accuracy of the model.

The area under the receiving operator curve (AUC) is the area covered by the ROC
curve. The AUC value is not affected by the diagnostic threshold and is not sensitive
to the incidence. At present, it is recognized as the best evaluation index and has been
widely used in the accuracy evaluation of niche models. The numerical range of the
AUC value distribution is 0–1, with higher values indicating a greater correlation between
environmental variables and the distribution of simulated objects—that is, better simulation
results. AUC values are considered to be “accurate” at 0.7–0.8, “very accurate” at 0.8–0.9
and “extremely accurate” > 0.9 [54].

The kappa coefficient is usually used to measure the consistency between simulation
results and the real situation [55,56]. The distribution interval of the kappa coefficient
is usually 0–1, with higher values indicating greater consistency between the simulation
results and the real situation—that is, the more realistic the simulation is. The kappa
coefficient is considered “moderate” at 0.4–0.6 and “significant” at >0.6 [57–59].

3. Result
3.1. Predicted Results of Models

From the 10 groups of prediction maps produced by each model, the map with the
largest AUC was selected as the base map, and the potential areas of geothermal disaster
were classified using the natural discontinuity classification method to obtain the maps of
each model (Figure 5). The area of high geothermal disaster potential in the figure indicates
that there is a high possibility of geothermal disasters in the area; a low potential area
means that there is a low possibility of geothermal disasters in the area; a non-potential
area means that there is no geothermal disaster potential in the area. From the classification
chart of the prediction potential and statistical results, it can be seen that the distribution
trends predicted by the four models are relatively close, but the areas and specific details
are different. The predicted distribution map of the MaxEnt model (Figure 5) shows
that the area with high potential for geothermal disaster is the smallest, and is mainly
distributed in Eastern Tibet and Western Sichuan at 29–31◦N, being mainly concentrated in
the north of Medog County, Zayu County, the east of Bome County, Nyingchi City, Tibet
Autonomous Region, the south and east of Markam County, Qamdo City, the south and
west of Zuogong County and the east of Baxoi County, the northwest of Deqen County,
Diqing Tibetan Autonomous Prefecture, Yunnan Province, the west of Batang County
and southwest of Litang County, Garze Tibetan Autonomous Prefecture and Sichuan
Province. The predicted distribution map of the Bioclim model (Figure 5) shows that the
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high potential areas of geothermal disaster are mainly distributed in Eastern Tibet, Western
Sichuan and Northwest Yunnan at 28–31◦N and 97–100◦E, mainly in the north of Medog
County, Nyingchi City, the northeast of Zayu County, the southwest of Bome County,
Markam County, Zuogong County, the east and west of Qamdo City and the east of Baxoi
County; Northwest of Deqen County, Diqing Tibetan Autonomous Prefecture, Yunnan
Province; the west and east of Batang County, Garze Tibetan Autonomous Prefecture,
Sichuan Province, the south of Litang County, Xiangcheng County and Derong County. The
predicted distribution map of the Domain model (Figure 5) shows that the high potential
areas of geothermal disaster are mainly distributed in Eastern Tibet, Western Sichuan
and Northwest Yunnan at 28–31◦N and 97–100◦E, mainly in the north of Medog County,
Nyingchi City, the east of Zayu County, Markam County, Zuogong County, the east and
west of Qamdo city and the east of Baxoi County, Tibet Autonomous Region; Deqen
County, Diqing Tibetan Autonomous Prefecture, Yunnan Province; the west and east of
