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Abstract: The start of the growing season (SOS) is a vital ecological indicator for climate change and
the terrestrial ecosystem. Previous studies have reported that the SOS over the Northern Hemisphere
(NH) has experienced remarkable changes in the past few decades. However, because of the different
spatial and temporal coverages of existing SOS studies, a coherent and robust account for SOS
changes in the NH has been lacking. Using satellite-retrieved vegetation-phenology datasets, ground
observations, and several auxiliary datasets, this study evaluated the performance of the latest
MODIS vegetation-dynamics dataset (MCD12Q2-C6) and explored the distribution and attribution
of the SOS to climate change over the NH for the period 2001–2018. The validation results using
the Chinese Ecosystem Research Network (CERN) and Lilac-leafing observations (Lilac) displayed
that the MCD12Q2-C6 has a good performance in SOS monitoring over the NH mid-latitudes.
Meanwhile, evidence from MCD12Q2-C6 pointed out that the SOS was advanced by 2.08 days on
average over the NH during 2001–2018, especially for Europe, China, and Alaska, United States.
In addition, detailed-sensitivity analysis showed that the increased surface air temperature (Ts)
(−1.21 ± 0.34 days ◦C−1) and reduced snow-cover fraction (Sc) (0.62 ± 0.29 days%−1) were the key
driving factors of the observed SOS changes over the NH during 2001–2018. Compared with Ts

and Sc, the role of total precipitation (Pt) was minor in dominating the spring vegetation-phenology
changes at the same period. The findings of this study contribute to our understanding of the
responses of SOS to the competing changes of Ts, Pt, and Sc over the NH.

Keywords: advanced SOS; climate change; sensitivity analysis; driving factors

1. Introduction

The start of the growing season (SOS), usually defined as the period of the year
when plants grow successfully or the vegetation index first crosses 15% of the segment-
vegetation-index amplitude by Moderate Resolution Imaging Spectroradiometer (MODIS)
observation [1], is a vital indicator of terrestrial ecosystems that is related to productivity
gradients [2], surface radiation and evapotranspiration [3], ecosystem atmospheric-carbon
exchange and energy-budget estimation [4,5], surface warming [6,7], terrestrial-biosphere
models simulation [8], and human activities in vegetation management [9,10], as well as
several climate anomalies including fire disturbance [11], dry deposition [12], and heat
waves [13]. Moreover, the SOS has become an important tool by which to measure both
the impact of climate change on ecosystems and the feedback of ecosystems to the climate
system [14,15]. Therefore, accurate information on the SOS is vital for both ecosystem
monitoring and climate-change detection against the rapid climate-change background.

Published studies have reported that the SOS over the Northern Hemisphere (NH)
has experienced remarkable changes in the past few decades. At continental scales,
Schwartz et al. [16] concluded that the SOS advanced across most temperate NH land
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regions during 1955–2002. Jeong et al. [17] found that the SOS advanced by 5.2 days
during the early period of 1982–1999 in the NH, but this magnitude reduced to only
0.2 days in the later period of 2000–2008. Meanwhile, Wang and Fensholt [18] reported that
changes in the SOS were biome-specific in the NH (>30◦N) during 1982–2013, indicating
complex relationships and interactions that are induced by ongoing climate change and
increasingly intensive human disturbances. At the regional scale, SOS anomalies in high
latitudes, including the Arctic and boreal ecosystems [19–21] and Europe [22–24], and
middle latitudes, including eastern China [25] and the Tibetan Plateau [26–28], have been
explored separately. However, due to the different temporal and spatial coverages of the
above-mentioned studies, existing SOS studies are difficult to compare. Consequently, a
coherent and robust account for SOS changes in the NH has been lacking.

Satellite-retrieved vegetation-phenology datasets are an inevitable choice in SOS stud-
ies for their advantages in providing spatially explicit and temporally rich information on
vegetation dynamics and patterns for landscapes at regional and global scales [29]. Cur-
rently, the MODIS vegetation-dynamics Collection 5 (MCD12Q2-C5) [30] and Collection 6
(MCD12Q2-C6) [1], as well as the National Aeronautics and Space Administration Making
Earth System Data Records for Use in Research Environments (MEaSUREs) Vegetation In-
dex and Phenology (VIP) [31], are the only available long-term satellite-derived vegetation
phenology products. Although the Visible Infrared Imaging Radiometer Suite [32] and har-
monized Landsat 8 and Sentinel-2 imagery [33] provide land-surface phenology with finer
spatial resolution at 500 m and 10–30 m, their temporal coverage is too short to diagnose
SOS changes at a continental scale. In addition to the well-developed vegetation-phenology
datasets, the normalized-difference vegetation index (NDVI) from MODIS [27,34,35], the
Global Inventory Monitoring and Modeling System 3rd Generation (GIMMS 3g) [28,36,37],
and the French ‘Système Probatoire d’Observation de la Terre’—VEGETATION (SPOT-
VGT) [2] are also employed in SOS dynamics studies, with the help of vegetation-phenology-
retrieval algorithms. Nonetheless, subject to the high spatial heterogeneity of vegetation
dynamics and a shortage of ground observations, their performance and consistency in
SOS monitoring remains unclear.

