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Abstract: Due to the advantage of geostationary satellites, Himawari-8/AHI can provide near-real-
time air quality monitoring over China with a high temporal resolution. Satellite-based aerosol
optical depth (AOD) retrieval over land is a challenge because of the large surface contribution to
the top of atmosphere (TOA) signal and the uncertainty of aerosol modes. Here, by combining
satellite TOA reflectance, sun-sensor geometries, meteorological factors and vegetation information,
we propose a data-driven AOD detection algorithm based on a deep neural network (DNN) model
for Himawari-8/AHI. It is trained by sample data of 2018 and 2019 and is applied to derive hourly
AODs over China in 2020. By comparison with ground-based AERONET measurements, R2 for
DNN-estimated AOD is up to 0.8702, which is much higher than that for the AHI AOD product
with R2 = 0.4869. The hourly AOD results indicate that the DNN model has a good potential in
improving the performance of AOD retrieval in the early morning and in the late afternoon, and
the spatial distribution is reliable for capturing the variation of aerosol pollution on the regional
scale. By analyzing different DNN modeling strategies, it is found that seasonal modeling can hardly
increase the accuracy of AOD retrieval to a certain extent, and R2 increases from 0.7394 to 0.8168
when meteorological features, especially air pressure, are involved in the model training.

Keywords: AOD; DNN; AHI; Himawari-8; machine learning

1. Introduction

Atmospheric aerosols are solid and liquid particles suspended in the atmosphere,
which are mainly emitted from natural and anthropogenic sources [1]. They play a key role
in the Earth’s radiation balance by directly scattering and absorbing solar radiation and
indirectly changing the microphysical and radioactive properties of clouds [2]. Aerosol
particulate matter with a diameter less than 2.5 µm (PM2.5) is the main pollutant threatening
health [3,4]. It was found that there is a strong positive relationship between ground-level
PM2.5 concentration and satellite-measured AOD [5–7]. Therefore, promoting the accuracy
of satellite-retrieved AOD can make the performance of the PM2.5 estimation better.

Although accurate and continuous aerosol information can be available through
ground observation, AOD measured by sparsely distributed sites cannot fill the gap with-
out satellite observation. Space-based sensors that can be used to retrieve aerosols include
the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the TERRA and
AQUA satellites, the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi-
NPP and NOAA20 satellites [8], the Medium Resolution Spectral Imager (MERSI) onboard
the FengYun Series Satellites [9], the Multi-angle Imaging SpectroRadiometer (MISR) [10],
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the Polarization and Directionality of the Earth’s Reflectance (POLDER) [11], the Ad-
vanced Very High Resolution Radiometer (AVHRR) [12], the Ozone Monitoring Instrument
(OMI) [13] and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) [14,15]. All these
sensors are carried on the sun-synchronous satellites, and their overpass time is relatively
concentrated (10:30~13:30 Local Time). However, the vertical and horizontal distributions
of aerosol in the atmosphere are related to the diurnal variation of the boundary layer
height, meteorological and other factors. The loading and spatiotemporal distribution of
aerosol change significantly in one day. Therefore, the temporal resolution does not allow
capturing the diurnal variation of aerosols, which is an important feature of atmospheric
environment monitoring and climate research.

In recent years, many geostationary satellite sensors were launched to monitor the
global aerosol loading. The radiometric, spectral and spatial resolution of new-generation
geostationary satellites are higher than those previously available in geostationary orbit.
Himawari-8, a next-generation geostationary meteorological satellite successfully launched
in 2014, carries a new multi-wavelength imager named Advanced Himawari imager
(AHI). AHI can provide near-real-time observations over the East Asia and Western Pacific
regions with a high temporal resolution of 10 min for a full disk. The Advanced Baseline
Imager (ABI) carried on the Geostationary Operational Environmental Satellite (GOES)
scans the full disk every 10 min in the default mode, with the coverage of most areas of
America, the Pacific and the Atlantic [16]. The Spinning Enhanced Visible and Infrared
Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) scans the full disk every
15 min with the coverage of most areas of Europe, Africa and the Indian Ocean [17]. The
Advanced Geosynchronous Radiation Imager (AGRI) is a primary optical instrument
onboard Fengyun-4 series of satellites (the second-generation geostationary meteorological
satellites in China). Its full-disk scanning time and regional scanning time are 15 and 1 min,
respectively [18]. Moreover, the Earth Polychromatic Imaging Camera (EPIC) onboard the
Deep Space Climate Observatory (DSCOVR) scans the entire sunlight side of the Earth
every 1~2 h [19]. This study focuses on the Himawari-8/AHI, which has been frequently
used for the dynamic monitoring of regional aerosol loading and particulate pollutants.

Satellite-based AOD retrieval over land is a challenge because of the large surface
contribution to the top of atmosphere (TOA) signal for “bright” targets (i.e., urban, desert
and snow/ice-covered surfaces with high surface reflectance) [20] and the uncertainty of
selected aerosol type led by the temporal and spatial variability of aerosol concentration
and the complex mixing of aerosol types [21–23]. Therefore, it is necessary to effectively
separate the contribution of surface reflectance and atmospheric path radiation from the
TOA measurement. In addition, satellite observations cannot provide sufficient information
on aerosol properties, so the aerosol type must be assumed in the AOD retrieval procedure.

