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Abstract: Occlusions are one of the leading causes of data degradation in lidar. The presence of
occlusions reduces the overall aesthetic quality of a point cloud, creating a signature that is specific
to that viewpoint and sensor modality. Typically, datasets consist of a series of point clouds with
one type of sensor and a limited range of viewpoints. Therefore, when training a dataset with a
particular signature, it is challenging to infer scenes outside of the original range of the viewpoints
from the training dataset. This work develops a generative network that can predict the area in which
an occlusion occurs and furnish the missing points. The output is a complete point cloud that is a
more general representation and agnostic to the original viewpoint. We can then use the resulting
point cloud as an input for a secondary method such as semantic or instance segmentation. We
propose a learned sampling technique that uses the features to inform the point sampling instead
of relying strictly on spatial information. We also introduce a new network structure that considers
multiple point locations and augmentations to generate parallel features. The network is tested
against other methods using our aerial occlusion dataset, DALES Viewpoints Version 2, and also
against other point cloud completion networks on the Point Cloud Network (PCN) dataset. We show
that it reduces occlusions visually and outperforms state-of-the-art point cloud completion networks
in both Chamfers and Earth Mover’s Distance (EMD) metrics. We also show that using our occlusion
reduction method as a pre-processing step improves semantic segmentation results compared to the
same scenes processed without using our method.

Keywords: lidar; aerial; point clouds; occlusion; point cloud generation; point cloud completion; 3D

1. Introduction

Point clouds have recently increased in popularity and have quickly become a core
data type among deep learning applications. Creating synthetic point clouds is a standard
generation method. One common way to do this is to sample points on a 3D mesh object,
such as a CAD model [1,2]. Another popular way to generate point clouds is to use a
laser scanner or lidar sensor. Lidar sensors come in multiple configurations, with the main
ones being mobile, terrestrial, and aerial [3,4]. Point clouds are known for their relatively
simple representation and a high degree of spatial accuracy. These qualities make them
popular in applications such as autonomous driving, utility asset monitoring, and forestry
management [5–7].

Despite their many advantages, there are several properties of point clouds that make
them difficult to process [8]. Challenges in point cloud processing such as permutation
invariance and neighborhood operations have been addressed extensively, but additional lidar
data challenges, such as occlusion caused by viewpoint, have not seen as much development.

There are three primary occlusion types: view occlusion, self-occlusion, and ambient
occlusion. These occlusion types are defined as follows:

1. View occlusion describes a scenario in which an object of interest is outside the
sensor’s field of view;
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2. Self-occlusion is when the position of the sensor causes a portion of an object to be
obscured from view. In this scenario, the object itself is causing the occlusion;

3. Ambient occlusion describes a scenario in which an object is hidden from view by a
completely different object.

Occlusions present a significant challenge when analyzing and interpreting these
data. Studies have shown that the presence of occlusions result in loss of accuracy of any
additional algorithmic steps and is a distracting artifact when presenting the scene to an
observer or analyst [9,10]. Current methods to prevent or reduce occlusions focus mainly
on data collection instead of post-processing. Taking multiple viewpoints or stitching
overlapping point clouds are common and effective ways to reduce occlusions. However,
these data collection-based methods have downsides; increased flight time can quickly
increase the cost of the collection, especially for aerial lidar applications.

This work proposes an occlusion reduction method that can be used as a post-
processing step to remove or reduce occlusions and present a more visually intuitive
and useful point cloud. Furthermore, the output from this method provides an analyst with
a fuller, richer point cloud that is easier to interpret. The occlusion reduction method can
also be a preprocessing step for a subsequent task such as semantic segmentation, instance
segmentation, registration, or classification.

The problem of occlusion reduction in aerial lidar can be approached by considering
a similar situation, point cloud completion. Point cloud completion assumes a geometric
shape from a partial set of points and tasks a network with reconstructing the entire
shape. Occlusion reduction and point cloud completion have the same objective to fill
in missing areas to make realistic final point clouds but there are several key differences.
Point cloud completion considers a single object, usually a set of points sampled from a
CAD model, in which an area is randomly cropped out. Only an object is present, so there
is no consideration of what to focus on, such as foreground versus background. In the
case of occlusion reduction, the entire scene is considered, where several areas may be
missing points. Additionally, occlusions are subject to the sensor viewpoint, so they may
have a pattern that we can learn. Because of these critical differences between the tasks
of occlusion reduction and point cloud completion, the work proposes two fundamental
changes that we can make to change an auto-encoder used for point cloud completion into
an appropriate solution for occlusion reduction.