Accompanied by SOS monitoring, the attribution of SOS anomalies has also drawn
great attention in the past few years. Published studies have reported that global climate
change is a primary driver of SOS variations in terrestrial ecosystems [37–44]. Several
variables are attributed to SOS anomalies, e.g., land-surface temperature (Ts) [42,44–46],
total precipitation (Pt) [46], water availability [40], spring snow-cover anomalies [43,44],
and photoperiod [46–48] and temperature sensitivity [7,49] changes. Among the above-
mentioned driving factors, Ts, Pt, and snow cover are basic and representative variables.
For example, Krishnaswamy et al. [45] and Ren et al. [42] found that the SOS was strongly
associated with Ts increase. Meanwhile, Chen and Yang [43] displayed that an advanced
snow end date dominates SOS changes over the NH’s middle-to-high latitudes during
2001–2014. Although attribution analyses have been carried out at different scales, the
mechanisms underlying hemispherical-scale SOS attribution remain debated. Whereas,
due to the different spatial and temporal coverages of existing SOS studies, a coherent and
robust account for SOS changes in the NH has been lacking.

The NH has experienced dramatic climate change over the past few decades, including
intensifying Arctic amplification and extreme mid-latitudes weather [50,51], the shrinking
of spring snow-cover extent [52,53], and the diminishing tight relationship between Ts
and vegetation seasonality [49]. Changes in the climate system will significantly influence
the distribution of the SOS. Therefore, it is crucially needed to clarify SOS anomalies
and explore their driving factors over the NH in the context of a changing climate. To
achieve this objective, we first estimated the performance of the latest MODIS vegetation-
dynamics dataset using the Chinese Ecosystem Research Network (CERN) and Lilac-leafing
observations (Lilac). Then, we explored the distribution and changes of the SOS over the
NH for the period 2001–2018. Finally, we attributed SOS changes from three representative
driving factors, Ts, Pt, and snow-cover fraction (Sc), in the corresponding period.
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2. Materials and Methods
2.1. Study Area

To focus on SOS changes and eliminate the effect of land-cover changes from vegetated
to non-vegetated, we confined the study area to stable regions with natural vegetation types
using the International Geosphere Biosphere Program (IGBP) land-cover classification from
the MODIS land-cover dataset (MCD12C1) [54], for the period 2001–2018.

Based on the MCD12C1 IGBP classification system, the land surface over the NH was
divided into 17 types, including 11 natural-vegetation types, 3 land-use and land-mosaic
types, and three vegetation-free land types. The definitions of the MCD12C1 IGBP class are
provided in Supplementary Table S1. The distribution of the stable regions with natural
vegetation types over the NH for the period 2001–2018 is shown in Figure 1.

Figure 1. (a) The 18-year stable regions with natural-vegetation types from 2001 to 2018 and the dis-
tribution of the CERN- and Lilac-phenology observations. (b) Percentages of each natural-vegetation
type over the NH.

2.2. Datasets

For purpose of the present study, the latest satellite-retrieved SOS, ground vegetation
phenology observations, and two individual NDVI datasets were used in the analysis.
Moreover, to explore the response of the SOS to climate change, the reanalysis of Ts and Pt
from the fifth-generation European Center for Medium Range Weather Forecasts Reanalysis
Land (ERA5-Land) [55] and of Sc from the MODIS/Terra monthly snow-cover fraction in
the Climate Modeling Grid (MOD10CM) [56] were also used in this study.