The accuracy of the aerosol contribution separated from TOA signals largely depends
on the accurate measurement of surface reflection [24,25]. Currently, the Dark Target (DT)
algorithm [26,27] and the Deep Blue (DB) algorithm [14,28,29] are the most widely used
satellite AOD retrieval methods. The band ratio relationship of the DT method is not
suitable for bright surface areas with high surface reflectance such as urban and bare land,
and the relationship between the short-wave infrared (SWIR) surface reflectance of red and
blue channels is not fixed due to the different spectral reflectance for different periods and
surface targets. The DB algorithm can be used to retrieve the AOD of desert, urban and
bare land, but its inversion accuracy is lower than that of the DT method [30]. Ge et al.
retrieved Himawari-8/AHI AOD by using the relationship of surface reflectance between
the visible and SWIR bands and following the DT algorithm [31]. However, considering
the observation duration of a geostationary satellite, there is a limitation for this method
to establish the relationship between the surface reflectance in the visible spectrum band
and the TOA reflectance in the SWIR band. Yu et al. compared Himawari-8/AHI and
Suomi-NPP/VIIRS data and found that they had a high consistency in the bands used for
AOD inversion, indicating that the spatial resolution and the calibration accuracy of the
Himawari-8/AHI were very high [32]. Yoshida et al. retrieved the Himawari-8/AHI AOD
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based on the minimum apparent reflection and the DT algorithm, and their inversion results
(R = 0.56, RMSE = 0.174) showed that the algorithm still needs to be improved by verifying
based on the observation data of two AErosol RObotic NETwork (AERONET) stations in
South Korea (Baeksa and Tahwa sites) [33]. Zhang et al. evaluated the performance of
the Japan Aerospace Exploration Agency (JAXA) Himawari-8/AHI AOD product over
China, indicating that the deviation of the AOD product largely depends on the season and
surface type [34]. According to the study of Gao et al., in the aspect of temporal variation,
an overestimation from JAXA Himawari-8/AHI AOD occurred in the afternoon for bare
surface while an underestimation occurred in the morning for well-vegetation surfaces
over China [35].

Some unknown error sources, such as nonlinear distribution of the dataset and abnor-
mal distribution of data, can also introduce uncertainties into AOD retrievals. Therefore,
the commonly used linear method is not sufficient to estimate the aerosol characteristics.
An effective way to eliminate unnecessary situations is to use nonparametric methods, e.g.,
machine learning (ML) techniques. ML is a branch of artificial intelligence. It generates
algorithms that can learn from the behavior or characteristics of specific datasets. Through
these methods, the learning dataset is divided into “input” and “output”, and an algo-
rithm is developed to find the relationship between them. The outputs are the variables
that must be predicted, and the inputs are the variables that provide information for the
algorithm [36]. ML algorithms perform well in deriving this correlation, especially on
technical issues [37–39], and they can discover the potential behavior of a system from
long-term observation [40]. In recent years, the ML methods were gradually used for air
quality prediction (e.g., AOD and ground-level PM2.5, NO2 and O3 concentrations) [41–46].
Among various kinds of ML methods, the Artificial Neural Network (ANN) as a widely
used machine learning method is famous for optimization. Some previous studies showed
that ANN method had a good potential in improving the satellite-retrieved AOD modeling
and AOD bias correction. Kollos et al. estimated AOD during dust outbreaks by using an
ANN model and SEVIRI data, with a high correlation coefficient of 0.91 and a low mean
absolute error (MAE) of 0.031 [47]. Lanzaco et al. applied both ANN and support vector
machines to obtain corrected MODIS AOD values. Fan et al. developed an algorithm
based on the ANN method driven by coupled atmosphere–ocean radiative transformation
simulations to derive the MERSI-II/Fengyun-3D AODs, with an average percentage error
around 23–29% for all bands [48].

In this study, the Deep Neural Network (DNN) will be used to improve AOD retrieval
instead of classically physical algorithms (e.g., BT and DB algorithms). The DNN model is
an ANN with multiple layers between the input and output layers and has a huge and com-
plex modeling ability. Here, we tried to directly establish a nonlinear relationship between
AOD and multi-factors (i.e., TOA reflectance, sun-sensor geometries, meteorological factors
and vegetation information) to improve the adaptability of the AOD inversion model
under complex conditions. Section 2 describes the satellite observations, ground-based
measurements and model reanalysis data used for the DNN model training and validation.
Section 3 gives the details of AOD detection modeling based on the DNN method. The
validation of DNN-estimated AHI AODs against AERONET AOD measurements over
China will be shown in Section 4. Section 5 is a summary and conclusions.

2. Study Area and Data Sources
2.1. Study Area

The study area (Figure 1) is the land part of China. Since China covers a huge
territory with significant regional differences, the characteristics of air quality, terrain,
landcover, population density and economic growth vary largely in different regions. Due
to the influence of turbulent vertical stirring on aerosol dilution and chemical processes
and meteorological processes in China, it is also significant on the temporal and spatial
variability. All above-mentioned reasons can jointly lead a more complex spatiotemporal
distribution of aerosol pollution for the entire area of China.
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Figure 1. Study area and location of AERONET sites.