Our specific contributions are as follows:

1. A new dataset, DALES Viewpoints Version 2, for aerial lidar occlusions. This dataset
contains over nine times the number of points per scene compared to Version 1 and
does not require point replication when generating new scenes;

2. A task-specific point sampling method that can learn to select key points that highly
contribute to point clouds features;

3. A loss function that promotes the structure transfer between point clouds with the
same underlying shape but different physical locations.

2. Related Works
2.1. Point Cloud Completion Networks

Point cloud completion is essential in 3D understanding. As more and more real-
world applications are tackled, there need to be innovative methods of handling occlusions
and viewpoint challenges [11]. This section discusses deep learning point completion
methods [12,13].

Point Completion Network [14] (PCN) was one of the first proposed techniques.
PCN presents an autoencoder that takes a partial point cloud as input and returns a
complete point cloud. More recent methods incorporate folding techniques to enforce better
spatial resolution. Point Fractal Net [15] incorporates hierarchical elements extracting point
features with different downsampling layers. Finally, methods such as TopNet [16] propose
a hierarchical tree structure to present fine-grain details. Current point completion methods
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mainly focus on the Completion3D [2,14,16], and Point Cloud Completion Network [14]
datasets which consist of synthetic point clouds constructed from the ShapeNet dataset.

2.1.1. PointNet Features

A commonality amongst all point cloud completion methods is their use of PointNet
features in the encoder. PointNet is the most common of the pointwise MLP methods and
stands out as one of the first architectures to take raw points without any intermediate
representation [6,8,17,18]. PointNet is a versatile architecture with three major applications;
classification, part segmentation, and semantic segmentation [19–21]. This work will focus
on PointNet vanilla, which refers to the specific combination of operators that transforms
the raw point cloud into a single global feature descriptor.

2.1.2. Folding-Based Decoders

Most of the methods covered use standard PointNet features for the encoding layer.
This section will describe the recent progress in the decoding layers, specifically introducing
a folding operation for point cloud reconstruction.

Initial research in point cloud decoders used a series of fully connected layers to trans-
form the codewords learned in the latent space. These fully connected layers have many
parameters, limiting the size of the point clouds which are reconstructed. Additionally,
the fully connected layers could reconstruct general shapes but struggle to convey local
geometric regions. FoldingNet introduces a unique folding operation that takes a 2D grid
as input and deforms it around a 3D shape. The authors suggest introducing a 2D grid
and then performing deformable operations, such as cutting, squeezing, and stretching,
to match the 3D surface. This 2D grid mimics the implicit surface which is described by the
3D points.

The folding operation begins at the latent space. A 2D grid, the same size as the
number of desired points, is initiated and is concatenated with the replicated codewords
from the latent space. A folding operation can produce any arbitrary point cloud shape
with a minimum two-layer perceptron. The final decoder is a concatenation of two folding
operations. Compared to a fully connected layer, the total decoder has around 7% of the
total parameters. Folding-based decoders are among the most popular decoders for point
cloud completion networks.

2.1.3. Skip Attention Network

Skip Attention-Net (SA-Net) acknowledges information loss in the local regions of the
incomplete point cloud, which is present in most point cloud completion methods. A skip
attention module is suggested to use the fine details from partial point clouds. Passing
local geometric information via the skip attention module can recreate the entire geometry
at several scales. A decoder that uses hierarchical folding is also proposed to preserve
the structure.

Like many others, SA-Net uses PointNet++ [22,23] as their backbone feature extractor
and encoder. PointNet++ uses a hierarchical structure, features are extracted at multiple
sampling levels, with the last level representing the global cloud feature. Once the point
features are calculated, the features pass to the decoder. After going through the skip
attention module, each hierarchical feature set passes to a different decoder level. A folding
block increases the number of available features.

The folding block contains two elements: the up module and the down module.
The up module replicates the features to the desired sampling rate, and the features are
combined with 2D occupancy grids. The 2D grids are passed through MLPs to increase
the dimensionality to 3D. These 3D features are considered codewords. This process
continues, concatenating each hierarchical layer with the previous one. MLPs construct a
self-attention module that highlights associations between features. Finally, the output of
this self-attention module flows to the down module.
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The down module is a spatial refinement where the expanded point features aggregate
to one local point feature. This aggregation is followed by an MLP and another instance
of the up module. The skip attention module provides the bridge between the local
features extracted in the encoder and the features expected by the decoder. Adding the
skip attention module to the traditional encoder–decoder structure fuses features of the
same region and propagates the parts of similar geometric areas. Most objects contain
some degree of symmetry, and often interlocal geometries can be used from other portions
of the imagery. The skip-attention module in SA-Net calculates the pattern similarity,
using cosine similarity, between local regions of the incomplete point cloud and local areas
of the completed points cloud. Similar regions are selectively fused using the attention-
weighted sum.