Batang County, Garze Tibetan Autonomous Prefecture, Sichuan Province, the south of
Litang County, the southwest of Xiangcheng County and Derong County. The predicted
distribution map of the GARP model (Figure 5) shows that the geothermal disaster and
high potential area is the largest, which is mainly distributed in Eastern Tibet, Western
Sichuan and Northwest Yunnan at 28–31◦N and 97–100◦E, mainly in the northeast of Zayu
County, Nyingchi City, Tibet Autonomous Region, Markam County, Zuogong County,
Eastern and Western Qamdo City and Eastern Baxoi County; Deqen County and Shangri
La County, Diqing Tibetan Autonomous Prefecture, Yunnan Province; the west and east
of Batang County, Garze Tibetan Autonomous Prefecture, Sichuan Province, the south of
Litang County, Xiangcheng County and Derong County.
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Although the geothermal sample data and environmental variables selected by each
model are the same, there are great differences in the results predicted by different niche
models on the distribution of potential areas of geothermal disaster [60,61]. The predicted
differences are mainly reflected in the junction areas of the Southeast Tibet Autonomous
Region, Northwest Yunnan Province and Southwest Sichuan Province. This is mainly
caused by the different algorithms used by each model. The area predicted by the MaxEnt
model is the smallest, but it is more clear at the local level of detail because the MaxEnt
model algorithm infers the environmental demand of geothermal disasters and simulates
their distribution based on the principle of maximum entropy. It focuses on eliminating
the commission in the simulation [62]. During its operation, the entropy increases with
the input of environmental variables associated with each set of geothermal sample data
and the number of iterations. The research results tend to the real niche [63]; that is, under
the real conditions, the distribution range of geothermal disasters, and the prediction
results, are more delicate. The area predicted by the GARP model is large and the overall
performance is good because GARP uses a genetic algorithm. It searches the environmental
variables related to the research samples and selects the optimal rule set to predict the
distribution area of geothermal disasters. It focuses on eliminating the omission error
in the simulation; that is, the selection of the optimal model is based on the minimum
omission rate, and the research results are biased towards the basic niche [64]. That is, in
the ideal state without interference, the maximum distribution range that may be occupied
by geothermal disasters [65], which is predicted to expand the range of geothermal disaster
area, and the MaxEnt model algorithm can achieve a good trade-off between omission rate
and recording error rate. The prediction ranges of the Bioclim and Domain models are
between those of MaxEnt and GARP because the Bioclim model is based on the principle
of the environmental envelope and the Domain model uses the Gower algorithm. They
are greatly affected by the geothermal sample points. Geothermal sample distribution
data mainly come from field survey mapping. The sample data have a certain preference,
so researchers generally take samples according to their research needs or simply collect
data for different work areas. The sample information is scattered and is not systematic
and representative. Secondly, fewer geothermal sample data may lead to a reduction
in the niche space and, due to the complex geological and climatic conditions in some
areas, the niches of geothermal hotspots in different regions may drift [66]. Therefore,
different models have their advantages and disadvantages. They can refer to each other, be
comprehensively compared and an appropriate prediction result can be selected.

