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Abstract: Globally, estimating crop acreage and yield is one of the most critical issues that policy and
decision makers need for assessing annual crop productivity and food supply. Nowadays, satellite
remote sensing and geographic information system (GIS) can enable the estimation of these crop
production parameters over large geographic areas. The present work aims to estimate the wheat
(Triticum aestivum) acreage and yield of Maharajganj, Uttar Pradesh, India, using satellite-based data
products and the Carnegie-Ames-Stanford Approach (CASA) model. Uttar Pradesh is the largest
wheat-producing state in India, and this district is well known for its quality organic wheat. India
is the leader in wheat grain export, and, hence, its monitoring of growth and yield is one of the top
economic priorities of the country. For the calculation of wheat acreage, we performed supervised
classification using the Random Forest (RF) and Support Vector Machine classifiers and compared
their classification accuracy based on ground-truthing. We found that RF performed a significantly
accurate acreage assessment (kappa coefficient 0.84) compared to SVM (0.68). The CASA model was
then used to calculate the winter crop (Rabi, winter-sown, and summer harvested) wheat net primary
productivity (NPP) in the study area for the 2020–2021 growth season using the RF-based acreage
product. The model used for wheat NPP-yield conversion (CASA) showed 3100.27 to 5000.44 kg/ha
over 148,866 ha of the total wheat area. The results showed that in the 2020–2021 growing season,
all the districts of Uttar Pradesh had similar wheat growth trends. A total of 30 observational data
points were used to verify the CASA model-based estimates of wheat yield. Field-based verification
shows that the estimated yield correlates well with the observed yield (R2 = 0.554, RMSE = 3.36 Q/ha,
MAE −0.56 t ha−1, and MRE = −4.61%). Such an accuracy for assessing regional wheat yield can
prove to be one of the promising methods for calculating the whole region’s agricultural yield. The
study concludes that RF classifier-based yield estimation has shown more accurate results and can
meet the requirements of a regional-scale wheat grain yield estimation and, thus, can prove highly
beneficial in policy and decision making.
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1. Introduction

Accurate and real-time estimates of agricultural production at local, regional, and
global scales are crucial for agricultural strategy formation and decision making world-
wide [1,2]. Field surveys are a traditional method of collecting this information, but
due to technological advances, the use of a combination of crop modeling and satellite
image analysis appears to be one of the best strategies for yield estimation over large
areas [3]. Since the 1960s, crop simulation models have become more complex and
potentially more valuable, particularly after the green revolution [4]. When the research
aim is precise and accurate, such as crop water usage, many simple statistical models,
such as SSM (Simple Simulation Model), may perform well or even outperform more
complicated models in calculating the agricultural production indices [5,6]. However,
such models are inadequate in compensating for the direct influence of abiotic stresses
on the growth of plants and have limitations in using lesser data for understanding
the overall processes associated with growth and development [7,8]. More complex
models, on the other hand, can be used to forecast crop development and growth regu-
larly throughout the crop’s entire life cycle [9]. These models take into account various
elements that influence crop growth and development, including plant-accessible abi-
otic factors such as water, temperature, wind, and biotic factors such as genetics, pest
infestations, and management decisions [10]. The ability of these models to represent
soil–environment–plant interactions is their strength as research tools. However, their
initialization typically necessitates a series of biological and pedological characteristics
that are difficult to obtain [11]. Hence, both simpler and more complex models have
significant drawbacks, especially when assessing yields on a regional basis, and while
choosing the best technique, it is always within the purview of the research objectives
and the data availability that the decision is based [12].

