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Abstract: Background: Often combined with other traditional and non-traditional types of data,
geospatial sensing data have a crucial role in public health studies. We conducted a systematic
narrative review to broaden our understanding of the usage of big geospatial sensing, ancillary data,
and related spatial data infrastructures in public health studies. Methods: English-written, original
research articles published during the last ten years were examined using three leading bibliographic
databases (i.e., PubMed, Scopus, and Web of Science) in April 2022. Study quality was assessed
by following well-established practices in the literature. Results: A total of thirty-two articles were
identified through the literature search. We observed the included studies used various data-driven
approaches to make better use of geospatial big data focusing on a range of health and health-related
topics. We found the terms ‘big’ geospatial data and geospatial ‘big data’ have been inconsistently
used in the existing geospatial sensing studies focusing on public health. We also learned that the
existing research made good use of spatial data infrastructures (SDIs) for geospatial sensing data
but did not fully use health SDIs for research. Conclusions: This study reiterates the importance of
interdisciplinary collaboration as a prerequisite to fully taking advantage of geospatial big data for
future public health studies.

Keywords: big geospatial sensing data (BGSD); geospatial big data; big data; spatial data infrastructure
(SDI); health; sensors; United States; China

1. Introduction

Geospatial data, also referred as geographic data or spatial data, is a broad term widely
covering all types of information having an implicit or explicit association with a location
relative to objects, events, or phenomena on the surface of the Earth.

Sensing data are a set of information collected by specially designed devices to respond
to, and detect, specific types of input from a data source with no or minimum physical
contact or additional human effort. Sensing data are among the essential types of geospatial
data. Traditionally, remote sensing, the process of capturing the level of energy reflected
and emitted from a study subject at a distance using a satellite or aircraft, has been a
dominant form of collecting sensing data in geography, geoscience, and related disciplines.
Recently, collecting sensing data has become more diversified with innovative technologies
such as the Internet of Things (IoT), sensor web technologies, and sonic geographies [1]. In
addition, volunteered geographic information (VGI), participatory geographic information
systems (PGIS), and citizen sensors bring social content to geospatial sensing data [2].

Remote Sens. 2022, 14, 2996. https://doi.org/10.3390/rs14132996 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14132996
https://doi.org/10.3390/rs14132996
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7263-2697
https://orcid.org/0000-0003-4865-6482
https://orcid.org/0000-0003-2400-6303
https://doi.org/10.3390/rs14132996
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14132996?type=check_update&version=2


Remote Sens. 2022, 14, 2996 2 of 14

Remote sensing data are generally large in volume. A new generation of sensing data
often requires unconventional, advanced computing techniques to ingest, store, process,
analyze, model, and report. Owing to advances in computing capacity, it is common for re-
searchers to combine data from multiple types of sensors and other types of spatial/aspatial
data (e.g., census data, survey data). Therefore, it is no wonder that the use of big geospatial
sensing data (BGSD) has gained ground in research and policymaking.

Even before the arrival of BGSD, public health is one of the areas where sensing data
have been extensively utilized for research. For example, traditional remote sensing data
such as vegetation, land surface temperature, atmospheric moisture, rainfall indices, and
air pollution have been widely used for epidemiological and public health studies, on the
topics of both communicable and non-communicable diseases [3–6]. Additionally, the latest
studies actively embrace the use of wearable sensors and mobile devices to detect vital
signs and physical activity patterns for disease prevention and health promotion [7].

The use of BGSD in public health poses both new challenges and opportunities for
researchers, among which are the issues of spatial data infrastructures (SDIs). SDI can be
defined as a set of networks for data exchange and sharing systems between users and
stakeholders from different levels of the user community [8]. The earliest efforts for build-
ing an SDI can be traced back to automating land records management and urban/regional
information systems built by the United States (U.S.) Department of Housing and Urban
Development and the Tennessee Valley Authority in the early 1960s [9]. Since then, multiple
national and international SDIs such as the Global Earth Observation System of Systems
(GEOSS), the European Commission’s INSPIRE (Infrastructure for Spatial Information in
the European Community), and the U.S. National Science Foundation EarthCube have
been created. The Open Geospatial Consortium (OGC) and the ISO (International Or-
ganization for Standardization) TC (Technical Committee) 211 serve as catalysts to set
international standards and to seek international collaborations for SDIs. Health SDIs
become essential resources for public health interventions, research, and communication,
as many government and non-government public health stakeholders have built useful
health SDIs.