2.2. Datasets
2.2.1. Himawari-8/AHI Data

The Himawari-8/AHI managed by JAXA has been in operation since 7 July 2015.
Compared with similar sensors onboard the previous generation of geostationary satellites,
the AHI was greatly improved. Its temporal resolution of full disk coverage is 10 min and
that of dense coverage such as the Japan area is 2.5 min. The AHI is a 16-band multi-spectral
sensor with a 500-m red band (0.64 µm) and 1-km green, blue and near-infrared bands
(0.51, 0.47 and 0.86 µm). The spatial resolution of the remaining 12 bands ranging from 1.6
to 13.3 µm is 2 km. Increasing the spectral range of visible and near-infrared bands makes
the aerosol retrieval over land possible from geostationary satellite data.

Three Himawari-8/AHI products were used in this study. One is the Himawari-8 level
1 band data, with a temporal resolution of 10 min and a spatial resolution of 5 km × 5 km.
Its embedded dataset includes visible and near-infrared band albedo, mid-infrared band
brightness temperature, view zenith angle (vza), view azimuth angle (vaa), solar zenith
angle (sza), solar azimuth angle (saa), observation time, etc. Himawari-8/AHI level 3
hourly aerosol product provides AOD at 500 nm, Ångström exponent, AOD uncertainty
and QA flag at a spatial resolution of 5 km. Himawari-8/AHI level 2 cloud product
includes cloud optical thickness, cloud effective radius, cloud top temperature, cloud top
height and cloud types (ISCCP definition) with a spatial resolution of 5 km and a temporal
resolution of 10 min. Here, level 1 band data was mainly used for AOD inversion, and level
2 cloud and level 3 aerosol products were applied for cloud screening and AOD evaluation,
respectively. All these datasets in the NetCDF format can be available from the website
(https://www.eorc.jaxa.jp/ptree, accessed on 16 April 2022) published by JAXA.

2.2.2. ECMWF Reanalysis v5 (ERA5) Data

The ERA5 reanalysis dataset has been widely used in regional environmental monitor-
ing [49]. It is the latest generation of atmospheric reanalysis data released by the European
Center for Medium-Range Weather Forecasts (ECMWF). The dataset is in the form of
global grid with a conventional grid resolution of 0.25◦ × 0.25◦. Compared with previous

https://www.eorc.jaxa.jp/ptree
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generation products, the temporal resolution is increased from 6 h to 1 h, which makes
it possible to study the diurnal variation of the troposphere. Additionally, the accuracy
of ERA5 is significantly improved compared with the previous generation products [50].
ERA5 hourly and monthly reanalysis products contain different data subgroups, such
as temperature, surface pressure and wind and soil data groups. In this study, hourly
meteorological parameters, including temperature, air pressure and wind speed data, were
extracted from the ERA5 dataset for DNN model training and AOD retrieving.

2.2.3. AERONET AOD Data

AERONET is a federation of ground-based remote sensing aerosol networks estab-
lished and maintained by National Aeronautics and Space Administration (NASA) and
PHOtométrie pour le Traitement Opérationnel de Normalisation Satellitaire (PHOTONS). It
covers hundreds of sites around the world and provides low uncertainty and standardized
data processing. The estimation accuracy of AERONET AOD product is ±0.02 [51]. Due
to the high quality of the measurements, AERONET AOD observations are often taken as
“basic facts” to validate satellite-based AOD retrievals. AERONET AOD data (available on
the website https://aeronet.gsfc.nasa.gov/, accessed on 16 April 2022) offers three options
for different quality levels: 1.0 (no filtering), 1.5 (cloud-screened and quality control) and
2.0 (quality-assured). Both Level 2.0 and Level 1.5 data were accessed for the validation of
retrieved AHI AOD results in this paper.

2.2.4. Terra/MODIS and Aqua/MODIS AOD Data

For more than 20 years, Terra/MODIS and Aqua/MODIS have delivered stunning
imagery of Earth and critical atmospheric parameters. MODIS AOD products are the most
widely used aerosol dataset on both regional and global scales. There are four standard
MODIS AOD products over land retrieved by the DT algorithm, the DB algorithm, the
DBT algorithm combining DT and DB algorithms and the Multiangle Implementation of
Atmospheric Correction (MAIAC) algorithm [52], respectively. MAIAC is a recent aerosol
algorithm developed to retrieve AOD over land, which assumes that the space is consistent
and stable [53,54]. Considering the influence of ground bidirectional reflectance, this algo-
rithm adopts the time series data to dynamically separate aerosol and land contributions.
Among all the standard MODIS AOD products, both the spatial resolution (1 km) and the
data coverage rate of MAIAC AOD product are the highest, and the accuracy is also gen-
erally the highest in most regions. Therefore, the MAIAC AOD product (MCD19A2) was
selected to evaluate the spatial distribution of the AHI AOD retrievals at the corresponding
overpass times of the Terra and Aqua satellites.