Recently, an integrated method based on optical remotely sensed data has been de-
veloped to address these issues. Throughout the world, remote sensing data is employed
as a source of knowledge for model driving, delivering spatially explicit, regularly ac-
quired model parameter estimations [13,14]. The empirical correlations among the dry
biomass produced by different crops and ratios of visible and near-infrared bands are used
in contemporary crop yield estimation techniques based on data from satellites [15]. In
this regard, the normalized difference vegetation index (NDVI) is the most widely used
parameter in such methods [16]. Although this method is basically straightforward, the
linkages discovered are only of local importance and cannot be simply expanded to other
locations. Integrating remote sensing data with crop simulation models can explain the
physiological and biological systems that drive crop growth and development and is one
viable option for overcoming this difficulty and making yield estimating methods more
robust and deliverables-based [17]. Raza and Mahmood (2018) assessed the Net primary
production (NPP) of the rice in Zoige Plateau, China, using the CASA model. Using a
hierarchy model and real-time field observations, they were able to achieve good estimates
of yield. They concluded such integrated methods are useful to agronomists for precise esti-
mates of NPP [18]. Li et al. (2020) used remote sensing and GIS for wheat yield estimations
using the hierarchical linear modeling (HLM) algorithm by integrating meteorological and
hyperspectral data. Using HLM, they concluded such methods could improve yield and
grain protein content estimations at interannual scales [19].

The present study has been carried out in Uttar Pradesh, India. Agriculture in India
plays a strategic role because the sector is the cornerstone of the country’s economy [20].
Approximately 19.9% of the GDP of India is based on agriculture, which employs ap-
proximately half of the country’s labor force [21]. Wheat is mainly a winter crop (Rabi
season crop), a vital food grain, and in Eastern India, the staple food is wheat-based. Thus,
most foods are based on wheat flour, and its assessment is therefore very significant to
monitor [22–24]. Uttar Pradesh is India’s major wheat-growing state and contributes 32%
of the country’s wheat production from just 7.34% of the country’s total geographical area.
Economic policies related to agriculture and prices of yield are affected by the accuracy
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and speed of crop yield estimates [25,26]. The crop yield is estimated to play an essential
role in economic development. With precise crop yield estimations, decision makers can
decide whether production conditions exceed or fall below and, hence, can make timely
export and import decisions [27]. Due to population growth, the demand for planning
at micro-levels is increasing, especially the need for ensuring crops, which increases the
demand for field-level production estimates [28].

The calculation of the yield using yield estimation models such as the Carnegie-Ames-
Stanford Approach (CASA) depends on the precise estimations of the acreage [29]. In
order to calculate precise yield, this study first compares wheat acreage area evaluated
from two machine learning (ML) image classifier algorithms, the random forest (RF) and
support vector machine (SVM), two of the most used techniques to calculate acreage
worldwide [30,31]. After comparison, one of the accurate models is then used to calculate
the wheat yield using the Carnegie-Ames-Stanford Approach (CASA) model. Such an
integrated approach is the first of its type used in India. As discussed above, in India, the
precise assessment of the wheat yield is critical, as it is the second staple crop of the country
(between 2018 and 2022, an average of 101,232 (1000 MT) of wheat was consumed every
year in India). Because of this significance, supported by the fact that India’s water stress
scenario and climate change implications are worsening, the integrated wheat acreage and
yield assessment study performed in this research is of great importance [32,33].

2. Study Area

Uttar Pradesh is the largest wheat-producing state in India. For the present study,
we selected the Maharajganj district in Uttar Pradesh which lies between 26◦53′20” and
27◦28′37”N latitude and 03◦07′03” and 83◦56′30”E longitude as a case study. Given
that it was impossible to perform ground-truthing for the accuracy assessment of the
yield calculations for the entire state of UP in one growing season, only a single district
was chosen for this study. Moreover, the fact that no such work has been conducted in
this district before, and the wheat production in this district is considered completely
organic were the reasons this district was selected for this research. The total area of
the district is 2934.1 sq. km. Nepal is bounded by it in the north, Gorakhpur in the
south, Siddhartha Nagar in the west, and Deoria in the north (Figure 1). The district
is part of the Central Gangetic Plain and is under the Quaternary Alluvial Layer from
the Pleistocene. The average rainfall in this district is 1327.7 mm. Climate is humid to
semi-humid and is affected by the presence of the regional Tarai marshes. About 87%
of the rainfall takes place between June and September. January is the coldest, with a
daily maximum temperature (Tmax) of 23 ◦C and an average daily minimum temperature
(Tmin) of 9.9 ◦C. At the same time, May is the hottest, with a mean daily (Tmax) of 39 ◦C
and a mean daily (Tmin) of 25.9 ◦C. The highest mean monthly temperature (Tmean)
is 31.9 ◦C, and the lowest monthly (Tmin) is 19.8 ◦C. During, and after monsoons, the
relative humidity (Rh) is high and declines with approaching winters. The monthly
mean Rh in the morning is 69%, and the monthly mean Rh in the evening is 53%. The
mean wind speed is 4.1 km/h, whereas 1422.7 mm is the evapotranspiration. The fertile
alluvial soils in the region are of two types, old and young alluvial soils. High lands
occupy the older alluvium, whereas the younger alluvium is found along the marginal
tracts of River Gandak.
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Figure 1. Location of the study area. The upper right inset is the union of India, showing the state of
Uttar Pradesh in yellow. In the lower right inset are the districts of UP, with the red color depicting
the study area, Maharajganj. The left inset is the Sentinel-2A image of the study area. The map
coordinates are in the UTM coordinate system and WGS 84 North datum.