SA-Net successfully outperforms other shape completion methods in both the Comple-
tion 3D network and the KITTI [24] dataset. This result is also significant because the KITTI
dataset comprises real-world lidar information instead of the typical synthetic point clouds.

2.2. Sampling Methods

Downsampling is a standard operation in 3D point clouds [18,25]. Typically, there are
two places where one might like to downsample. The first is downsampling a point cloud
before inputting it into the network. Deep learning networks for point clouds usually take
a set number of points as the input; the problem of context versus resolution is critical.

Clipping the scenes into smaller chunks may make the point cloud more manageable,
but if it is a very dense point cloud, the clipped areas may not provide enough contextual
information for tasks such as semantic segmentation. A standard solution is downsampling
a point cloud before inputting it into the network to keep enough context and control the
number of input points.

Another area where downsampling occurs is hierarchical downsampling within the
network. For example, tasks that rely on per-point results, such as point cloud generation
or semantic and instance segmentation, rely on a hierarchical encoder [26–31]. This config-
uration extracts features from different levels created by downsampling the point clouds
with different ratios. For example, a network might extract local point features from the
input points and then downsample these points and extract local point features again from
the downsampled points. This hierarchical approach allows the network to examine the
cloud at different levels of detail and extract more information to form global features. This
sampling work will focus on solutions for hierarchical sampling.

2.2.1. Farthest Point Sampling

The most commonly used hierarchical sampling technique is farthest point sampling
(FPS) [32–35]. In this method, the first point is chosen arbitrarily. The next point chosen
is the farthest point from the initially selected point. Points are chosen continuously, each
time selecting the new point to be the point that is as far away as possible from the set of
previously selected points. This method is robust to differences in resolution within the
scene. For example, one area may have a dense resolution, while another area has a sparse
resolution. When randomly sampling, it is common to miss key points in the sparsely
populated area; however, FPS mitigates this issue by getting spatially diverse points.

2.2.2. SampleNet

Learned sampling is relatively new, with several recently proposed methods [36,37].
The most famous example is SampleNet. SampleNet [38] aims to reduce the computational
demands of point cloud processing by introducing a learned sampling. The output of
most sensors produces a large number of points, in some cases, millions of points per
scene. However, most point cloud networks can take only small batches containing several
thousand points, so sampling is standard. Traditional sampling methods, such as random
sampling or FPS, do not consider the overall task. SampleNet proposes learning the
selection at the same time as the task. The network can choose points tailored to that
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specific task by learning simultaneously. A uniquely tailored sampling can be developed for
classification, registration, and reconstruction tasks. This method also addresses the issue
of differentiability in point clouds and proposes a method to solve this [39]. SampleNet
has three primary outputs—simplified points, sampling points, and projected points.
The simplification takes the original point cloud as an input and processes them using
an MLP. The output features of the MLP are then max-pooled. Finally, the max-pooling
operation results are run through a fully connected layer that gives the simplified points.

Using the simplified points directly, as in FPS, is not ideal because point matching
is not differentiable. This lack of differentiability means that the task loss is not prop-
agated back to the sampling network. To tackle this issue, SampleNet also proposes a
soft-projection network. The soft projection operation takes the original input point cloud
and the simplified points. Then, each simplified point is transformed onto a local space,
where a weighted average of its nearest neighbors determines the projected point’s location.

The final result of this process is a projected point set. A point cloud represents
an underlying shape, so the projection better describes the underlying form rather than
choosing any particular set of points within the original point clouds. Projected points
are fed into the task during training. At evaluation time, the soft projection is replaced
with the sampling; for each projected point, the network chooses the original point with
the greatest weight. The evaluation enforces a unique set, replacing repeated points with
points selected using an FPS.

2.3. Loss Functions

The following sections examine the effect of loss functions in 3D point cloud appli-
cations. In 2D data, the mean squared error and the binary cross-entropy are the primary
reconstruction loss functions [40]. However, these cannot be used directly with 3D points
because of permutation invariance. Both mean squared error and binary cross-entropy
require a one-to-one correspondence between the prediction elements and the ground truth.