3. Model and Methodology

The procedure of Himawari-8/AHI AOD retrieval based on a DNN model in this
study is shown in Figure 2. Firstly, the AERONET AODs, ERA5 meteorological parameters,
AHI multi-band data and AHI cloud mask in 2018 and 2019 needed to be matched with
each other in different places and at different times. After cloud screening, quality control
and normalization, the matched samples were randomly grouped into training (90%) and
validation (10%) datasets. Feature selection was then conducted, and only the remaining
features were used for DNN model training. Through error function evaluation, full
connection network parameters setting, activation function selection and drop processing,
the final model of AHI AOD estimation would be established with multiple iterations.
Finally, AHI AOD in 2020 over China would be predicted, and the performance of our
model would be evaluated by ground-based AERONET, MODIS and AHI AOD products.

https://aeronet.gsfc.nasa.gov/
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3.1. Data Preprocessing

As shown in Table 1, the AERONET AOD product can provide AODs at 22 wave-
lengths ranging from 340 to 1640 nm. The MODIS AOD product involves AODs at wave-
lengths of 550 and 470 nm, and the AHI AOD product can only provide AODs at 500 nm.
Therefore, in order to satisfy the requirement of comparison, AODs at 500 nm was extracted
from the AERONET and AHI AOD products, and the MODIS AOD product was converted
from 550 nm to 500 nm. Here, MODIS AOD at 500 nm was calculated using the Ångström
exponent and AOD at 550 nm and 470 nm, given by

∂470−550 = − ln(τ470/τ550)

ln ( 470
550 )

(1)

τ500 = τ550(
500
550

)
−∂470−550

(2)
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where τ470 and τ550 are MODIS AODs at 470 nm and 550 nm, respectively, ∂470–550 is the
Ångström index at 470–550 nm and τ500 is the result of AOD at 500 nm.

Table 1. List of AOD products at different wavelengths.

AOD Product Bands (nm)

AERONET AOD 1640, 1020, 870, 865, 779, 675, 667, 620, 560, 555, 551, 532,
531, 510, 500, 490, 443, 440, 412, 400, 380, 340

MODIS AOD 470, 550
Himawari-8 AOD 500

Due to the relative homogeneous aerosol properties within a certain time–space
boundary, it is necessary to select a proper spatiotemporal window for averaging and
matching satellite band data and AERONET AOD observations. In this study, a time
window with 15 min centered at the Himawari-8 observation time was used for averaging
the AERONET AOD measurements. Due to the different spatial resolutions of AHI multi-
band data, as shown in Table 2, spatial windows with 1, 2 and 4 pixels centered at each
AERONET site were selected for AHI bands with a spatial resolution of 2 km, 1 km and
500 m, respectively.

Table 2. Bands and spatial resolutions of Himawari-8/AHI.

Band Wavelength
(µm)

Spatial Resolution
(km) Band Wavelength

(µm)
Spatial Resolution

(km)

1 0.46 1 9 7.0 2
2 0.51 1 10 7.3 2
3 0.64 0.5 11 8.6 2
4 0.86 1 12 9.6 2
5 1.2 2 13 10.4 2
6 2.3 2 14 11.2 2
7 3.9 2 15 12.3 2
8 6.2 2 16 13.3 2

3.2. Feature Selection

Feature selection is one of important steps in building a ML model. It aims to reduce
the input features to ML models by using only relevant features and to get rid of noise in the
dataset. By selecting a subset of relevant features used in the AHI AOD model construction,
the accuracy and complexity of our model would be affected directly. The filtering method
is commonly used in the feature selection. Regardless of the model characteristics, it
evaluates the significance of the explanatory variables. These methods are characterized
by high computational efficiency and large simulation resistance. A Pearson Correlation
Coefficient (PCC) is one of the typical filters. The correlation ranking considers the linear
relationship between each predictor Xj and the response variable Y:

PCC(j) =
cov
(
Xj, Y

)√
var
(
Xj
)
× var(Y)

(3)

where cov and var represent the covariance and variance, respectively.
According to the radiative transfer theory, the spectral TOA signal finally received by

a satellite sensor is related to sun-sensor view geometry, atmospheric states, aerosol types,
AOD, sensor spectral characteristics and surface types. Therefore, all parameters mentioned
above must be involved in the forward simulation for satellite-based AOD retrieval by
physical algorithms. In this study, there is no need to assume the atmospheric states, aerosol
modes and surface types in advance, because the forward radiative transfer simulation is
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not required by AHI AOD modeling based on DNN. Therefore, only the angles related to
sun-sensor geometry, AHI TOA reflectance and bright temperature at bands 1~16 were
selected as candidate features. Additionally, aerosol distribution is closely associated with
meteorological conditions and landcover types [55,56]. Here, surface pressure (sp), the
temperature at 2 m (t2m) and wind speed (ws) values extracted from ERA5 reanalysis
dataset were used to characterize meteorological conditions. The Normalized Difference
Vegetation Index (NDVI) values calculated from Himawari-8/AHI data were employed to
simply describe the spatiotemporal characteristics of landcover types.

The correlations between AOD and all candidate features were studied by a correlation
analysis experiment as shown in Figure 3, with PCC as the selected filter. It is indicated that
importance values of AHI TOA measurements for bands 1~6 (bd1, bd2, bd3, bd4, bd5 and bd6)
are higher than those for bands 7~16, which is consistent with the study of Chen et al. [46].
The sun-sensor view geometry angles (sza, saa, vza and vaa); meteorological parameters (sp,
t2m and ws) and NDVI are also shown a relative high importance. Therefore, bd1, bd2, bd3,
bd4, bd5, bd6, sza, saa, vza, vaa, sp, t2m, ws and the NDVI were retained as input features for
our AOD retrieval model based on DNN.
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3.3. DNN Model

As one of the most typical depth estimation and image recognition applications, DNN
usually consists of three parts: input plane, hidden layers and output layer. The layer of the
DNN model is composed of independent neurons, which only interact with adjacent layers.
Interactions include two operation processes: prefeeding and back propagation [57].