3. Materials and Methods
3.1. Datasets

We used Sentinel 2A imagery (Bands 2, 3, 4, and 8, each 10 m spatial resolution, dated
21 May 2021) for calculating the winter crop (Rabi, winter-sown, and summer harvested)
wheat acreage. The images were corrected for atmospheric corrections and preprocessed
into Orth photo (TOA) and the bottom same orthodontic reflection (BOA) for removing the
atmospheric errors and converted into 1C product corrected product. It was ascertained that
the images used in the analysis must cover the stem extension (January), heading (February),
flowering, and early ripening (March) stages of the wheat crop. The march image was used
for the optimum acreage and yield calculations, whereas the earlier images were analyzed
for fPAR variations. The mosaicking was performed on T44RQR and T44RQQ Tile of
Sentinel-2A that covered the study area. We used the ERDAS Imagine 2014 software
for all the image processing and GIS analysis [34]. Since the image of the study area
was available in various scenes, we performed mosaicking within the ERDAS platform.
For CASA, mean daily temperature, sunshine hours, daily precipitation, and average
solar radiation were downloaded for the study area from the National Aeronautics and
Space Administration’s (NASA) (https://giovanni.gsfc.nasa.gov/giovanni/, (accessed on
25 April 2021)) website [35]. The Government of India’s census department provided the
state and district boundaries of Uttar Pradesh and Maharajganj District. For validating
the acreage generated from SVM and RF, we conducted extensive ground-truthing and
performed the accuracy assessment using the user’s accuracy, producer’s accuracy, and the
kappa coefficient [36,37], and took about 120 ground-truthing points (randomly distributed,
covering almost whole of the district) for this purpose. We used Garmin GPS explorer
to record the GPS locations [38] (Figure 2). Daily average temperature, sunshine data,
daily rainfall, and average solar energy data used here were downloaded from the NASA
Power Data Access Viewer (https://power.larc.nasa.gov/data-access-viewer/ (accessed on
25 April 2021)). The processing included monthly averaging of temperature, solar radiation
data, and precipitation data.

https://giovanni.gsfc.nasa.gov/giovanni/
https://power.larc.nasa.gov/data-access-viewer/
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Figure 2. Distribution of the ground-truthing points for validating the acreage results from SVM and
RF classifiers. Random well-distributed field verification sampling of acreage accuracy assessment
was performed in this study.

3.2. Methods

In this section, we first discuss the methods related to the calculation of acreage,
followed by the estimation of yield. The overall methodology is shown in Figure 3.
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3.2.1. Acreage Estimation

Wheat crop forecasting comprises crop identification area estimation [39]. Crop identi-
fication and discernment are based on each crop’s detail with a matchless spectral signature.
The maximum likelihood classification technique was first used to mask uncultivated areas,
including sand, plantations, built-up forests, and water bodies [40], a technique called
dynamic cropland masking. It results in a binary map that separates the annual target crop
area from other areas [41]. The logic behind creating such a mask is based on the fact that
yearly arable land is well-defined as an area of land that can be planted and harvested at
least 0.25 hectares within one year after the date of sowing [42]; there are some small crops
also sown in the vicinity, such as mustard, that were required to be separated from the
analysis. Therefore, masking was important. Training signatures of wheat were selected
based on the visual image interpretation, augmented with statistical training class estimates
in the form of mean, variance, and covariance matrix, the data product that was masked in
the previous step [43]. Training samples were used for classifying the wheat class in the
masked raster based on two techniques, SVM and RF [44]. ERDAS Imagine was used for
the SVM and RF supervised classification.