This review aimed to explore what types of spatial data and SDI have been utilized
in public health studies using BGSD during the last decade. In addition, we intended to
discuss various challenges and suggestions identified in the current body of the literature.
Considering the nature of the research question, we conducted a systematic narrative review
(narrative synthesis and thematic analysis) to synthesize the findings from individual
research for a comprehensive understanding [10].

2. Materials and Methods
2.1. Research Questions (RQs)

The questions addressed in this literature review are the following:

• (RQ1) What types of geospatial data are compiled for BGSD to examine public
health outcomes?

• (RQ2) How do the existing public health studies using sensing data define BGSD? Is
there a clear distinction between ‘big’ geospatial data and geospatial ‘big data’ in use?

• (RQ3) What data sources serve as an SDI of geospatial and health/health-related
information for researchers to obtain relevant data?

• (RQ4) To what extent has the concept of health SDI been discussed in practice?

2.2. Search Strategy

We applied systematic searching techniques to identify relevant studies with the
search topics and keywords by following the methodology of narrative synthesis suggested
by Popay et al. [10]. Our searches were performed in April 2022 using three leading
bibliographic databases: PubMed, Scopus, and Web of Science. An additional search of the
articles published in Remote Sensing was conducted to complement the initial searches (see
Figure 1). Since the search functionality varies between the databases, we applied various
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search term strings: “remote sensing” “wearable” “sensor” “VGI” “PGIS” “social media”
AND “geospatial big data” “big geospatial data” AND “health” “healthcare” “health care”
“public health.” Then, we applied the following inclusion and exclusion criteria and the
quality assessment to retrieve the final sample of the works eligible for the literature review.
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2.2.1. Inclusion and Exclusion Criteria

Articles were included if they were (a) published as an original study in peer-reviewed
journals to fully evaluate the completeness of each study; (b) written in English; and
(c) published from 2012 to 2022. We excluded articles if they were (a) review and editorial
papers; (b) conference papers, since it is unclear if they went through peer-review process;
and (c) lacking the terms ‘big data,’ ‘big geospatial data,’ or ‘geospatial big data’ in the
title, abstract, keywords, or the methods (or equivalent) section of the manuscript through
full-text article screening.

2.2.2. Quality Assessment

Applying the Critical Appraisal Checklist for Analytical Cross-sectional Studies sug-
gested by the Joanna Briggs Institute [11], the following eight appraisal criteria were used
to evaluate the overall quality of the selected works for this review: (1) the study sample
selection criteria, (2) the study subjects and the setting, (3) the measurement of exposure,
(4) the condition of measurement, (5) the identification of confounding factors, (6) the
methods of addressing confounding factors, (7) the measurement of outcomes, and (8) the
appropriateness of statistical analysis.
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3. Results

After screening and deduplication, we retrieved a total of 32 papers in the final
sample of review (Figure 1). We set the search range from 2012 to 2022 to explore the
latest trends in research and technical advances. Below, we present the summaries of the
article information.

3.1. Journal Categories

As shown in Table 1, about two-thirds of the included articles were published equally
in number in the fields of geography and public health (n = 10, both). The remaining
one-third of the works were published in an environment (n = 8) or science (n = 4) journal.

Table 1. Journal categories *.

Journal Categories Number of Works

Geography (general, remote sensing, geoscience) [12–21] 10
Public health [22–31] 10

Environment (physical, built environment) [32–39] 8
Science (computer, engineering, multidisciplinary) [40–43] 4

Total 32
* The authors’ own categorization by referring to the classification in the aforementioned three biblio-
graphic databases.

3.2. Study Areas

Half of the included studies were conducted in China. North America, especially
the USA, was among the popular study areas. Notably, three studies covered multiple
countries (Table 2).

Table 2. Study areas by global regions.