In the prefeeding stage, the data is transferred between two adjacent layers through
the combination of linear function and nonlinear activation function, as shown below:

al = σ(Wl ·al−1 + bl) (4)

where l is the layer number, a is the output vector of a layer, W is the weight matrix, b is the
offset vector and σ(.) is the activation function as shown in Equation (5):

σ(x) =
{

x, i f x ≥ 0
0, i f x < 0

(5)

Inverse multiplication is the process of updating the weights and deviations found in
previous calculations. Firstly, the loss function is defined by the root mean square error
function. Then, the offset and weight are gradually optimized by solving the gradients
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of the loss function. The preparation process of establishing the DNN model includes
iterations of the gradient descent mentioned above. The Adam optimization algorithm [58]
is used for completing gradient degradation and weight initialization. The weights in the
iteration are updated as follows:

Wl,t+1 = Wl,t − α· f (∇Lossl , β1, β2, t) (6)

where α is the initial learning rate (α = 0.01), β1 and β2 are the initial exponential decay
rates (β1 = 0.900 and β2 = 0.99), ∇Loss is the gradients loss and f (.) is the function with
respect to the above parameters and the iteration number t [58]. The offsets are updated in
the same way.

The DNN model used for the AHI AOD retrieval (Figure 4) was established with
the input layer consisting of features selected in Section 3.2 and the outer layer consisting
of AODs at 500 nm. The model was set with four hidden layers, each of which is fully
connected and needs to be activated by the ReLU function to realize nonlinearity and drop
some nodes to prevent overfitting. The AERONET AOD was defined as the model tab for
training and validation.
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Figure 4. The architecture of the DNN model for Himawari-8/AHI aerosol retrieval (input nodes:
bd1, bd2, bd3, bd4, bd5, bd6, sza, saa, vza, vaa, sp, t2m, ws and the NDVI; output node: Himawari-8/AHI
AOD at 500 nm; DP: Drop Layer and ReLU: Rectified Linear Unit Layer).

3.4. Hyperparameter Tuning and Model Validation

The goal of hyperparameter tuning is to discover the best hyperparameter combination
that minimizes a preset loss function and produces better results. Grid search was used to
obtain the local optimal solution of network hyperparameters, including minimum batch,
learning speed, network depth and activation function. In the DNN model, the sample data
was randomly divided into two parts: 10% of the samples for validation, the remaining 90%
samples for model training. R2 and RMSE values of training and validation were taken
as evaluation criteria to assess the model performance. The final DNN model would be
determined through hyperparameter tuning by changing some key parameters. When the
DNN model of AOD detection trained by datasets in the year of 2018 and 2019 was stable,
it was used to predict AHI AODs in 2020. Here, ground-based AERONET measurements
as truths were adopted to comprehensively validate the accuracy of retrieved AOD results.
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AHI and MODIS AOD products were mainly used to evaluate the reasonability of our
results in the spatial distribution.

4. Results and Discussion
4.1. Overall and Hourly Validation on Sites

Figure 5 shows the scatterplots for our DNN-estimated AHI AOD at 500 nm against the
ground-based AERONET measurements in 2020. The statistics were fitted by 59,716 matchups
from retrieved AOD results at AERONET sites in China. A good correlation between them
is shown with a high R2 of 0.8168 and a low RMSE of 0.1546. Since the learning sample data
were generated randomly from the training sample dataset, the prediction stability of the
trained models was disturbed to some extent. According to the statistics of 100 random dis-
turbances of learning samples, the R2 varies from 0.7915 to 0.8229 with the RMSE ranged of
0.1528~0.2037. The narrow variation ranges of both R2 and RMSE mean that the prediction
capabilities of these models are very similar. The result given in Figure 5 is a case of these
models that can represent the average capability of AOD retrieval, and all the subsequent
comparisons were conducted based on this model.
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Figure 5. Comparison between DNN-estimated AHIAOD and AERONET AOD.

To compare the accuracies of retrieved AOD by the DNN model with the AHI AOD
product, both were validated by AERONET AOD measurements over China in 2020,
respectively. There are 24,270 retrieved AODs matched with both AERONET and AHI
AOD products. As shown in Figure 6, both DNN-estimated AHI AOD and AHI AOD
product are underestimated, but DNN-estimated AHI AOD has a better agreement with
AERONET AOD than that from AHI product. R2 reaches up to 0.8702 for our algorithm
with a small RMSE of 0.1326, while R2 is only 0.4869 for the AHI AOD product with a
large RMSE of 0.2917 in China. Compared with the AHI product, the algorithm used in
this study effectively improved the AOD retrievals in the aspects of both accuracy and
data coverage.