2.2.1. Vegetation-Phenology Datasets
MCD12Q2-C6 Vegetation-Dynamics Dataset

The MCD12Q2-C6 algorithm identifies phenophase-transition dates based on logistic
functions fit to a time series of the 2-band enhanced vegetation index (EVI2) and provides
estimates of the SOS and associated quality information, at global scales with 500 m spatial
resolution [1]. In the present study, the “green-up” date over the NH for the period
2001–2018, at a spatial resolution of 500 m, were used as SOS values for MCD12Q2-C6,
in which the “green-up” date representing the day of year when the EVI2 first crossed
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15% of the segment EVI2 amplitude. Compared with the MCD12Q2-C5, there are several
improvements in the MCD12Q2-C6, including an increased reliability of the retrieved
phenometrics in tropical, arid, and semi-arid ecosystems; more accurately represented
phenometrics in systems; and overall quality improvements in the phenometric-specific
quality layers provided [1].

Ground-Vegetation-Phenology Observation Datasets

To verify the performance of MCD12Q2-C6 in capturing the distribution of the “real”
SOS distribution over the NH, two ground-vegetation-phenology datasets were selected in
this study, including the Chinese Ecosystem Research Network (CERN) and Lilac-leafing
observations (Lilac).

The plant phenological-observation dataset of the CERN is the integration of plant
phenological-observation data of more than 660 plant species [57]. In this study, 21 CERN
stations all over China from 2003 to 2015 were used in the validation purpose.

The Lilac-leafing observations were collected across the continental United States from
1956 to 2014 for purple common lilac, a cloned lilac cultivar, and two cloned honeysuckle
cultivars [15]. The Lilac-leafing observation dataset is unique in both its geographic and
temporal coverage, with considerable potential to support additional research and applica-
tions [15]. Compared with other plants, lilac and honeysuckle respond predictably to air
temperature and accumulated heat in a regionally coherent pattern. Large-scale, coordi-
nated phenological monitoring of lilac and honeysuckle was initiated in the United States
to supplement the use of weather observations in agricultural forecasts [15,58]. Therefore,
in this study, 36 stations ranging from 2001 to 2014 across the United States were employed
to validate the performance of the MCD12Q2-C6 SOS maps.

The distribution of the selected 68 ground-vegetation-phenology observations are dis-
played in Figure 1. Stations with incomplete records and with missing values over 75% of
the temporal coverage were excluded in this study. In consideration of the definitional dif-
ferences between the CERN and Lilac-leafing observations, the beginning of leaf unfolding
in CERN and the first leafing date in Lilac were used as ground SOS observations.

2.2.2. Normalized-Difference Vegetation-Index Datasets

The SOS is generally negatively correlated with NDVI in spring. With earlier vegeta-
tion growth, the SOS advanced, resulting in a higher NDVI in spring. For cross-comparison
with SOS maps derived from the MCD12Q2-C6, both the SPOT-VGT in 10-day temporal
resolution from 2001 to 2014, at 950.469 m spatial resolution (http://free.vgt.vito.be/ (ac-
cessed on 15 December 2020)), and the GIMMS 3g in a half-month temporal resolution
from 2001 to 2015, at 8 km spatial resolution [59], were used in this study. The primary
input data for the SPOT-VGT and GIMMS 3g are totally independent of the MCD12Q2-C6,
making the cross-comparison between the SOS from the MCD12Q2-C6 and the NDVI series
from the GIMMS 3g and SPOT-VGT meaningful and credible.

2.2.3. Climate Variables

To attribute changes in the SOS to climate variability, the monthly averaged Ts and Pt
derived from the fifth-generation European Center for Medium Range Weather Forecasts
Reanalysis Land (ERA5-Land) datasets [55] were gridded at 0.1◦ spatial resolutions, and
the Sc from the MOD10CM at a 0.05◦ spatial resolution [56] during 2001–2018, were used
in this study.

2.2.4. Data Preparation

A summary of the gridded datasets is listed in Table 1. To match the spatial resolution
of the datasets listed in Table 1, analysis was performed at a spatial resolution of 0.05◦.
For datasets with a spatial resolution finer than 0.05◦, for example, the MCD12Q2-C6 and
SPOT-VGT, we used “average” in the resampling process, which computed the average
of all non-NODATA contributing pixels in the domain of our study. For datasets with a

http://free.vgt.vito.be/
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spatial resolution coarser than 0.05◦, such as ERA5-Land, we used “cubic-spline” during the
resampling process. Moreover, to match the temporal resolution of the MCD12Q2-C6 SOS,
the NDVI series from the 10-day SPOT-VGT and the half-month GIMMS 3g, the monthly
Ts and Pt from the RA5-Land, and the monthly Sc from MCD10CM, were aggregated
to produce a March–April–May averaged spring series in the analysis, which computed
the average value of each variable in March, April, and May for each year for the period
2001–2018.

Table 1. Summary of datasets used in this study.