Support vector machine (SVM) is a supervised non-parametric statistical learning
approach that was previously designed for binary classification [45]. The SVM is based on
the hypothesis that the training set is linearly unique. The SVM detects the optimal line,
which splits up the training set without errors and maximizes the gap between the objects
of each class and the optima line. SVM uses only those training samples that designate
class boundaries (support vectors). The SVM essentially involves parameterizing a Support
Vector Classifier (SVC) based totally on the reference information and the classification of
the image data.

On the other hand, the Random Forest (RF) algorithm is a set of decision tree struc-
ture classifiers, each consisting of a random subset of the training data and classification
variables [46,47]. It is swift, resistant to overfitting, and can include as many decision trees
as the user requires. The user must specify two parameters to configure it [48]. These
parameters are m and N, which are the number of variables and the number of growing
trees used to split each node. First, bootstrap N examples were extracted from 2/3 of the
training dataset [49]. The left-behind third training data, also called out-of-bag (OOB),
were used to assess the prediction error. A tree was then developed, uncut to each boot
example so that the predictors of each random node were selected as a subclass of the
predictor variables, and the most appropriate among these was selected. Determining the
variable numbers of an adequately low association with good predictive power is critical.
Assessing the variable numbers (m) equivalent to the square root of M (the number of total
variables) gives almost perfect outcomes. RF is based on the Classification and Regression
Tree (CART) algorithm to generate trees [49]. The segmentation in every node is performed
as per the condition known as the GINI index within the CART algorithm. In this study, an
accuracy assessment was carried out to assess the performance of SVM and RF classification.
For this purpose, we took 120 ground truth points to evaluate the SVM and RF product’s
user accuracy, producer accuracy, overall accuracy, and kappa coefficient [50–52].

The accuracy was assessed using the user’s accuracy, producer’s accuracy and the
kappa coefficient. Kappa coefficient (k) is mathematically expressed as [53–56]:

k =

{
N

r

∑
i=1

(Xii)−N
r

∑
i=1

(Xi+·X+I )

}
/N2 −

r

∑
i=1

(Xi+·X+I )

where, r represents no. of rows in the error matrix; Xii represents no. of observations in row
I and column I; Xi+ is the total of observations in row I; X+I is the total of observations in
column I; N is the total number of observations included in the matrix.
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3.2.2. Wheat Yield Estimation

This study used the updated CASA model to estimate the NPP from wheat and then
estimate its yield. The CASA equations were structured within ArcGIS 10.1 (ESRI)using the
ArcGIS model builder. The CASA model parameters were generated from remote sensing
and weather data, and the following is its equation [57],

NPP(x, t) = APAR(x, t) × ε (x, t)

where NPP is the Net Primary Productivity, t is time, x number of pixels in the NPP (x, t)
[g 100 m−2] at time t, and the distance (x, t) [1000 m−2] is at time t. APAR is the Absorbed
Photosynthetically Active Radiation. The effective absorption, photosynthetically, of the
radiation pixel x, and ε (x, t) is used for the light use efficiency of the pixel x time t.

Absorbed photosynthetically active energy for grasses mainly depends on Solar Radi-
ation (SOL) and the fraction of Photosynthetically Active Radiation (fPAR). The calculation
is as follows [58],

APAR(x, t) =
1
2
× SOL(x, t) × fPAR(x, t)

where, SOL (x, t) [1000 sqm] is the sum of solar energy of pixel x at T. fPAR (x, t) is the part
of all photosynthetically active energy, and the proportion of element 1/2 is the proportion
of effective solar radiation used by vegetation to the total solar energy.