A matching function must be implemented to link corresponding points between the
datasets. Once the points are matched between the two-point sets, the distance between
the input and output points is the traditional loss. For a distance measure to be a useful
loss function for point clouds, it must satisfy several conditions. It must be differentiable
between point locations, it must have an efficient computation, and it must be robust
against outliers. Using a 3D distance as a loss function is advantageous because it measures
an actual distance instead of a “pixel” space. In a 2D image, without additional camera
information, it is impossible to tell the exact distance between objects because it is so highly
dependent on the viewpoint. For 3D point clouds, the distance can be calculated directly.
This distance will provide an advantage when coming up with our encodings. In terms of
distance metrics as direct loss functions, two main ones are explored: Chamfer distance,
and Earth Mover’s distance [41].

2.3.1. Chamfer Distance

The first requirement of the Chamfer distance [42] is the nearest neighbor matching
between point sets [43]. Nearest neighbor matching, also sometimes called greedy matching,
is the most common matching algorithm [44–46]. The treated points and the control points
are considered. The treated points are the points we are finding matches for, and the control
points are the points we are matching to. Given some criteria, the closest point in the control
set is found for each point in the treated set. In our case, this criteria will be Euclidean
distance. This method is greedy because it does not consider whether the chosen control
point has matched any other treated point. Multiple treated points can be matched to a
single control point when performing a nearest neighbor matching. Similarly, it is also
possible that some control points are not matched to any treated points. Unlike one-to-one
matching, nearest neighbors matching is much more computationally efficient than other
matching functions because of its lack of optimization criteria.
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The computational efficiency makes it ideal for a deep learning application, but this
method can struggle in point clouds with a high density of points in any part of the point
cloud. Too many treated points matched to a single control point will cause undesirable
results. CD is calculated between two point clouds by first calculating nearest neighbors
from cloud S1 to cloud S2 and then taking the sum of the minimum squared distance from
each point. This process is repeated with the nearest neighbors from cloud S2 to cloud
S1. The summation of these two calculations becomes the final distance measure. The CD
equation between two point clouds, S1 and S2, is shown below:

DCD(S1, S2) = ∑
x∈S1

minx∈S2 ||x− x′||22 + ∑
x′∈S2

minx∈S1 ||x− x′||22 (1)

As a distance measure, this has many advantages, primarily its computational effi-
ciency. The distance search for each point is independent, so the nearest neighbors search
is parallelizable. Additionally, structures such as KD trees can be utilized for more effi-
cient computation. Although the CD has many advantages, it is not bijective. As a result,
the nearest neighbors’ search does not require a one-to-one point correspondence between
the matches, allowing for point clustering in unevenly distributed point clouds.

2.3.2. Earth Mover’s Distance

Earth Mover’s Distance (EMD), sometimes called the Wasserstein distance, is the last
point cloud distance function [47]. The goal is to do the least amount of work to move
one model to match the other. Mathematically, this process takes one distribution and
moves elements to match the distribution to a target distribution. For two sets of point
clouds, a one-to-one matching is assigned from a point in one group to a point in the other.
Each potential match has an associated cost, the distance between the two matched points.
The goal is to match each point from set S1 to a different point in S2 while minimizing the
total cost. The process is a linear assignment problem, where each point is a cluster whose
weight is equal to that of all the other points.

This equation implies bijection. Each point in the reference set is matched to one
unique point in the target set and vice versa. The optimal bijection is unique and invariant
for all point locations.

Unfortunately, this calculation is expensive and impractical for a loss function. An ap-
proximate EMD is shown in Equation (2), where φ represents the best matches found in a
set number of iterations [48]. In experiments, the approximation error is relatively low, less
than 1%, as shown in [41]. Although this approximation speeds up the EMD calculation
considerably, it is still much slower than the CD.

DEMD(S1, S2) = minφ:S1→S2 ∑
x∈S1

||x− φ(x)||2 (2)

This section outlines the current state-of-the-art point cloud completion and processing
techniques. Although there has been considerable advancement in this area over the last
few years, there is still more work to be done. The next sections will focus on proposed
improvements to the hierarchical sampling and point distance loss functions.

3. Materials and Methods

The main objective of this research was to implement and evaluate our proposed
method to reduce occlusions in point clouds. This section will review the two datasets used
for evaluation, DALES Viewpoints Version 2 and the PCN dataset. We will also outline
our proposed method, specifically, a new point cloud sampling technique which allows
for feature-based sampling and a parallel network structure that generalizes the feature
learning for multiple augmentations and viewpoints.
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3.1. Point Cloud Network Dataset

The first dataset is the Point Cloud Completion Network(PCN) dataset [14]. This
dataset is derived from ShapeNet [2], which provides over 50 thousand unique models
with over 55 categories, including all 12 Pascal 3D+ types. The key features of this dataset
are the clean models and the consistent orientation.