Variables Datasets Time Span Temporal Resolution Spatial Resolution References/Sources

Land cover MCD12C1 C6 2001–2018 Yearly 0.05◦ Friedl and Sulla-Menashe [54]
SOS MCD12Q2-C6 2001–2018 Yearly 500 m Friedl et al. [1]

NDVI
SPOT-VGT 2001–2014 10-day 950.469 m http://free.vgt.vito.be/

(accessed on 15 December 2020)
GIMMS 3g 2001–2015 Half-month 0.083◦ Tucker et al. [59]

Ts ERA5-Land 2001–2018 Monthly 0.10◦ Muñoz [55]Pt
Sc MCD10CM 2001–2018 Monthly 0.05◦ Hall and Riggs [56]

2.3. Methods
2.3.1. Validation of the MCD12Q2-C6 SOS Using Ground Observations

Validating moderate-resolution satellite images by ground observations is a widely
used approach in previous studies, such as Chen and Yang [43] and Hall et al. [60]. In this
study, the root-mean-square error (RMSE) and bias were used as criteria to evaluate the
differences between the MCD12Q2-C6 SOS and ground observations. The RMSE and the
bias of the MCD12Q2-C6 to ground observations are expressed as Equations (1) and (2):

RMSE =

√
1
n

n

∑
i=1

(Gi −Mi)
2 (1)

Bias =
1
n

n

∑
i=1

(Gi −Mi) (2)

where Mi and Gi are the SOS value of sample i in the MCD12Q2-C6 and ground observa-
tions, respectively.

2.3.2. Changes Detection of the SOS

The temporal coverage of MCD12Q2-C6 was not long enough to produce meaningful
changes when using the linear-regression approach for most of the grid cells within the
study area. Therefore, we calculated the SOS changes by subtracting the five-year averaged
SOS during 2014–2018 from the five-year averaged values in the earlier period 2001–2005,
using Equation (3):

∆SOS = SOSl − SOSe (3)

where, SOSl is the five-year averaged SOS in the later period 2014–2018, and SOSe is the
five-year averaged SOS in the earlier period 2001–2005.

2.3.3. Attribution Analysis

To consistently compare the contributions from Ts, Pt, and Sc to SOS changes, Ts, Pt,
and Sc variations over the NH were converted into the standardized anomalies (z-score)
series in the contribution analysis, using the mean and the standard deviation of each
variable during 2001–2018 using Equation (4):

Zx =
x− µx

δx
(4)

http://free.vgt.vito.be/
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where, µx is the mean of variable x, and σx is the standard deviation of variable x, in
2001–2018.

We hypothesized that the inter-annual variability of the SOS was co-determined by
changes in Ts, Pt, and Sc. Therefore, we performed a multiple-linear-regression analysis
using the SOS as the dependent variable and Ts, Pt, and Sc as the independent variables,
which can be expressed by Equation (5):

SOS = α× Ts + β× Pt + γ× Sc + ε (5)

where, the regression coefficient α is the sensitivity of the SOS to surface air temperature
Ts, which removed the effects of Pt and Sc on the SOS; the regression coefficient β is the
sensitivity of the SOS to total precipitation Pt, which removed the effects of Ts and Sc on
the SOS; and the regression coefficient γ is the sensitivity of the SOS to the snow-cover
fraction Sc, which removed the effects of Ts and Pt on the SOS; and ε is the residual
error, representing the contribution of unknown factors to the SOS, such as temperature
sensitivity and photoperiod. Then, the contributions of Ts, Pt, and Sc to the SOS were
reflected by the terms α × Ts, β × Pt, and γ × Sc, respectively.

Finally, the relative contributions of Ts, Pt, and Sc to SOS anomalies were confirmed
using Equations (6)–(8), respectively.

CT =
|α× Ts|

|α× Ts|+|β× Pt|+|γ× Sc|
(6)

CP =
|β× Pt|

|α× Ts|+|β× Pt|+|γ× Sc|
(7)

CS =
|γ× Sc|

|α× Ts|+|β× Pt|+|γ× Sc|
(8)

where, CT is the relative contributions of Ts to SOS anomalies, CP is the relative contribu-
tions of Pt to SOS anomalies, and CS is the relative contributions of Sc to SOS anomalies.
This approach was used to quantify the contributions from climate variables to alpine
vegetation green-up on the roof of the world [44], snow-cover phenology anomalies over
the NH [61], and GPP anomalies in the Three North region of China [62].