3.2. Evaluation of the Predictive Accuracy of Different Models

In this paper, 10 groups of training data and test data were used to analyze the ROC
curve and conduct kappa consistency tests of the four models (Figure 6).

The average AUC of the MaxEnt model was 0.842, indicating a high correlation
between 12 environmental variables and the distribution of geothermal sample points.
Hence, the prediction results are very accurate. The average AUC of the Bioclim model is
0.693, indicating that the correlation between environmental variables and the distribution
of simulated objects is general, and the prediction results are general. The average AUC
of the Domain model is 0.822, which shows that there is a great correlation between 12
environmental variables and the distribution of geothermal sample points; hence, the
predictions are very accurate. The average AUC of the GARP model is 0.783 (Table 2),
indicating that there is a strong correlation between 12 environmental variables and the
distribution of geothermal sample points; hence, the predicted results are more accurate.
The average AUC of the four models is higher than that of the random model (AUC = 0.5),
indicating that the four models have good geothermal disaster prediction effects, with the
average AUC of the MaxEnt model being the largest.
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Table 2. AUC and kappa values of the four models.

The Area

The Area under Receiver Operating Characteristic
Curve (AUC) Consistency Test Statistics (Kappa)

MaxEnt Bioclim Domain GARP MaxEnt Bioclim Domain GARP

1 0.894 0.730 0.872 0.814 0.707 0.452 0.628 0.605
2 0.839 0.699 0.787 0.766 0.621 0.371 0.441 0.485
3 0.848 0.754 0.811 0.768 0.586 0.436 0.560 0.490
4 0.821 0.586 0.787 0.780 0.534 0.271 0.546 0.449
5 0.868 0.763 0.835 0.820 0.698 0.525 0.592 0.570
6 0.825 0.718 0.807 0.782 0.576 0.417 0.519 0.544
7 0.795 0.654 0.786 0.750 0.579 0.366 0.460 0.490
8 0.860 0.696 0.868 0.811 0.706 0.408 0.628 0.645
9 0.810 0.597 0.823 0.754 0.567 0.316 0.531 0.453

10 0.861 0.733 0.845 0.787 0.629 0.466 0.615 0.512
Average 0.842 0.693 0.822 0.783 0.620 0.403 0.552 0.524

By analyzing the kappa values of the four models, it can be seen that the average
of the MaxEnt model is 0.620, and those of the Bioclim, Domain and GARP models are
0.403, 0.552 and 0.524, respectively, indicating that the consistency of the MaxEnt model is
significant, while those of the other three models are moderate, and they can be used to
predict the potential geothermal disaster areas. It can be seen from Figure 6 that the average
AUC and average kappa values of the MaxEnt and Domain models are high and have good
consistency, with those of the MaxEnt model being slightly higher. Therefore, the MaxEnt
model is the best model for predicting the potential distribution of geothermal disasters.

3.3. Analysis of Environmental Variables Affecting the Potential Geothermal Disaster Area

The percentage contribution of each environmental variable to the prediction of the
distribution of potential areas of geothermal disaster risk is shown in Figure 7. Among the
12 environmental variables in the word cloud diagram (Figure 7), the fault buffer distance
(bio 2) has the greatest contribution, while the LST (bio 1), water buffer distance (bio 9) and
Moho depth (bio 15) also have great impacts on the distribution of geothermal disasters.
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Figure 7. Environmental variable contributions to geothermal disaster risk: (a) Percentage contribu-
tion of environmental variables, (b) Word cloud of environmental variables.

From the jack-knife test results (Figure 8), the contribution rate of each environmental
variable to the distribution of geothermal disaster potential areas can be obtained. The
yellow bar represents the contribution of each environmental factor to the risk probability
distribution when the interference of other factors is removed, and its length represents the
contribution rate. The green bar corresponding to each environmental factor represents
the total contribution rate of all other variables (except this factor), and the sum of the
cumulative contribution rates of all environmental variables is represented by the blue bar
at the bottom. From Figure 8, it can be seen that when only a single environmental factor is
used, the four factors that have the greatest impact on the normalization training gain are
LST, fault buffer distance, river buffer distance and Moho depth.
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The higher the LST, the closer it is to an active fault and river, and the deeper the Moho
depth, the more prone it is to geothermal disaster. The line passage in this area should be
fully considered in the planning and design of the railway project.