Hourly validations of AODs retrieved by the DNN model and AHI AOD product
are shown in Figure 7. Since the AERONET AOD measurements at 0:00 UTC are missing,
hourly validations in the daytime were conducted for 1:00~12:00 and 22:00~23:00. It should
be noted that all the timestamps mentioned in this paper are UTC time, not local time.
Each subfigure in Figure 7 corresponds to one hour on the time, where the estimated AOD
(red dot) and AHI AOD product (green dot) at the same time were compared, and the
AERONET AOD was treated as the true value. For all sets of hourly validation, R2 values
of AODs detected by our algorithm (0.454~0.969) were much higher than those of the AHI
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AOD product (0.278~0.864), and RMSEs (0.03~0.173) were lower than those of AHI AOD
product (0.140~0.440).
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Figure 6. Comparison between the AHI AOD and AERONET AOD ((left panel): DNN-estimated
AHI AOD; (right panel): AHI AOD product).

Especially, due to the large solar zenith angle in the early morning (22:00 and 23:00)
and in the late afternoon (11:00 and 12:00), the path length of lights passing through
the atmosphere is long, which makes the AOD inversion very difficult based on the
physical methods. However, the AOD retrieval algorithm based on DNN model could
well overcome this problem to some extent from Figure 7A,B,M,N. For the validation at
23:00, R2 increases from 0.278 for the AHI product to 0.777 for AOD retrievals, while RMSE
correspondingly decreases from 0.44 to 0.103. For the validation at 11:00, the performance of
our algorithm based on DNN model with R2 = 0.454 and RMSE = 0.173) is also better than
AHI product with R2 = 0.343 and RMSE = 0.242. Here, due to the limitation of the amount
of valid AHI TOA reflectance, the available AOD retrievals are very few for comparison at
22:00 and 12:00.

4.2. Evaluation of Spatial Distribution on a Regional Scale

AODs of Terra/MODIS, Aqua/MODIS and Himawari-8/AHI products were chosen
to evaluate the reasonability of spatial distribution for hourly AHI AOD retrievals by the
DNN model. On a regional scale, a heavy air pollution (haze) event occurred in eastern
China on 8 November 2020. Hourly AHI true-color RGB images, AHI AOD retrievals
by DNN model, AHI AOD products and MODIS AOD products over eastern China at
1:00~7:00 are correspondingly depicted in Figure 8. Similar to Figure 8, Figure 9 gives
the spatial distributions of AOD at 2:00 but over China. Areas with high or low AOD
values for our AOD retrievals are generally consistent with those for both AHI and MODIS
AOD products. Based on the comparisons at 2:00 and 5:00, the spatial distribution of our
AOD retrievals has a better agreement with MODIS data than AHI. Moreover, it needs
to be noted that the data coverage rate of DNN retrieved AOD is also higher than that of
AHI AOD products, because AOD cannot be well-retrieved over the bright targets, and
many pixels loaded by heavy aerosol are always misidentified as cloud pixels in the JAXA
AOD retrieval algorithm. Normally, the reliability of the MODIS AOD product is higher
than other AOD products, and the accuracy of AOD retrievals from a sun-synchronous
satellite is greater than that from a geostationary satellite. Therefore, it means that DNN-
estimated AHI AOD can reasonably reflect air pollution regions with high AOD levels and
can accurately capture hourly variations of aerosol loadings on a regional scale.
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column of panels) over Eastern China at 1:00~7:00 (top to bottom) on 8 November 2020.
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Figure 9. AHI true-color RGB images (A), DNN-estimated AHI AOD (B), AHI AOD product (C) and
MODIS AOD product (D) over China at 2:00 on 8 November 2020.

4.3. Seasonal Modeling and Validation

Since the aerosol types and meteorological parameters largely vary with the season,
we tried to investigate whether seasonal DNN modeling can further improve the accuracy
of AHI AOD retrievals. Following the modeling procedure in Section 3, the sample dataset
created from the data of 2018 and 2019 was divided into four parts by season, and the
seasonal DNN models were trained by seasonal sample datasets. Here, Models 1~4
correspond to the established models of spring, summer, autumn and winter, respectively.
Model 5 trained by all samples was applied for contrast, which is the same as the DNN
model used in Figure 5. The AHI AODs in 2020 were separately calculated by Models 1~5.

Seasonal validation results of AHI AOD estimations against AERONET AOD measure-
ments are given in Figure 10 and Table 3. Although seasonal Models 1~4 could well-predict
AOD in the spring, summer, autumn and winter, respectively, any of them was not suitable
to detect the AOD of the other three seasons. For spring, the R2 of AOD estimated by
Model 1 reaches 0.8199, but the R2 of Model 2 is only 0.4285. For the winter, the perfor-
mance in AOD detection is the best for Model 4 with R2 = 0.8508 and RMSE = 0.1347 but
the worst for Model 2 with R2 = 0.3575 and RMSE = 0.3476. Compared with the seasonal
models, Model 5 has a better applicability for AOD retrieval in different seasons. Especially,
Model 5 performed best among all the five models in the spring and summer. Therefore, a
separate DNN model built by season can hardly increase the accuracy of the AOD retrieval
to a certain extent. Generally, due to the good learning ability of DNN, the larger number
of samples the DDN learns from, the better performance of AOD prediction the established
model shows. Unlike the physical AOD retrieval algorithm, which adopts different in-
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version strategies to solve the uncertainties introduced by surface and aerosol type, a ML
algorithm such as DNN has better universality and robustness.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 22 
 

 

Figure 9. AHI true-color RGB images (A), DNN-estimated AHI AOD (B), AHI AOD product (C) 

and MODIS AOD product (D) over China at 2:00 on 8 November 2020. 