3. Results

To explore the distribution and changes of the SOS over the NH, we first evaluated
the performance of the MCD12Q2-C6 using the CERN and Lilac observations. Then, we
explored the distribution and changes of the SOS over the NH during 2001–2018. Finally,
we attributed SOS changes from Ts, Pt, and Sc in the corresponding period.

3.1. Performance of the MCD12Q2-C6 in SOS Monitoring over the NH

Subjected to the data availability, the comparisons between SOS maps from the
MCD12Q2-C6 as well as CERN and Lilac were carried out during 2003–2015 and 2001–2014,
respectively. The comparisons between the SOS from the MCD12Q2-C6 and two ground
observations are displayed in Figure 2.

Similar to the SOS from the MCD12Q2-C6 over China (Figure 2a), there are clear
latitudinal- and altitudinal-gradient patterns for the CERN SOS observations (Figure 2b),
with an earlier SOS distributed in southeast China and a later SOS distributed in northern
China. The scatter plots between the SOS from the MCD12Q2-C6 and CERN observations
are presented in Figure 2c, in which the CERN SOS observations are consistent with the
MCD12Q2-C6 SOS results; R2 is 0.50 at the 95% confidence level. Meanwhile, the RMSE
and bias between the MCD12Q2-C6 SOS and CERN observations were 15.18 and 0.76 days,
respectively, during 2003–2015. The 14-year averaged SOS from the MCD12Q2-C6 over
the United States (Figure 2d) and the Lilac observations (Figure 2e) during 2001–2014 also
displayed similar spatial distributions. The linear-correlation coefficient, RMSE, and the
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bias between the MCD12Q2-C6 SOS and the Lilac observations for the period 2001–2014
were 0.58 (p < 0.05), 13.06, and −2.13 days, respectively.

Figure 2. The 13-year averaged SOS from the (a) MCD12Q2-C6 and (b) CERN during 2003–2015.
(c) Linear scatter plots between the SOS from the MCD12Q2-C6 and CERN during 2003–2015.
Climatology of the 14-year averaged SOS calculated from the (d) MCD12Q2-C6 and (e) Lilac during
2001–2014. (f) Linear scatter plots between the SOS from the MCD12Q2-C6 and Lilac observations
during 2001–2014.

Published study has proved that the raw in situ observations would give results that
are highly dependent on the particular locations and reporting periods of the actual weather
stations [63]. Therefore, results from ground observations only represent those accidental
circumstances rather than yield any meaningful climatology information of the SOS. The
large differences between the spatial representativeness of ground observations and satellite
observations may lead to overestimation or underestimation issues in the comparison
process, even though the MCD12Q2-C6 still captures the ground SOS distributions from
the CERN (R2 = 0.50, p < 0.05) and Lilac (R2 = 0.58, p < 0.05). Thus, in the following context,
we will use the MCD12Q2-C6 in the SOS-change analysis.

3.2. Distribution and Changes of the SOS over the NH between 2001 and 2018

The distribution of the 18-year averaged SOS over the NH from 2001 to 2018 and its
associated changes are shown in Figure 3.

The mean SOS values from the MCD12Q2-C6 for the NH natural-vegetated regions
during the 18-year period were 99 (±43) days of the year. As shown in Figure 3a, the
vegetation became green earlier in the tropical and southern United States, southern
Europe, and southeast China; however, it became green later in high Eurasia and the
mountains in the central United States and northeast China. Moreover, the SOS over the
NH was advanced by approximately 2.08 days on average, especially for Europe, China,
and Alaska, USA, for 2001–2018 (Figure 3b).
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Figure 3. The 18-year (a) averaged SOS over the NH stable vegetated landmass over the NH derived
from the MCD12Q2-C6 for 2001–2018 and (b) changes.

The 18-year averaged SOS for 11 natural-vegetation types and the associated changes
are displayed in Figure 4. Due to the spatial heterogeneity of Ts, Pt, and Sc distribution
and the different responses of vegetation to temperature, precipitation, and snow-cover
stress, there are large differences in SOS changes among the 11 natural-vegetation types
(Figure 4). During 2001–2018, most of the natural-vegetation types displayed an earlier
SOS, ranging from −10.66 days in closed shrublands to 0.58 days in permanent wetlands.
Meanwhile, mixed forests presented a delayed SOS during the same period, with changes of
4.99 ± 0.13 days.

Figure 4. The 18-year averaged SOS for 11 natural-vegetation types and associated changes.
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3.3. Attributions of SOS Changes over the NH

To attribute the changes in the SOS and further explore the response of different
land-cover types to climate change, the present study calculated the sensitivity of the SOS
to changes in spring Ts, Pt, and Sc over the NH for the period 2001–2018.