3.4. Analysis of Key Areas of Geothermal Disaster along Yunnan–Tibet Railway

By overlaying the prediction results of the MaxEnt model of the Yunnan–Tibet railway
line in ArcGIS (Figure 9), the key areas of geothermal disasters were delineated (Figure 10).
It is found that the railway passes through three key areas of geothermal disaster. (1)
Markam-Deqen, distributed at the junction of Eastern Tibet and Northwestern Yunnan at
28◦53′N and 98◦37′E. Specifically, it is located in a canyon area where the Lancang River
flows at the junction of the south of Markam County, Qamdo City, Tibet Autonomous
Region and the north of Deqen County, Diqing Tibetan Autonomous Prefecture, Yunnan
Province. It is approximately 1500–4000 m above sea level, runs north–south, is nearly
vertically distributed with the Lancang River Fault Zone and is located in the docking zone
between the Gondwana plate and South China plate. There are many high-temperature
hot springs, making it the second-largest key area along the Yunnan–Tibet railway. (2)
Zuogong-Zayu, distributed in Eastern Tibet at 29◦18′N and 98◦10′E. It is specifically located
in the canyon zone at the junction of the south of Zuogong County, Qamdo City, Tibet
Autonomous Region and the north of Zayu County, Nyingchi City. It is approximately 2000–
5000 m above sea level and runs northwest–southeast. Nujiang River flows through it and
it is distributed nearly parallel to the Nujiang fault zone. It is located in the block docking
zone between the Tengchong block and Baoshan block of the Gondwana plate. There are
many high-temperature hot springs, and it is the largest key area along the Yunnan–Tibet
railway. (3) Baxoi-Zayu, distributed in Eastern Tibet at 29◦20′N and 96◦55′E. It is located
at the junction of the southeast of Baxoi County, Qamdo City, Tibet Autonomous Region
and the north of Zayu County, Nyingchi City, with an altitude of around 4500–5000 m. It is
northwest–southeast trending and distributed nearly parallel to the Lhari-Zayu fault zone,
which is controlled by the east direction of the Qinghai–Tibet Plateau and the clockwise
rotation around the East Himalayan tectonic knot. Since the Holocene, it has had strong
activity, mainly dextral strike-slips [60], and this area is the smallest key area along the
Yunnan–Tibet railway. For the key areas of geothermal disaster, the railway route should
follow the disaster reduction principle of avoiding around first, and then passing through
the low potential area or non-potential area quickly in a short distance based on finding
out the distribution characteristics of geothermal anomalies [26].
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4. Discussion

Based on Landsat-8 images and niche models, this paper forecast potential areas of
geothermal disaster along the Yunnan–Tibet railway project. Although the geothermal data
and environmental variables used in each model were the same, there are some differences
in their predictions of potential geothermal disaster areas. The prediction differences mainly
occur in the border areas of the Southeast Tibet Autonomous Region, Northwest Yunnan
Province and Southwest Sichuan Province, which is mainly due to the different algorithms
used in each model. The four niche models (MaxEnt, Bioclim, Domain and GARP) used
in this study each have their own advantages. They use the known distribution data of
geothermal samples and environmental variables caused by geothermal disasters to build
models according to different algorithm operations. Each model is screened 10 times to
find the best model prediction results. The analysis of the ROC curve and kappa coefficient
shows that the four models have good geothermal disaster prediction effects. Among
them, the average AUC and kappa coefficients of the MaxEnt model are the largest and the
accuracy is the highest. Finally, combining the preferences of different model algorithms,
ROC curve and kappa coefficient, it is concluded that the MaxEnt model is the best at
predicting the potential distribution of geothermal disasters. The MaxEnt prediction results
were selected as the final results, but the fitting degree of geothermal disasters is high.
When other geological disasters are replaced, the results may be different. Therefore, when
predicting the potential area of a geological disaster, multiple models should be used and
the best one selected. At present, most studies choose potential area analysis without
model screening. Due to the uncertainty in model prediction, the results are unstable, so
the combination of multiple models will improve the reliability and stability of the results.
At the same time, this study also has problems that need to be improved; that is, too many
environmental variables will affect the prediction results.

The terrain along the Yunnan–Tibet railway project is difficult and dangerous, and the
area covered by ice and snow is large, making it very difficult to carry out conventional
large-area ground geothermal surveys. Through Landsat-8 satellite images, using the
advantages of the large amount of information provided by thermal infrared remote
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sensing, and its high monitoring accuracy and lack of restriction by ground conditions,
we can effectively perceive ground temperature anomalies in the study area. Based on the
mechanism of spatial information acquisition and analysis, as an important part of Earth big
data, Earth observation data and other means can quickly, accurately and macroscopically
reflect the key information such as the spatial location of high-temperature heat disaster
causing factors, and play a basic role in the construction of plateau railway engineering.
At the same time, this study can provide a reference for the planning and construction of
railway projects in the geothermal zones of other countries with complex topographic and
geological conditions and difficulty in ground geothermal investigation.