For wheat, fPAR is dependent on a growing period of time. The normalized difference
vegetation index (NDVI) indicates flora and growth conditions and the Linear in fPAR. In
this study, the NDVI max and min fPAR is calculated by the HJ-1 A/B image, and fPAR
(x, t) is calculated as follows [59],

fPAR(x, t) =
[NDVI(x, t)− NDVImin](fPARmax – fPARmin)

(NDVImax – NDVImin)
+ fPARmin

where, fPARmax, 0.950 and fPAR min, 0.001 are the maximum and minimum constant
values of fPAR.

The constants maximum and minimum NDVI are the NDVI maximum and minimum
for wheat. After assembling a relative analysis, the lower-end 95% value and lower-end
5% value of the wheat NDVI were used. The present study analyses the complete growth
season of wheat, rendered into two Sentinel-2 satellite data scenes. Thus, Sentinel-2 images
for every month with the NDVIs for wheat were used. The light utilization efficiency (ε) is
calculated using following equation [60],

ε(x, t) = Tε1 (x, t) × Tε2 (x, t) ×Wε(x, t) × ε

where Tε1 (x, t) and Tε2 (x, t) are temperature (T) stress parameters of the light use efficiency
for pixel x at time t, Wε(x, t) is the water (W) stress parameter of the light use efficiency for
pixel x at time t, ε∗ [g C MJ−1] is the maximum light use efficiency under ideal conditions.
E is the CASA model’s significant factor, called the maximum efficiency [61]. It directly
affects the calculated value for the efficiency of light usage by the plants. The value of this
parameter, as deduced by field et al. (1995), is 0.389 g C MJ−1 for global ε of vegetation,
independent of geography and vegetation types [62]. Different vegetation types have
dissimilar biological and functional characteristics, so their ε is different. Since the present
study focuses on wheat, for the environmental settings of the study area, εwas fixed for
the wheat between 0.42 and 2.93 g C MJ−1 using literature-based parameter calculations.
The mean of this range, i.e., ε∗ of 1.7 g C MJ−1, was used in the present study as a factor
of the CASA model [63]. The yield of wheat is the wheat harvest and is finally calculated
using the equation below [64],

Yield =
α ∑ PP × p × HI

1 –ω
× 10

–2
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4. Results and Discussion

In this section, first the results of acreage calculation are discussed using SVM and RF
methods, followed by the estimation of the wheat yield.

4.1. Wheat Acreage Estimation

Before SVM and RF for classifying wheat areas, a cropland area was extracted from
the study area for all the stages of the wheat. Figure 4a is the sentinel image of the study
for the month of March (flowering and early ripening stage). Figure 4b is binary map
showing agriculture-only classification products, with the symbology yellow depicting
agriculture for the same date. SVM and RF were then applied on the dynamic cropland
mask (binary map).
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Sr No District Taluka 
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RF 

Percentage in 

the District 

1 
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Nautanwa 36,850 25% 35,229 24% 
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3 Pharenda 27,671 19% 27,983 19% 
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Figure 4. (a) Sentinel 2A cropped image of the study area that was masked to extract the agricultural
land. The red tone is the tone of vegetation observed in false color composite (FCC) (b) Agriculture
only classification product with the symbology yellow depicting agriculture (binary map extracted
using the maximum likelihood classifier).

Using SVM, it was observed that the total acreage of wheat in 2020-2021 was 148,866 Ha.
The wheat crop map shows the classified output of only wheat plots in the Maharajganj
district’s four Talukas (Figure 5). Here, the acreage estimates show that the highest acreage
can be seen in Nuchal Taluka (62,672 Ha), and the lowest acreage observed in Maharajganj
Taluka is 21,673 ha for 2020–2021 (Table 1). About 120 ground truth points were taken,
resulting in an overall accuracy of 85.58%. The wheat acreage map accurately depicts what
was on the field in 2020–2021. Producer’s accuracy and user’s accuracy for wheat crop
using the support vector classifier were 91.04% and 87.14%, respectively. The Kappa value
for this assessment was calculated to be 0.68, indicating that there is 68 percent greater
agreement than would be expected by chance alone (Figure 5).
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Table 1. Taluka wise comparative acreage estimates of wheat in 2020–2021 using SVM and RF.