3.3.1. Sensitivity of the SOS to Changes in Temperature, Precipitation, and Snow Cover

The changes in spring Ts, Pt, and Sc, and the sensitivity of the SOS to Ts, Pt, and Sc
variations over the NH from 2001 to 2018 are shown in Figure 5.

Figure 5. The 18-year changes in (a) Ts, (c) Pt, and (e) Sc over the NH for 2001–2018 and sensitivity of
the SOS to changes in (b) Ts, (d) Pt, and (f) Sc over the NH for 2001–2018.

Driven by Arctic-amplification effects, where the warming magnitude at high latitudes
is approximately two times higher than that at low latitudes [50], the Ts anomalies had
a significant latitudinal difference from high to low latitudes over the NH from 2001 to
2018 (Figure 5a). Accompanying the Ts changes, Pt increased in the high latitudes of North
America and western Russia as well as in Southeast Asia (Figure 5c) during 2001–2018.
Meanwhile, driven by changes in the Ts and Pt, the Sc decreased significantly over the NH
for the period 2001–2018, especially in Eurasia (Figure 5d).

The sensitivity analysis results from Equation (5) showed a negative sensitivity of
the SOS to the spring Ts, of −1.21 (±0.34) days ◦C−1 across the NH from 2001 to 2018
(Figure 5a). Therefore, as the Ts increased by 1 ◦C, the SOS would be advanced by
1.21 (±0.34) days. In addition, areas with the most positive sensitivity of the SOS to
Ts were distributed in the eastern United States as well as central and eastern Asia. The
sensitivity of the SOS to the Sc was estimated as 0.62 (±0.29) days %−1; therefore, as the Sc
increased by 1%, the SOS would be delayed by 0.62 (±0.29) days. Compared with the Sc,
the positive sensitivity of the SOS to Pt was smaller at 0.24 (±0.21) days mm−1 over the
NH between 2001 and 2018.
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3.3.2. Attribution of SOS Anomalies for Different Land-Cover Types

To explore the large differences in SOS anomalies among the NH between 2001 and
2018 (Figure 4), the present study further calculated the sensitivity of the SOS to Ts, Pt, and
Sc for the 11 natural-land-cover types (Table 2). The resulting contributions from Ts, Pt, and
Sc to SOS anomalies for the 11 natural-vegetation types over the NH during 2001–2018 are
shown in Figure 6.

Table 2. Sensitivity of spring SOS to changes in Ts, Pt, and Sc.

Land Cover Types Ts Pt Sc

Evergreen needleleaf forests −0.3025 (**) 0.3188 0.6906 (**)
Evergreen broadleaf forests −0.5954 (**) 0.0006 0.0242

Deciduous needleleaf forests −0.1854 (**) 0.0848 0.7476 (**)
Deciduous broadleaf forests −0.9843 (**) −0.0369 −0.0837

Mixed forests 0.3528 (**) 0.1867 1.0522 (**)
Closed shrublands 0.1914 −0.6259 (**) 0.3070
Open shrublands −0.0550 0.1710 0.4324 (**)
Woody savannas −0.4214 (**) 0.0098 0.4309 (**)

Savannas −0.1406 −0.2374 0.6098 (**)
Grasslands −0.1736 (*) −0.3860 0.4374 (**)

Permanent wetlands −0.0913 (**) 0.2642 (*) 0.7306 (**)
Notes: one and two asterisks denote significance at the 95% and 99% levels, respectively. Others are not significant
at the 95% level.

Compared with the Pt and Sc, the Ts was the dominating factor for SOS changes
for most land-cover types, except for closed shrublands, open shrublands, and savannas,
during 2001–2018. The maximum sensitivity of the SOS to Ts occurred in deciduous
broadleaf forests, with −0.98 days ◦C−1. Except for the negative sensitivity of the SOS to
Ts, mixed forests and closed shrublands displayed positive sensitivity in the same period.
The Sc was the second driving factor of SOS anomalies over the NH. With the increase in
Sc, the SOS was delayed, and vice versa.