This work follows PCN in the dataset creation to refine ShapeNet Core for the 3D
completion task. First, 30,974 objects are chosen from eight categories: airplane, cabinet,
car, chair, lamp, sofa, table, and vessel. Each mesh surface is sampled uniformly, using
16,384 total points. 2D depth images are backpropagated into 3D to form partial inputs for
each model. These backpropagations aim to simulate a view occlusion that would occur in
an actual sensor. Eight random viewpoints are chosen per cloud, resulting in eight separate
partial clouds for each object. The validation set contains 100 objects, and the testing set
contains 150 objects. The data will be two point cloud pairs; the first is a partial cloud
created from the 2D depth mapping, and the second is a fully sampled cloud created from
the original ShapeNet mesh object. Some examples of partial point clouds from the PCN
dataset are in Figure 1.

Partial Point Cloud Completed Point Cloud

(a) (b)

(c) (d)

(e) (f)

Figure 1. Examples of point clouds from the PCN dataset colored by height. The incomplete point
cloud inputs are shown on the left, and the corresponding completed point clouds are shown on the
right. (a) N = 2048, (b) N = 16384, (c) N = 2048, (d) N = 16384, (e) N = 2048, (f) N = 16384.

3.2. DALES Viewpoints Version 2 Dataset

Previous occlusion reduction work produced the DALES Viewpoints Version 1 dataset [49].
This dataset consists of 2048 input points with occluded areas and 2048 output points repre-
senting the point cloud without occlusions. Although this dataset was initially helpful, we
recreated these data to address several critical issues in the initial version. These fundamental
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issues include the low resolution per scene and the reproduction of points between the input
and output point clouds. We call this new dataset DALES Viewpoints Version 2.

The first issue was the low resolution of the DALES Viewpoints Version 1. In response to
the low-resolution issue, the resolution of the input points was increased from 2048 to 16,384.
The number of output points is the same, 2048. These additional points will help to improve
the visual quality of the results and allow us to have the resolution necessary to perform
more complex post-processing tasks such as registration and semantic segmentation.

Next, the number of occluded points and the number of viewpoints are addressed.
The off-nadir angle is increased to create the additional occluded areas, moving from
26 degrees to 30 degrees. This extra movement off-nadir will increase the occluded regions
to be about 20–25% of the whole scene. This increase in occluded areas will present a
more challenging task to the network. The number of available viewpoints also increases,
moving from one per scene to four per scene. This setup simulates a platform moving from
each corner of the scene, allowing multiple occlusion scenarios per scene. Figure 2 shows a
single DALES Viewpoints Version 2 scene simulated from four distinct flying patterns.

(a) (b)

(c) (d)

Figure 2. A single scene from DALES Viewpoints Version 2, colored by height, with occlusions from
multiple flight patterns. (a) Northwest to Southwest, (b) Southwest to Southeast, (c) Southeast to
Northwest, (d) Northeast to Northwest.
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Finally, the DALES Viewpoints Version 2 reframes the occlusion reduction problem
as a point inpainting problem. Instead of accepting input points and then regenerating
the entire scene, both the input points and the occluded area, the network is tasked with
generating only the occluded region. The whole scene is constructed by combining the
input and output points. This restructuring has two advantages; the first is that it allows the
network to generate a higher-resolution scene while also reducing the parameters needed;
instead of rendering 16,384 points, only 2048 need to be generated. Additionally, the overall
scene is still a higher resolution of 18,882 points. This reconstruction also gives the network
a more challenging task: instead of recreating points, the network must generate a set of
totally new points. Image examples of several point cloud scenes from the new DALES
Viewpoints Version 2 dataset are in Figure 3. Each scene chip has a greater total area,
displaying a complete scene. Each chip also has a higher resolution and more occluded
areas than the DALES Viewpoints Version 1 dataset.

Occluded Input Desired Output Combined

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Examples of corresponding scenes from the DALES Viewpoints 2 data set, colored by
height. The occluded input is in the left-hand column, the desired output is in the middle, and the
combined full point cloud is on the right.

3.3. Eigen-Based Heiarchical Sampling

Our first objective for this proposal is to design a task-specific hierarchical sampling
for our encoder. In point cloud generation algorithms, most encoders have a hierarchical
structure in which we calculate local point features for downsampled versions of the point
clouds. This hierarchical downsampling approach is very prevalent in the deep learning
and image processing fields, with U-Net [50] being one of the most famous examples.
PointNet++ popularized this idea in point clouds, using FPS.