Environmental variables are closely related to the spatial distribution of geothermal
sampling points. Combined with the contribution rate of environmental variables and
the test results of the jack-knife test, the LST, fault buffer distance, river buffer distance
and Moho depth were found to be the most important predictors of the distribution of
geothermal disasters along the Yunnan–Tibet railway project. The higher the LST, the closer
the area is to an active fault and river. The deeper the Moho depth, the more prone the
area is to geothermal disasters. Railway engineers should fully consider the line’s passage
through these areas.

According to the results of the MaxEnt model, the high geothermal disaster potential
areas in the study area are mainly distributed in Eastern Tibet and Western Sichuan at
29–31◦N, mainly in the north of Medog County, Zayu County, the east of Bome County,
Nyingchi City, Tibet Autonomous Region, the South and east of Markam County, Qamdo
City, the south and west of Zuogong county and the east of Baxoi County; northwest of
Deqen County, Diqing Tibetan Autonomous Prefecture, Yunnan Province; west of Batang
County and southwest of Litang County, Garze Tibetan Autonomous Prefecture, Sichuan
Province. Among them, there are three key areas of geothermal disaster along the Yunnan–
Tibet railway project, namely Markam-Deqen, Zuogong-Zayu and Baxoi-Zayu. The LSTs
in these three key areas are high and there are active fault zones and a large number of
geothermal hot springs in these areas. Among them, Lancang River and Nujiang River flow
through the Markam-Deqen and Zuogong-Zayu areas, respectively, and there are many
disaster-causing factors. For the key geothermal disaster areas, the railway route selection
should follow the disaster reduction principle of avoiding first and then passing through
low or no-risk areas quickly over short distances based on finding out the distribution
characteristics of geothermal anomalies.

5. Conclusions

The United Nations industry, innovation and infrastructure goal (SDG 9) emphasizes
the construction of disaster-resilient infrastructure. The sustainable cities and communities
goal (SDG 11) calls for the building of inclusive, safe, disaster-resilient and sustainable
cities and human settlements. Therefore, infrastructure such as railways plays a vital role
in achieving the SDG goals.

The Yunnan–Tibet railway is located in the parallel flow area of Hengduanshan and
three rivers in China. The internal and external dynamic geological processes are signifi-
cant, and there are unfavorable geological conditions such as high tectonic stresses, strong
earthquakes, active faults, gravity unfavorable geology and thermally altered rock masses,
which pose great challenges to railway route selection. Therefore, the route selection in
the survey section should not only follow the principles of “topographic route selection”
and “geological route selection”, but also reduce the impact of geological disasters on
railway engineering from the source, and implement the concept of “disaster reduction
and route selection” of natural disasters on the risk regulation of the railway life cycle. In
this paper, four niche models were introduced into the project disaster prediction to predict
the geothermal disaster potential areas along the Yunnan–Tibet railway project, and good
results were obtained. However, the use of 12 environmental variables will affect the uncer-
tainty of the results, so it should still be fully considered in future research. The next work
will aim to systematically analyze the predicted high potential area in combination with
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geothermal theory and engineering theory, discuss the causes and impacts of geothermal
disasters in this area, guide railway route selection and provide a scientific basis and techni-
cal support for the project planning, route optimization and sustainable development of the
Yunnan–Tibet railway. This study also provides a reference for the planning and construc-
tion of railway projects in geothermal zones in other countries with complex topographic
and geological conditions and great difficulty in ground geothermal investigation.
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