As shown in Table 2, the sensitivity of the SOS to Sc was up to 1.05 days %−1,
0.75 days %−1, and 0.73 days %−1 for mixed forests, deciduous needleleaf forests, and
permanent wetlands, respectively, between 2001 and 2018. Meanwhile, SOS anomalies
in evergreen broadleaf forests, deciduous broadleaf forests, and closed shrublands were
not influenced by Sc changes during the same period. Compared with the Ts and Sc,
the Pt was less important in SOS anomalies for most land-cover types, except for closed
shrublands and permanent wetlands. The competing effects between Ts and Pt are com-
plex in climate change studies, especially during spring. Although changes in the SOS
and Pt were statistically significant at the 95% confidence level for closed shrublands
and permanent wetlands, they moved in different directions. For closed shrublands, the
SOS was negatively correlated with the Pt at −0.62 days mm−1, whereas the value was
0.26 days mm−1 for permanent wetlands.

The resulting contributions from Ts, Pt, and Sc to SOS anomalies were significantly dif-
ferent for different land cover types. However, changes in the SOS can be well-represented
by Ts, Pt, and Sc, using the multiple-linear-regression equation with different coefficients.
The Ts largely explained the SOS anomalies in evergreen broadleaf forests (Figure 6b),
deciduous broadleaf forests (Figure 6d), and woody savannas (Figure 6h). Meanwhile, the
Sc dominated the SOS anomalies in evergreen needleleaf forests (Figure 6a), deciduous
needleleaf forests (Figure 6c), grasslands (Figure 6j), and permanent wetlands (Figure 6k).
However, the SOS anomalies in mixed forests were not well represented by the changes
in Ts, Pt, and Sc. Further studies are required done to determine the reasons for the SOS
anomalies in mixed forests in the NH.
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Figure 6. Contributions from Ts, Pt, and Sc to SOS anomalies in (a) evergreen needleleaf forests,
(b) evergreen broadleaf forests, (c) deciduous needleleaf forests, (d) deciduous broadleaf forests,
(e) mixed forests, (f) closed shrublands, (g) open shrublands, (h) qoody savannas, (i) savannas,
(j) grasslands, and (k) permanent wetlands for 2001–2018.

4. Discussion
4.1. Consistency between the MCD12Q2-C6 SOS and Individual Spring NDVI Series

Subjected to the temporal coverage of the SPOT-VGT and GIMMS 3g, the cross-
comparisons between the MCD12Q2-C6 SOS and individual spring NDVI series from the
SPOT-VGT and GIMMS 3g were performed for the overlapping periods 2001–2014 and
2001–2015, respectively. The 14-year averaged spring NDVI from the SPOT-VGT during
2001–2014 and the 15-year averaged spring NDVI from the GIMMS 3g during 2001–2015
are shown in (Figure 7a,b). The linear-correlation coefficients between the spring NDVI
from the SPOT-VGT and the SOS during 2001–2014, and the comparable results from the
GIMMS 3g for the period 2001–2015, are displayed in Figure 7c,d, respectively.
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Figure 7. (a) The 14-year averaged spring NDVI calculated from the SPOT-VGT during 2001–2014.
(b) The 15-year averaged spring NDVI calculated from the GIMMS 3g during 2001–2015. Correlation
coefficients between the SOS from the MCD12Q2-C6 and the spring NDVI series from (c) the SPOT-
VGT during 2001–2014 and (d) the GIMMS 3g during 2001–2015. (e) Histogram of correlation
coefficients between the SOS from the MCD12Q2-C6 and the spring NDVI series from the SPOT-VGT
and GIMMS 3g.

As shown in (Figure 7a,b), there are clear latitudinal and regional differences in
the distribution of the spring NDVI over the NH, with a higher NDVI distributed in
tropical regions and a lower NDVI distributed in arid and semi-arid regions as well as the
landmasses around the Arctic. A histogram of correlation coefficients between the SOS
from the MCD12Q2-C6 and the spring NDVI series from the SPOT-VGT and GIMMS 3g is
presented in Figure 7e. Limited by the systematic bias of the different datasets, the SOS
changes were negatively correlated with the spring NDVI from the SPOT-VGT from 2001
to 2014 by over 80% of the study area. In comparison, the results were 78% for the spring
NDVI from the GIMMS 3g during 2001–2015.

4.2. Uncertainty Analysis

Compared with ground observation, the satellite-retrieved vegetation-phenology
datasets are a priority in large-scale SOS studies. Although ground stations provide “real”
vegetation-phenology observations, their distribution and spatial representation are limited
over the NH.