4.3. Seasonal Modeling and Validation 

Since the aerosol types and meteorological parameters largely vary with the season, 

we tried to investigate whether seasonal DNN modeling can further improve the accu-

racy of AHI AOD retrievals. Following the modeling procedure in Section 3, the sample 

dataset created from the data of 2018 and 2019 was divided into four parts by season, 

and the seasonal DNN models were trained by seasonal sample datasets. Here, Models 

1~4 correspond to the established models of spring, summer, autumn and winter, re-

spectively. Model 5 trained by all samples was applied for contrast, which is the same as 

the DNN model used in Figure 5. The AHI AODs in 2020 were separately calculated by 

Models 1~5. 

Seasonal validation results of AHI AOD estimations against AERONET AOD 

measurements are given in Figure 10 and Table 3. Although seasonal Models 1~4 could 

well-predict AOD in the spring, summer, autumn and winter, respectively, any of them 

was not suitable to detect the AOD of the other three seasons. For spring, the R2 of AOD 

estimated by Model 1 reaches 0.8199, but the R2 of Model 2 is only 0.4285. For the winter, 

the performance in AOD detection is the best for Model 4 with R2 = 0.8508 and RMSE = 

0.1347 but the worst for Model 2 with R2 = 0.3575 and RMSE = 0.3476. Compared with 

the seasonal models, Model 5 has a better applicability for AOD retrieval in different 

seasons. Especially, Model 5 performed best among all the five models in the spring and 

summer. Therefore, a separate DNN model built by season can hardly increase the ac-

curacy of the AOD retrieval to a certain extent. Generally, due to the good learning abil-

ity of DNN, the larger number of samples the DDN learns from, the better performance 

of AOD prediction the established model shows. Unlike the physical AOD retrieval al-

gorithm, which adopts different inversion strategies to solve the uncertainties intro-

duced by surface and aerosol type, a ML algorithm such as DNN has better universality 

and robustness. 

    

    

    

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 

    

    

Figure 10. Seasonal comparisons between DNN-estimated AHI AOD and AERONET AOD for 

Models 1~5 (top to bottom rows). Left to right columns are corresponding to spring, summer, au-

tumn and winter, respectively. 

Table 3. R2 and RMSE list of seasonal comparisons shown in Figure 10. 

 
Model 1  

R2 

Model 2  

R2 

Model 3  

R2 

Model 4  

R2 

Model 5 

R2 

Model 1  

RMSE 

Model 2 

RMSE 

Model 3  

RMSE 

Model 4 

RMSE 

Model 5  

RMSE 

Spring 0.8199 0.1227 0.1730 0.4745 0.8336 0.1712 0.4090 0.4122 0.2993 0.1646 

Summer 0.4285 0.6850 0.3172 0.2479 0.6941 0.2643 0.1602 0.2428 0.3447 0.1677 

Autumn 0.5285 0.5648 0.8002 0.6220 0.7860 0.2410 0.2395 0.1433 0.2086 0.1477 

Winter 0.6573 0.3575 0.6638 0.8508 0.8514 0.2064 0.3476 0.2137 0.1347 0.1340 

4.4. Impact of Meteorological Features 

Aerosol mainly exists in the lower atmosphere. The occurrence of heavy aerosol 

pollution events is not only strongly affected by excessive emission of air pollutants, but 

is also closely associated with meteorological conditions. In addition to human activities, 

meteorological factors cannot be ignored. Meteorological factors have a significant im-

pact on the aggregation, transmission, and diffusion of air pollutants, of which temper-

ature, air pressure and wind speed are typical representatives. Therefore, in this study, 

besides AHI data, meteorological parameters as input features were involved in DNN 

modeling for AHI AOD detection. 

To investigate the impact of meteorological factors on the DNN-estimated AHI 

AOD, eight cases with different input meteorological features (i.e., sp, t2m and ws) were 

tested and validated based on AERONET AOD measurements (Figure 11 and Table 4). 

Obviously, the retrieved AOD result of Case 1 trained by all three meteorological features 

is the best among Cases 1~8. With consideration of the meteorological features, the R2 of 

DNN-estimated AHI AOD increases by 10.47%, and RMSE decreases by 14.82%. Com-

pared with t2m and ws, sp has a greater influence on the improvement of AHI AOD es-

timation. For Case 5 trained by sp, a larger R2 of 0.7947 and a smaller RMSE of 0.1615 was 

obtained in comparison to Cases 6, 7 or 4 trained by one or two features of t2m and ws. 

The R2 of the DNN model decreases slightly by about 0.001~0.035 without regarding t2m 

or/and ws, while the R2 decreases significantly by about 0.029~0.053 if sp is removed from 

selected features. The main reason may be that pressure patterns can objectively and 

accurately reflecting the evolution of aerosol pollution process and regional characteris-

tics under most conditions [59,60]. The change of pressure reflects the change of the 

boundary layer height, and affects the diffusion capacity of the pollutants. Meanwhile, 

wind and temperature are also closely related to the spatial and temporal distribution of 

atmospheric aerosol by changing the dynamics of the air movement. 