We propose a different approach to learned sampling designed to select points based
on anticipated areas of focus. Although the context of the entire scene is essential, we will
only need to generate occluded points in some areas of the scene. We do not necessarily
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want an even sampling, but instead, we want to adjust our sampling ratios to sample
heavily in detail areas and have a less frequent selection in areas with low detail. We define
this as areas with a high frequency of change in one or more directions, which can be
expressed using local eigenvalues. Figure 4 shows an example of how local eigenvalues
can express important information about the scene contents.

First, we perform a radius search on the points to establish local point neighborhoods.
P represents the entire point cloud of dimension N × 3 and Ps corresponds to each point in
the cloud, where s ranges from 1 to N. Pk represents one of the points in the set of K nearest
neighbors of Ps. We calculate a covariance matrix Σs using the following equation, where
µs denotes the mean of the K nearest neighbors of Ps.

Σs =
K

∑
k=1

(Pk − µs)
T · (Pk − µs) (3)

Σs is a 3× 3 matrix whose eigenvalues are defined as the roots of the following equation:

det(Σs − λs I) = |Σs − λs I| = 0 (4)

Input λ1
λ1+λ2+λ3

λ2
λ1+λ2+λ3

λ3
λ1+λ2+λ3

Colored by Height

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4. Visual example local eigenvalues representing different spatial properties on the DALES
Viewpoints Version 2 dataset. The original input point cloud is colored by height. The Eigen
feature representations are colored by value, with warm tones indicating high values and cool tones
indicating low values.
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We extract the eigenvalues and concatenate them with our point set to form our initial
features of size N × 6. The first three dimensions are the X, Y, and Z, and the final three are
the eigenvalues of size N× 3 for each point. We then run this set of features through a series
of shared multilayer perceptrons of size 64→ 128→ 256→ 512, with the final output layer
being the same size as the number of points that we wish to downsample to, in this case,
size M. The output of the shared multilayer perceptrons are local features for each point, of
size N ×M. We then integrate a self-attention module that helps establish relationships
between each point feature. For each point Ps, we want to establish an attention score, as,j
for j = 1, 2, . . . , N.

First, the attention scores are calculated using the following equation:

as,j =
exp(MLP(Ps|βh)

T ·MLP(Pj|βl))

∑N
n=1 exp(MLP(Ps|βh)T ·MLP(Pn|βl))

(5)

MLP represents a multilayer perceptron with distinct input and output parameters.
We defined βh and βl to have input layers equal to the downsampling and output layer
of size 64. The calculation of the attention score is equivalent to a matrix multiplication
between MLP(Ps|βh)

T and MLP(Pj|βg) followed by a soft-max operation. Once we ob-
tain the values for as,j, we run the original input through another multilayer perceptron
MLP(Pj|βh) to obtain our final attention matrix. This attention matrix is then added to the
original inputs to form our final output. This final step is below.

Ps ←− Ps +
N

∑
j=1

as,j ·MLP(Pj|βg) (6)

After the self-attention is applied, we still have features of size N × M. Our final
desired output is a feature of size M × 3. We then calculate the variance of each point
feature and remove points that have low variance features. Finally, we perform a max-
pooling operation on the set of attributes and take the top M unique points contributing
to the feature set. The final output is the index of points in set N × 3, which we will use
to select our downsampled set of size M× 3. The entire sampling architecture is shown
in Figure 5 and the feature selection method is in Figure 6. Finally, we can observe our
Eigen feature sampling when compared against the FPS in Figure 7. We see that there are
distinct differences between our sampling and the FPS. The FPS is evenly sampled, where
our Eigen feature sampling is denser in some areas than others. The edges in the Eigen
sampling, especially those around the occluded areas, have much more points than in the
FPS scenes.

XYZ Points

N × 3

Eigen Features

N × 3

⊕

shared MLPshared MLP shared MLP Max Pool

Self-Attention Feature Selection M ×D

Figure 5. The diagram of the proposed hierarchical sampling algorithm is shown above. The input is
our set of points P and the output is the downsampled results Q.
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Figure 6. This figure shows a diagram of the variance-based feature selection. After the Eigen features
are calculated, using a combination of local eigenvalues and MLPs, we obtain a feature descriptor
for each point in the point cloud. We remove any point with low variance in the descriptor from
consideration and then perform a max-pooling operation. The selected features are those with the
highest feature response.