Sr No District Taluka Wheat Crop Area (ha)
SVM

Percentage in the
District

Wheat Crop Area (ha)
RF

Percentage in the
District

1

Maharajganj

Nautanwa 36,850 25% 35,229 24%
2 Mahrajganj 21,673 15% 20,702 14%
3 Pharenda 27,671 19% 27,983 19%
4 Nichaul 62,672 42% 62,585 43%

Total Wheat Area (ha) 148,866 100% 148,866 100%

Using RF, the total derived acreage of wheat 2020–2021 was 146,499 Ha. Thus, the
wheat crop map shows the classified output of only wheat plots in the Maharajganj district’s
selected four Talukas, with the total acreage of Taluka-wise estimates presented in Table 1.
About 120 ground truth points were taken, resulting in an overall accuracy of 93.20 percent
using RF. This implies that the wheat crop acreage map, utilizing a random forest classifier,
correlates to what was actually on the ground in 2020–2021, about 93.20 times out of
100. The producer’s accuracy and user’s accuracy for wheat crop using RF were 95.65%
and 94.29%, respectively. The kappa estimates for this evaluation were obtained at 0.84,
indicating that there is an 84 percent greater agreement than would be expected by chance
alone (Figure 6, Table 1).

The analysis and comparison of the two classification techniques show that the highest
accuracy for the wheat acreage estimation of the Maharajganj district of Uttar Pradesh was
obtained using the RF classifier in terms of producers, users, and overall accuracy, as well
as Kappa values (Table 2).
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Table 2. Error matrix-based performance analysis of SVM and RF classifiers.

Classifier User’s Accuracy Producer’s Accuracy Overall Accuracy Kappa Estimates

SVM 87.14% 91.04% 85.35% 0.68
RF 94.29% 95.65% 93.20% 0.84

Based on the results obtained and accuracy assessment carried out for Wheat Crop ob-
tained using different prominent classifiers, Table 3 below shows the performance evaluation.

Table 3. Relative Deviation of Wheat Yield.

Crop Average of Predicted Yield
2020–2021 (Q/Ha)

Average of Actual Yield
Acquire from CCE (Q/Ha)

Relative Deviation
(%)

Wheat 38.46 40.23 −4.61%

4.2. Wheat Yield Estimation Using the CASA Model

Although the study analyses the spread of wheat yield during the whole growing
season, the fPAR, NPP, and the light-use efficiency parameters of the study area had to
be parametrized for improved CASA model results [64]. The calculated NDVI maximum
and minimum values for fPAR evaluation is an essential step beforehand. The NDVI min
and NDVI max values for FPAR calculated are −0.0126 and 0.839. Figure 7 shows the
results for fPAR. The fPAR calculated for January is 0.72 and is less than compared to
February (0.71) and March (0.78). In January, the fPAR for wheat continued to rise due to
photosynthesis and exceeded 0.72. The greatest average fPAR of 0.78 was seen in February
2021, while the lowest mean fPAR was 0.71 in January 2021. This is due to an increase in
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wheat photosynthetic activity and the corresponding increase in growth, which supports
the geographical importance of the study area for the suitability of wheat growth [65].
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Figure 7. Spatial distribution of wheat fPAR (fractionally Photosynthetically Active Radiation) for
(a) January, (b) February, and (c) March.

In 2020–2021, wheat light use efficiency in the whole study area remained compar-
atively constant every month. However, minor alterations are due to the variability in
atmospheric and climatic factors. Hence, the mean monthly efficiency of light use was
0.2806 g C MJ−1. Geoenvironmental conditions (i.e., temperature, sunshine, and precip-
itation) in January helped grow wheat; hence, the ε in January had an average range of
0.2806 g CMJ−1. Again, this reflects favorable environmental conditions for growing wheat
in Maharajganj from November to March, helping proper development and growth [66].