Figure 10. Seasonal comparisons between DNN-estimated AHI AOD and AERONET AOD for
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Table 3. R2 and RMSE list of seasonal comparisons shown in Figure 10.

Model 1
R2

Model 2
R2

Model 3
R2

Model 4
R2

Model 5
R2

Model 1
RMSE

Model 2
RMSE

Model 3
RMSE

Model 4
RMSE

Model 5
RMSE

Spring 0.8199 0.1227 0.1730 0.4745 0.8336 0.1712 0.4090 0.4122 0.2993 0.1646
Summer 0.4285 0.6850 0.3172 0.2479 0.6941 0.2643 0.1602 0.2428 0.3447 0.1677
Autumn 0.5285 0.5648 0.8002 0.6220 0.7860 0.2410 0.2395 0.1433 0.2086 0.1477
Winter 0.6573 0.3575 0.6638 0.8508 0.8514 0.2064 0.3476 0.2137 0.1347 0.1340
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4.4. Impact of Meteorological Features

Aerosol mainly exists in the lower atmosphere. The occurrence of heavy aerosol
pollution events is not only strongly affected by excessive emission of air pollutants, but
is also closely associated with meteorological conditions. In addition to human activities,
meteorological factors cannot be ignored. Meteorological factors have a significant impact
on the aggregation, transmission, and diffusion of air pollutants, of which temperature,
air pressure and wind speed are typical representatives. Therefore, in this study, besides
AHI data, meteorological parameters as input features were involved in DNN modeling
for AHI AOD detection.

To investigate the impact of meteorological factors on the DNN-estimated AHI AOD,
eight cases with different input meteorological features (i.e., sp, t2m and ws) were tested and
validated based on AERONET AOD measurements (Figure 11 and Table 4). Obviously, the
retrieved AOD result of Case 1 trained by all three meteorological features is the best among
Cases 1~8. With consideration of the meteorological features, the R2 of DNN-estimated AHI
AOD increases by 10.47%, and RMSE decreases by 14.82%. Compared with t2m and ws, sp
has a greater influence on the improvement of AHI AOD estimation. For Case 5 trained by
sp, a larger R2 of 0.7947 and a smaller RMSE of 0.1615 was obtained in comparison to Cases
6, 7 or 4 trained by one or two features of t2m and ws. The R2 of the DNN model decreases
slightly by about 0.001~0.035 without regarding t2m or/and ws, while the R2 decreases
significantly by about 0.029~0.053 if sp is removed from selected features. The main reason
may be that pressure patterns can objectively and accurately reflecting the evolution of
aerosol pollution process and regional characteristics under most conditions [59,60]. The
change of pressure reflects the change of the boundary layer height, and affects the diffusion
capacity of the pollutants. Meanwhile, wind and temperature are also closely related to the
spatial and temporal distribution of atmospheric aerosol by changing the dynamics of the
air movement.
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Table 4. R2 and RMSE of 8 cases with different input meteorological features.

Cases Meteorological Factors Included R2 RMSE

Case 1 sp, t2m, ws 0.8168 0.1546
Case 2 sp, t2m 0.8009 0.1633
Case 3 sp, ws 0.7960 0.1598
Case 4 t2m, ws 0.7781 0.1730
Case 5 sp 0.7947 0.1615
Case 6 t2m 0.7721 0.1691
Case 7 ws 0.7431 0.1826
Case 8 none 0.7394 0.1815

5. Conclusions

A Himawari-8/AHI AOD detection algorithm was proposed based on the DNN model
with the combination of satellite TOA reflectance, sun-sensor geometries, meteorological
factors and NDVI data. Treated AERONET AOD measurements as truths, the DNN model
was trained by the sample dataset in 2018 and 2019. AHI AODs at 500 nm over China in
2020 were calculated, and AOD retrieval results were compared with AERONET, MODIS
and AHI AOD products. The following conclusions can be drawn:

(1) The DNN model has a great potential in hourly AOD retrieval for Himawari-8 satellite
in China. Based on the validation against AERONET AOD, the accuracy of DNN-
estimated AHI AOD with R2 of 0.8702 and RMSE of 0.1326 is much higher than that
of the AHI AOD product with R2 of 0.4869 and RMSE of 0.2917. Especially, the DNN
model can improve the performance of AHI AOD retrieval in the early morning and
in the late afternoon.

(2) For the spatial distribution, DNN-estimated AHI AOD is more consistent with the
MODIS AOD product than the AHI AOD product. Therefore, our AOD results can
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detect air pollution regions with high AOD levels well and can accurately capture
hourly variations of aerosol loadings on the regional scale.

(3) For the proposed algorithm framework, meteorological features (i.e., sp, t2m and
ws) were involved into the DNN model training, which are not used in the physical
AOD retrieval methods based on the atmospheric radiation transferring model. With
consideration of the meteorological features, the R2 of DNN-estimated AHI AOD
increases by 10.47%, and the RMSE decreases by 14.82%. Among all the meteorological
factors, sp has the greatest influence on the AHI AOD estimation.

With automatic feature learning and powerful generalization ability, ML methods
make better use of the spatiotemporal AOD information and provide both higher accuracy
and reliability in data mining. Data-driven AOD predictions based on machine learning
models and multi-source data integration can promote the monitoring and modeling of the
air quality over China.
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