Original Farthest Point Sampling Eigen Feature Sampling

(a) (b) (c)

(d) (e) (f)

Figure 7. Visual comparison of farthest point sampling and our proposed Eigen feature sampling.
Each point cloud is colored by height. The original input point cloud is shown in the right-hand
column at the actual resolution of 2048 points. The center column shows downsampling to 1024 points
using farthest point sampling. The right-hand column shows our Eigen feature sampling, also at 1024.
(a) N = 2048, (b) N = 1024, (c) N = 1024, (d) N = 2048, (e) N = 1024, (f) N = 1024.
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3.4. Point Correspondence Loss

This section presents a method to address the shortcomings of loss functions that
require point-to-point correspondence. Existing strategies have focused on developing
a secondary representation to address the underlying structure. We will take a different
approach and guide the features into a standard representation for any points set depicting
the same scene.

The first step is to develop a method that suggests alternative point correspondences
given an input point cloud. For example, one common way to do this is point jittering. Point
jittering is a standard data augmentation method where random Gaussian noise is added
to the point cloud to make an alternative representation. As a method of augmentation,
this allows a slight improvement in the overall performance. However, random Gaussian
noise in any direction causes a blurring of the scene and places points in new locations that
may or may not represent the underlying structure. Therefore, we propose a new method
to suggest alternative point correspondences using a Gaussian mixture model to split the
scene into a set number of components and resample based on the characteristics of the
individual components.

The Gaussian function is a widely used descriptor, having only two parameters for a
normalized Gaussian: the mean and the standard deviation. This lack of parameters limits
our ability to describe complex data.

Suppose the data we wish to model is too complex to be expressed as a single Gaussian
distribution. In that case, we consider this data as multimodal, having several different
areas or components with high probability. Thus, we express our model as a mixture of
elements where each element is in a single parametric form: the Gaussian. We define a
Gaussian mixture as i ∈ {1, . . . , L}, where L represents the number of components, which
is given explicitly. Each Gaussian has the following parameters, µi that defines the mean,
Σi which expresses the covariance and φi which is a mixing coefficient which fulfills the
following equation:

L

∑
i=1

φi = 1 (7)

The Gaussian function, N , is defined below, where P describes our three-dimensional
data points.

N (P | µi, Σi) =
1√

(2π)L|Σi|
exp

(
−1

2
(P− µi)

TΣ−1
i (P− µi)

)
(8)

We define the probability of any given data point in the equation below.

Prob(Ps) =
L

∑
i=1

φiN (Ps | µi, Σi) (9)

Next, we use Expectation Maximization (EM) to solve for the component assignments, Ci
for each datapoint Ps ∈ P for the model parameters φi, µi, and σi. We perform the expectation
by calculating the components for each data point given the current model parameters.

γs,i = Prob(Ci | Ps, φ, µ, σ) =
φiN (Ps | µi, σi)

∑L
j=1 φjN

(
Ps | µj, σj

) (10)

According the the calculated γs,i, we update φi, µi and σ2
i

φi =
N

∑
s=1

γs,i

N
(11)

µi =
∑N

s=1 γs,iPs

∑N
s=1 γs,i

(12)
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σ2
i =

∑N
s=1 γs,i(Ps − µi)

2

∑N
s=1 γs,i

(13)

The updates continue until the parameters θt at iteration t are below a predetermined
threshold, ε.

|θt − θt−1| ≤ ε (14)

We can perform clustering directly by using the Bayes Theorem to calculate the
probability of any data points Ps belonging to component Ci.

Prob(Ci | Ps) =
Prob(Ps, Ci)

Prob(Ps)
=

Prob(Ci)Prob(Ps | Ci)

∑K
j=1 Prob

(
Cj
)

Prob
(

Ps | Cj
) =

φiN (Ps | µi, σi)

∑L
j=1 φjN

(
Ps | µj, σj

) (15)

We can sample new points according to the given component parameters. We show
examples of the input points, clusters, and resampled data in Figure 8.

Original Clustered Resampled

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. Example of DALES Viewpoints scenes processed with a Gaussian mixture model. The left-
hand side is the original scene colored by height. The middle column shows the scene clusters,
colored with a random RGB combination for each unique cluster. Finally, the right-hand side shows
the resampled scenes, colored by height. These scenes have 100 components each.
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3.5. Parallel Network

For each input point cloud, we generate one alternative point correspondence cloud.
We then run both the input and the alternative point cloud through the network. We wish to
compare the latent spaces between the input and the alternative point cloud and guide the
feature set to create the same latent space features for both these point clouds. To enforce
this, we use a Mean Squared Error (MSE) loss to compare the latent spaces between the
processed input point clouds and the processed alternate point clouds. Equation (16)
expresses the MSE, where B represents the latent space vector from the original input point
cloud, and B̂ represents the latent space vector from the noise added point cloud.