Figure 8 shows the distribution of wheat average NPP for the total growth season,
obtained by adding the NPP of each month. Wheat gradually moves towards the greening
and erecting stages. The total NPP distribution of wheat in the Maharajganj district was
calculated to be between 26.21 and 43.47 g C m2, with a mean NPP of 37.81 g C m2. The
wheat growth improved unceasingly, and dry matter quality increased rapidly.

We estimated the wheat economic yield using the derived NPP. The updated CASA
model used to calculate the NPP of the wheat at Maharajganj, Uttar Pradesh, for the
2020–2021 growth season provided insightful results. The results of the NPP-yield conver-
sion model utilized to convert the NPP into the fiscal yield were 31.27 to 50.44 q/ha, over
148,866 ha of the total study area. Figure 9 shows the distribution of the calculated wheat
yield. The results of the complete study area were about fifty percent for the range less than
38.98 Q/ha and about the other 50% for the range 38.98–55.44 Q/ha.
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The results showed that in the 2020–2021 growing season, all the districts of Uttar
Pradesh had similar wheat growth trends. For assessing the accuracy of the yield
estimates from the CASA model and the NPP-yield conversions, we used 30 CCE (crop
cutting experiment) data points to verify the results. Each pixel around the CCE points
was averaged with the eight corresponding pixels to attain the projected yield for the
specified CCE point [67]. Figure 10 shows the assessed yield as a derivative of the
estimated yield and the coefficient of determination R2 = 0.5544, and the root mean
square error (RMSE) was 3.361 Q/ha (Table 3). This analysis revealed a mean absolute
error of −0.56 t ha−1 and a mean relative error of −4.61%, showing a promising accuracy
for assessing regional wheat yield using this method. Moreover, the Pearson’s correlation
coefficient observed between the two is 0.74, which depicts a very good correlation
between the modeled and observed wheat yield. In 2020–2021, the estimated yield of
wheat in India was approximately 35 quintals per hectare. This is in close agreement
with the results obtained from the current study.
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Figure 10. Predicted versus observed wheat yield for the entire study area for the 2020–2021 growing
season. The Pearson’s correlation coefficient between the two is 0.74, depicting a good correlation
between the modeled and observed wheat yield.

The use of integrated wheat acreage estimations, the net primary productivity and
yield have been conducted by various researchers across the globe. This method may
be used to estimate grain yield on a large scale, evaluate food security on a regional
level, and make some valuable recommendations for the government to improve food
security. In this context, Shi et al. (2022) used the CASA model to calculate annual net
primary production (NPP) and anticipate annual grain yields in Egypt, using the NPP-
yield conversion procedure. They classified arable terrain that grows grains using the
support vector technique. The CASA model was used to compute the yearly net primary
production (NPP) using the classified results, weather parameters, and NDVI data. Then,
the NPP-yield conversion formula was utilized to forecast the annual grain yield using the
NPP-yield conversion formula. The evaluation results suggest that Egypt’s food security is
deteriorating, supply and quality security are highly variable and economic and resource
protection are reasonably steady [68]. Furthermore, for designing agricultural product
import and export plans, regulating grain markets, and altering the planting structure,
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timely and accurate monitoring and reviews of regional grain crop production are more
important, and have been one of this study’s objectives. Similar to this study, Wang et al.
(2019) used an enhanced Carnegie–Ames–Stanford Approach (CASA) model combined
with time-series satellite remote sensing imagery to predict winter wheat production. The
modified CASA model was used to estimate the Net Primary Production (NPP) of winter
wheat using HJ-1A/B satellite data. MOD17A2H data products were interpolated to
determine the spatial patterns of winter wheat NPP during the whole growing season
of winter wheat. The method for estimating winter wheat yield with remote sensing
photos was validated by comparing the results to ground-measured yield. This study
substantiates the findings of this study that this method can be used in the field and can
serve as a benchmark for a variety of crop yield estimation algorithms worldwide. Some
studies have shown that it is possible to simulate alpine grassland NPP using satellite
remote sensing data rather than ground measurements [69]. Wu et al. (2022) have shown
that remote sensing data can be used to provide real-time information at a regional scale,
thereby substituting ground observation data as the driving force behind the CASA model.
They used DEM data generated from the Moderate Resolution Imaging Spectroradiometer
satellite sensor to improve the CASA model to model the NPP of alpine grasslands in
China’s Qinghai Lake Basin, northeastern Qinghai-Tibetan Plateau. In July 2020, the NPP
simulated using RS data-driven CASA produces values similar to those published and
comparable to the observed NPP [70]. Furthermore, net primary productivity (NPP) is an
important component in terrestrial ecosystem carbon cycles. Quantitatively calculating
and monitoring NPP fluctuations have thus become critical components of understanding
the carbon cycle in terrestrial ecosystems. Human impact, such as urbanization, has a
considerable impact on NPP and puts more demand on a region’s natural resources. Wu
et al. (2022) conducted a study in Hubei Province, China to study the spatiotemporal
distribution of NPP from 2001 to 2012 and its associated connection with urbanization. The
spatial variability and fluctuation of population and gross domestic product (GDP) were
simulated using a new method that included elevation-adjusted human settlement index
and nighttime lights data so as to deduce the degree of urbanization. The main findings of
their research revealed that high NPP locations were found in highlands with extensive
woods. Low NPP locations were mostly found in metropolitan areas and values had been
steadily declining. Such studies could be used as a starting point for future research on
the interaction of the natural environment and socio-economic processes in the context of
worldwide fast urbanization [71].