Except for the spatial distribution of the SOS, this study also explored the contribution
of Ts, Pt, and Sc to SOS changes over the NH from 2001 to 2018, which clarifies the driving
factors of the SOS at a continental scale. Compared with other factors, Ts, Pt, and Sc are basic
and comprehensive variables. However, except for Ts, Pt, and Sc, changes in temperature
sensitivity [7,49] and photoperiod [47,48] also contributed to SOS changes. To explore a
general sensitivity of the SOS to changes in Ts, Pt, and Sc, the present study produced
a MAM-averaged spring Ts in the attribution analysis, which combined the changes in
Ts and temperature sensitivity in the attribution analysis. Moreover, due to the lack of
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a high-quality gridded-photoperiod dataset, this study excluded the photoperiod from
the attribution analysis. Since changes in the SOS are acclimation-adjustment processes
rather than instantaneous feedback, the individual effects of the temperature sensitivity
and photoperiod on the SOS should be taken into consideration in future studies.

5. Conclusions

Understanding the response of spring-vegetation phenology to climatic factors is
important for projecting the land-climate interactions of ecosystems under climate change.
With accelerated surface warming, snow-cover reduction, and permafrost thawing over
the NH in the past decades, it is vital to explore the distribution and attribution of the SOS
with the latest observations. Based on satellite-retrieved vegetation-phenology datasets,
ground observations, and several auxiliary datasets, this study estimated the performance
of the MCD12Q2-C6 in SOS monitoring, quantified the spatial distribution of the SOS over
the NH, and explored its attributions for the period 2001–2018.

Compared with other satellite-retrieved dynamic-vegetation dataset, the MCD12Q2-
C6 constitutes consistent and objective vegetation phenology metrics derived from satellite
data with a higher spatial resolution than that of MEaSUREs VIP and a better method-
ological approach than that of the MCD12Q2-C5. The validation results using the CERN
and Lilac vegetation-phenology observations proved the fitness of the MCD12Q2-C6 in
capturing the “real” distribution of the SOS over the NH. The linear-correlation coefficient
between the SOS from the MCD12Q2-C6 and CERN was 0.50 (p < 0.05) during 2003–2015.
Meanwhile, the comparable result between the SOS from the MCD12Q2-C6 and Lilac
observations was 0.58 (p < 0.05) during 2001–2014. In addition, changes in the SOS from
the MCD12Q2-C6 were explored and further cross-compared with two independent spring
NDVI series. The SOS is generally negatively correlated with the NDVI in spring. With
earlier vegetation growth, the SOS advanced, resulting in a higher NDVI in spring. The
SOS calculated from the MCD12Q2-C6 was negatively correlated with a spring NDVI from
the SPOT-VGT during 2001–2014, for over 80% of the study area. Meanwhile, the result
was 78% for a spring NDVI from the GIMMS 3g during 2001–2015.

Using the MCD12Q2-C6 and several ancillary datasets, this study also explored
changes in the SOS and its attribution factors. Evidence from the MCD12Q2-C6 pointed
out that the SOS was advanced by 2.08 days on average over the NH for the period
of 2001–2018, especially for Europe, China, and Alaska, United States. In addition,
the detailed-sensitivity analysis showed that the increased Ts (−1.21 ± 0.34 days ◦C−1)
and reduced SCF (0.62 ± 0.29 days%−1) were the key driving factors of the observed
SOS changes over the NH during 2001–2018. In addition, attribution of SOS anomalies
for different land-cover types pointed that the maximum sensitivity of the SOS to Ts
(−0.98 days ◦C−1) and Sc (1.05 days %−1) occurred in deciduous broadleaf forests and
mixed forests, respectively. Compared with the Ts and Sc, the role of the Pt was minor in
dominating the spring-vegetation-phenology changes during the same period.

Compared with previous studies, the present study mapped the climatology of the SOS
using the latest MCD12Q2-C6 with the best available spatial resolution, detected changes
in the SOS, and explored the response of the SOS to climate change among different land-
cover types over the NH between 2001 and 2018, which would be helpful for continental,
regional, and local spring-vegetation studies. The present study also explored the different
mechanisms controlling SOS anomalies among the 11 natural-vegetation types, which is
benefit for large-scale climate-change studies. Climate projections suggest that surface
temperature increase [64] and snow-cover decrease [65] will continue over the next several
decades. Therefore, the investigation of the SOS in climate projections should consider
the land-cover types. However, subject to the lack of a continent-scale satellite-retrieved
vegetation-phenology dataset with finer spatial resolution and limited distribution of
ground-vegetation-phenology observations, the accuracy evaluation of the MCD12Q2-C6 is
still insufficient at present. With the development of harmonized Landsat 8 and Sentinel-2
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imagery [33] at a 30 m spatial resolution, a comprehensive estimation of the MCD12Q2-C6
is expected in the future.
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