Regions Countries Number of Works

Africa
Ethiopia [22] 1
Malawi [12] 1

Asia
China [13–15,23–30,33–37] 16

India [41] 1
Indonesia [31] 1

Europe
Denmark [38] 1
Germany [40] 1
Portugal [39] 1

North America
USA [16,18,19,42,43] 5

Canada [20] 1

Global Multiple countries [17,21,32] 3

Total 32

3.3. Study Topics

The included studies explored various research themes. About half of the studies
directly examined the association or causality between a health or health-related condition
and environmental factors. Another half focused on environmental conditions potentially
affecting public health (Table 3).
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Table 3. Study topics.

Topics Sub-Topics Number of Works

Environments

Livability [15], green space [13,14], night
lights [19], noise exposure [39,40], land
use [16], park visits [14], water points [12],
indoor/outdoor air pollutants
[17,20,23,24,29,33,36,39], energy expenditure
[39], NDVI [38], mountain green cover [32],
low-elevation coastal zones [28],
anthropogenic heat emissions [34],
socioeconomic factors [29]

23

Vector-borne
diseases

Malaria [21,31,41], hemorrhagic fever with
renal syndrome [25–27], soil-transmitted
helminth [22], human rabies [30]

8

Non-vector-borne
diseases

COVID-19 [18], Acute respiratory
infection [23,24] chronic obstructive
pulmonary disease [24], hospital emergency
room visits for respiratory diseases [35],
upper respiratory tract infection [37],
physical activity [42], sleep duration and
quality [43], life expectancy [17]

9

Total 40 *
* Several studies examined multiple topics.

3.4. Patterns of Data Compilation

As summarized in Table 4, all the included studies used data from multiple sources.
About a third of the studies (n = 12) used remote sensing and health-related data. Data
were often compiled by merging multiple remote sensing data (n = 6), combining with
mobile phone data (n = 4), and comparing with socioeconomic data (n = 3). New sources
such as geotagged social media, UAVs (unmanned aerial vehicles), wearable devices, and
VGI/PGIS were also utilized for the included studies.

Table 4. Data types.

Data Type 1 Data Type 2 Number of Works

Remote sensing

+ Other remote sensing data [13,16,20,28,32,34,38] 7

+ Socioeconomic data [19,29,33] 3

+ Clinical records
(individual-level) [21–27,29–31,35–37,41] 13

+ Health statistics (aggregated at a local area) [17] 1

+ Points of interest (POIs) [15] 1

+ Social media [14,18,19,33,36] 5

+ Mobile phone (sensor, location) [39,40] 2

+ VGI/PGIS [21] 1

+ UAV [12] 1

Mobile phone
app-based sensing + GPS data [42] 1

Wearable devices + Mobile phone (sensor, location) [43] 1

Total 36 *
* Several studies used multiple types of data.
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3.5. Sources of Data

We observed that multiple open-data sources/infrastructures, both from public and
private sectors, such as the NASA (National Aeronautics and Space Administration)
database, Earth Engine, and governmental agencies, were utilized for analysis (Table 5).
While data such as local-level air pollutant government reports and hospital patient records
from public organizations such as governments and hospitals were frequently used for
analysis, the details of data procurement were not clearly described in most of the studies.
Data from ‘tech’ companies or the Internet were apparently available freely, but a special
arrangement of data sharing or additional data process data may be required prior to
analysis. Personal devices such as mobile phones, UAVs, and wearables also serve as
important sources of data.

Table 5. Data sources *.

Category Types Source Examples Public Accessibility

Geospatial

Fully open data
[13,15–17,20–22,28,32]

NASA, OpenStreetMap,
Earth Engine, VGI/PGIS Yes

Public data
[33,34]

National and/or
municipal governments

Special permission may
be required.

Data collected by ‘tech’ companies or
from the Internet

[14,15,18,19]

Geotagged social media
data, POIs

Additional data processing
using API or special

permission may be required.

Data collected from personal devices
[12,21]

Personal location data,
UAV images No

Health/
health-related

Fully open data
[17] Area-level vital statistics Yes

Public data
[21–27,29–31,35–37,41] Clinical data Special permission may be

required.

Data collected from personal devices
[39,40,42,43]

Health-related behaviors
(e.g., sleep quality,
physical activity)

No

Population or
socioeconomic

Fully open data
[19,29,33]

Census data, public
survey, WorldPop Yes

* Several studies used multiple types of data.