To predict winter wheat yield using time-series satellite remote sensing data, our
study improves the CASA model and integrates it with the NPP. When the estimated
findings are compared to the ground-measured yield data, it is clear that the prediction
accuracy meets the criteria for forecasting regional winter wheat in comparison to other
researchers’ studies. It is still an important goal to increase the accuracy of agricultural
production estimates. The CASA model is straightforward and practical to use, with only a
few parameters to setup and calibrate. However, while the CASA model can only simulate
net primary productivity (NPP), we must construct an HI to convert NPP to crop yield.
However, the transition from photosynthetic absorption to biomass accumulation and final
crop yields involves many complex physiological mechanisms that an HI cannot capture
through a simple formula. It is thus a critical parameter in the model and is given a constant
value in the current study based on earlier research. The other critical parameter is the
ε∗, which was also given a constant value based on literature. Variable analysis should be
performed in addition to appropriate testing, which could be the subject of future research,
as various geoenvironmental settings influence these two parameters. Another issue is data
source optimization. Crop yield estimation is influenced by the quality and quantity of
input data. Such information is frequently unavailable at sufficiently fine geographic scales
and is derived from a soil classification map with a lower spatial and temporal resolution.
When paired with the Monteith model, an optimization model to correct missing data can
enhance the validity of crop yield estimation. Moreover, our study examined a maximum
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of 30 CCEs of wheat yield data. The use of 30 CCEs in this study area achieved an ideal
outcome, but if the study is regional, more research is needed to test the correctness and
validation of the proposed models.

5. Conclusions

This study involved wheat acreage estimation using different machine-learning classi-
fication algorithms and the subsequent calculation of wheat yield using the CASA model.
This study again justifies Sentinel-2 remote sensing data’s utility for assessing acreage
estimation, as the results corroborated well with the observational data. The wheat crop
area, analyzed using SVM and RF classifiers, is 148,866 Ha and 146,499 Ha, respectively.
Of the two methods tested for classifying the Sentinel-2 data, RF had a higher mapping
accuracy. The Sentinel 2A satellite data-based acreage data product used as input in the
CASA model was utilized to assess the net primary production (NPP) during the 2020–2021
wheat growing season. The NPP-yield conversion model was thereafter utilized to calculate
winter wheat yield at a regional scale. R2 = 0.554 was estimated between the observed and
calculated wheat yield, with RMSE equal to 3.36 Q/ha and a relative deviation error of
−4.61%. These results showed that the updated CASA model integrated with the model
for NPP-yield conversion could provide reliable regional-scale calculations of wheat yield
from satellite-based remote sensing and biophysical modeling approaches.
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