4. Discussion

Below, we highlight what has been accomplished in the existing public health studies
with BGSD based on the aforementioned results, as well as areas for improvement.

4.1. Strengths
4.1.1. BGSD for Assessing the Environments

We observed that a range of environment characteristics have been objectively mea-
sured by various BGSD, among which remote sensing data play a crucial role in the
assessment. Especially, air pollutant concentration levels (PM2.5, nitrogen dioxide), green
space, temperature/heat emission, the density of built environments (e.g., road networks,
buildings, population), and land use types are among the important remote sensing data
that researchers frequently use for public health studies. The useability of remote sensing
data is often further enhanced by merging multiple remote sensing data. Each local environ-
ment was often assessed by using an area-level index or parameter through data-intensive
spatial interpolation/extrapolation.
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4.1.2. New Types of Data for BGSD

The included studies proved that advances in technology have contributed to the
enrichment of BGSD. First, many studies made use of geotagged, real-time social media
data obtained from ‘tech’ companies such as Twitter and Tencent so that they could retrieve
detailed information on spatial and temporal human mobility. Second, the POIs data, often
available from social media platforms or the Internet, were extensively used to complement
BGSD by providing real-world locational information such as traffic flow, land use patterns,
and human settlement. Third, data collected by wearable devices and UAVs became more
feasible for research, since technical and resource barriers have been lifted with technical
advances. Finally, WorldPop, an open-data initiative to share the estimated gridded world
population datasets using both remotely sensed and ancillary geospatial data through a
Random Forest data-mining model, is popular in the included studies [44].

4.1.3. New Methods for BGSD

Our review captured the fact that novel and advanced approaches of data analytics
have been applied in the included studies. Machine learning, data fusion, social media
analytics, artificial intelligence (AI), cloud computing, and neural networks computing are
among such new analysis methods to explore various types of BGSD and supplementary
data in the literature [13,16,17,22,33,41]. In addition, it is notable to see that studies con-
ducted in developing countries actively utilized crowdsourced mapping of PGIS and VGI
to add missing geospatial information to open databases such as OpenStreetMap.

4.1.4. Variety of Research Topics with BGSD

Both vector-borne and non-vector-borne diseases, as well as vital health measures,
were investigated in the literature across the globe, in high-, middle-, and low-income
countries. Studies on vector-borne diseases cover various fatal diseases such as malaria,
hemorrhagic fever with renal syndrome, and other neglected tropical diseases (e.g., soil-
transmitted helminth, and human rabies) [21,25–27,41]. In addition, studies about air
quality and related respiratory diseases, mostly performed in China, emphasize that timely
governmental interventions, as well as global awareness, are required to address the public
health challenges caused by rapid industrialization triggered by globalization.

4.2. Areas for Improvement and Suggestions

While there are several strengths in the included studies, we also observed areas for
improvement that future studies may consider addressing.

4.2.1. ‘Big’ Geospatial Data vs. Geospatial ‘Big Data’

The first issue to discuss is the inconsistency in using the term ‘big data’. Geospatial
sensing data is innately ‘big’ in volume and complex in structure due to its range of geo-
graphic coverage, the number of observations, the variety of information, and the existence
of metadata [45]. As sensing and earth observation technologies advance, more high-
resolution remote sensing data with multi-spatial and temporal units become available for
research [46]. In addition, new types of data, such as location-based POIs from the Internet,
geotagged social media data, and data from various sensing devices such as smartphones,
wearables, UAVs, and IoT applications, are often combined with geospatial sensing data in
research through advanced data processing and mining techniques. Therefore, it is natural
to think that future studies are more likely to use a ‘big’ volume of data with high com-
plexity. However, simply using ‘lots of data’ do not necessarily warrant the studies using
such data being considered ‘big data’ analysis, since big data refers to a large collection
of data sets that require revolutionary computing solutions to process and utilize due to
their extraordinary conditions resulting from their volume in size, variety in information,
velocity in data generation, and veracity in quality [45–47]. In this regard, we suggest using
two different concepts in future research: ‘big’ geospatial data and geospatial ‘big data’.
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Our review informed us that the following questions can serve as a set of standards to
define geospatial ‘big data’: (1) Were the data acquired by a nonconventional data collection
method (e.g., social media, new types of sensors such as IoT, wearable devices)? (2) In the
case of using data collected from well-established sources (e.g., remote sensing data from an
established institution, the open Internet database), was there any additional state-of-the-art
‘big data’ analytic approach (e.g., machine learning, AI) developed by the research team
for data process and/or analysis? (3) Were multiple types of geospatial data (e.g., remote
sensing and social media data) compiled for data mining and processing for the research?
(4) Was any non-traditional computing device or software/tools (e.g., high-performance
computing, scalable computing) used for data process and analysis? Those data that fail
more than two of the above-mentioned standards may be referred to as ‘big’ geospatial
data rather than geospatial ‘big data’. We recommend that future studies can clarify these
standards in their manuscripts, especially in the Methods section, for reproducibility and
replicability in research.

4.2.2. Limited Areas of Research

While various research topics were explored in the included studies, more than half
of the studies investigated health-related environmental conditions rather than directly
focusing on a health or health-related outcome. This limitation can also be observable in
that only a third of the selected studies were published in a health-related journal, and
the remaining two-thirds were published in non-health journals. In addition, the majority
of the included studies predominantly focused on respiratory health. It is also possible
that researchers may describe environmental exposure assessment methods using “big”
geospatial data in one study and the application of the exposure estimates in a health effects
study without mentioning “big” geospatial data. This may explain why we observed
limited studies on health outcomes, since our inclusion criteria focused on “big” geospatial
data and other related terms.

Considering the nature of geospatial sensing data, it may be reasonable to think that
geospatial sensing data are most relevant to examining respiratory health and its related
environmental measures. Since the latest remote sensing data gather multi-spatial, multi-
temporal information, the areas of research can be potentially expanded to many other
themes and health outcomes. Lifestyle diseases, especially physical-activity-related chronic
diseases, unhealthy eating, and (re)emerging infectious diseases, can be further examined
thoroughly with new types of geospatial sensing data [48].

4.2.3. Toward Overcoming Ecological Fallacy

Issues also remain around study design. Except for a few studies, the majority of
articles reported on ecological studies. Despite their convenience and usefulness, epidemi-
ologists and public health scientists often raise questions concerning ecological studies by
referring to the “ecological fallacy” and recommending more rigorous studies to address
aggregation bias [49]. Collecting individual-level data through various types of sensor
devices and technology can be an alternative way to overcome the issues of the ecological
fallacy by enabling the researchers to collect data at fine spatial and temporal scales. The
use of small-area estimation to generate local disease estimates or synthetic population
datasets can be another approach to making better use of geospatial sensing data [50,51].
Finally, using the concept of the ‘exposome’—the cumulative measure of all the exposures
of an individual related to their health during their whole lifetime—can provide a holistic
approach to examining one’s health using BGSD [52].

4.2.4. Suggestions for Future SDIs

Data openness and shareability are critical to conducting a successful research project.
We observed that researchers could secure various open geospatial sensing data obtainable
through the existing open SDIs such as the U.S. NASA’s Earth Science Data Systems or the
European Space Agency’s Copernicus Open Access Hub [53]. In contrast, we saw that there
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is a discrepancy in the practice of data shareability across regions. While several Chinese
institutions (e.g., the China Meteorological Data Sharing Service Centre, the Ministry of
Ecology and Environment of the People’s Republic of China, and the China National
Environmental Monitoring Center) were listed in several studies as important data sources,
the details were less available and accessible due to the language barrier or connection
issues on the Internet [54–56]. Several government reports and public hospitals in China
were also mentioned as data sources, but the details of availability were not clearly stated.

Recently, many national governments have launched online open-data portals to
make public data freely available in a transparent, responsible way. Figure 2 illustrates
several examples of government open-data portals. The 2019 Organisation for Economic Co-
operation and Development (OECD) OURdata (Open-Useful-Reusable data) Index on Open
Government Data listed South Korea, France, Columbia, Ireland, and Japan as the top five
countries among its 38 member countries with the highest government efforts for open data
using three categories—data availability, data accessibility, and reusability of government
data [57]. More efforts and initiatives among various stakeholders for open SDIs may
contribute to public health studies with geospatial data. A potential way to facilitate such
efforts may be using common terms/themes for data categorization/classification. For
example, the U.S.’s Data.gov uses seven data topics, including agriculture, climate, energy,
local government, maritime, ocean, and older adults’ health. In contrast, South Korea’s public
data portal classifies data into 16 categories: education, data map, administration, finance,
industry, social services, food, culture, health care, disaster recovery, transportation (logistics),
weather, technology, agriculture, unification, and law. Since such different strategies in data
categorization may undermine data shareability, it may be recommended to set a universal
standard for data categorization.
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at the U.S. Centers for Disease Control and Prevention provides a range of health and health-
related online maps and datasets at various geographical units (Figure 3a). The United
Kingdom’s Office for Health Improvement and Disparities’ Public Health Dashboard is
an important outlet for health and health behaviors information at the county/unitary-
authority level in the U.K. (Figure 3b). The Korea National Health Insurance Service-ATLAS,
operating only in Korean to date, provides about 100 clinical health/health-related infor-
mation resources and interactive maps based on its national health insurance database at
the second smallest administrative unit (Figure 3c). Finally, the University of Washington’s
Institute for Health Metrics and Evaluation operates various online data visualization and
sharing tools to provide a range of public health data at both domestic and international
scales (Figure 3d). Further such health SDI initiatives are expected to come, as there are
more demands and collaborations for open data among various stakeholders. A notable ex-
ample is a call from the Open Geospatial Consortium (OGC), an international not-for-profit
consortium for making geospatial (location) information and services FAIR (i.e., Findable,
Accessible, Interoperable, and Reusable), for expressions of interest to convene a health SDI
initiative to seek community-driven, evidence-based solutions for various public health
challenges during the COVID-19 pandemic [61].
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is publicly accessible online.
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disciplinary collaborations across the globe are required for future studies. An immediate
task for interdisciplinary collaboration may be enhancing the mutual understanding be-
tween geospatial sensing scientists and health scholars. Building common ground on
technical concepts between different domain experts can enhance mutual understanding
and communication [66].

In addition, it may be worth noting that researchers may adopt and endorse new data
citation standards for future studies. The practice of data sharing can be promoted more
only after researchers and users value it as much as authorship of publications [67]. Under
the Joint Declaration of Data Citation Principles (JDDCP), researchers proposed multiple
roadmaps to initiate data citations for scientific publishers and data repositories [68,69].
Therefore, future health SDIs can contribute more to promoting data sharing and the
open-data movement by applying the new data citation standards such as using digital
object identifiers (DOIs), reporting data availability statements, and providing metadata to
landing pages [67–69].

4.3. Strengths and Limitations of This Review

This review has several strengths and limitations. This review examined how various
geospatial sensing data can be combined with multiple data from various sources in
data-driven ways. We also observed the inconsistent practices in using the term ‘big
data’ in research and suggested an alternative way to separate geospatial ‘big data’ and
‘big’ geospatial data. Finally, by examining various sources of SDIs and health SDIs,
collaborations among different domain experts should be required for future research.

Several limitations were also exposed in this review. First, since the concept of geospa-
tial sensing big data for public health is still in the nascent stage, a relatively small number
of scholarly works were identified for this review. Second, this review limited its searches
to major sections of research, including titles, abstracts, and keywords. Therefore, not
all the parts of the manuscripts were examined for review, which may not provide a full
overview of the existing studies. Finally, we may overlook the newly emerging field of big
data analytics with geospatial sensing big data in public health studies, as the research area
is fast growing and extensively wide in range [70].

5. Conclusions

It is evident that there will be growing opportunities for researchers to utilize various
types of geospatial big data that combine high-resolution geospatial sensing data and other
types of traditional and non-traditional data in the field of public health. The existing liter-
ature has presented various novel data-driven approaches to make better use of geospatial
big data focusing on a range of health and health-related topics. However, this review also
found several areas to improve in future studies. Especially, we noticed that the existing
research made good use of the SDIs for geospatial sensing data but did not fully use health
SDIs for research. This study reiterates the importance of collaboration as a prerequisite to
fully taking advantage of geospatial big data for future public health studies by presenting
several recommendations.
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