We wish to compare the features across each network feature layer, the three hier-
archical layers of the encoder and the codewords. For the codewords, we can compare
the features directly because we have a consistent representation of the features’ locations.
However, the encoder layer features do not have a consistent order because of the permu-
tation invariant nature of the point clouds. The shared MLP maintains this permutation
invariance, but the MSE requires that we have element-to-element matching to compare
the distance between the values. For this reason, we perform max-pooling on the encoder
layers to transform them from local point features to a global feature.

LMSE = ||B− B̂||2 (16)

The MSE loss will make up a portion of our overall loss function. To complete the loss
function, we will also take a distance measure between the output of the decoder from the
input point cloud and the output of the decoder from the alternative point cloud.

For distance metrics, we use both the EMD and the CD. Previous works [41] have
noted that some metrics may perform better than others depending on the loss function.
Therefore, we use CD for one output and EMD for the other when measuring the outputs.
In this way, we can incorporate both metrics and improve our overall results. Equation (17)
shows the total loss function, where EMD indicates the Earth Mover’s distance and CD
indicates the Chamfer distance.

Ltotal = EMD(P, GT) + CD(P̂, GT) + MSE(B, B̂) (17)

The entire network diagram is shown in Figure 9.

Figure 9. The proposed architecture is shown above. Loss is calculated between each feature layer,
and we compare the feature layers using an MSE loss. This feature loss is added to the overall loss.
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4. Results

The final architecture is as follows: the general network architecture is an encoder–
decoder construction. The encoder consists of PointNet++ features, replacing the initially
proposed FPS with our Eigen Feature Selection Sampling. We want our Eigen Feature
Selection radius to be large enough to provide local context, but small enough that our
sampling remains efficient. After experimentation, we chose our radius for the Eigen
calculation to be 1

64 th of the total scene size. The decoder is a folding-based architecture,
using multiple discontinuous 2D grids as our initial folding shape. In addition, we employ
skip-attention connection between each of the similarly sized layers between the encoder
and decoder, respectively. This encoder-decoder represents the model. For training, we
initialize two models and train in parallel, comparing the original input to its noisy output,
averaging the weights after each training step.

Each network is trained with 400 epochs on a single NVIDIA Titan RTX. We use an
Adam optimizer with an initial learning rate of 0.001. We maintain the reporting metrics
for point cloud completion networks and use the mean CD, from Equation (1), similar
to the Point Cloud Completion Network(PCN) results. We also report the mean EMD,
from Equation (2), as an additional metric. We also comment on qualitative results, focusing
on the visual completeness and overall realism of the point clouds.

4.1. DALES Viewpoints Version 2

The initial proposal of this network was to improve the appearance and subsequent
post-processing of single-shot aerial lidar. We tested the proposed network on the DALES
Version 2 dataset to assess this specific application. The performance is evaluated qualita-
tively by looking at the realism, general visual reconstruction and by examining the mean
point distances between the predicted point cloud and the ground truth.

Figure 10 shows the overall results of our proposed network on the DALES Viewpoints
Version 2 dataset. We see the original point cloud with occlusions, which is the input to
our network, and the generated points combined with the original point cloud to make a
fuller, richer point cloud with less occluded areas. We note that some of the most significant
occluded areas are on the ground and around vegetation. Important points have been
added in appropriate locations in these areas, and the occlusion is significantly reduced.
We also see that our network is situationally aware. In Figure 10f, ground points are added
appropriately under vegetation, where they would be expected, but the network refrains
from adding additional points in unnecessary areas, such as beneath buildings. Finally,
the algorithm is slightly noisy, with regions around structured objects, such as buildings or
flat ground with some noise around the generated areas, which would not be present in a
true unoccluded point cloud.

Input Point Cloud Final Point Cloud

(a) (b)

Figure 10. Cont.
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(c) (d)

(e) (f)

Figure 10. Example scenes of the reconstructed point clouds from our method on the DALES
Viewpoints Version 2 dataset. All point clouds are colored by height.The images show the input point
cloud, with occlusions on the left-hand side, with the right hand-side showing the same point cloud
with additional points added by our network to fill the occluded area.

Figure 11 shows the reconstruction progression throughout the training. We can see
that in the initial epochs, the network learns the occlusion locations, while later epochs
make small changes and add detail levels.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Progression of the reconstruction operation on the DALES Viewpoints Version 2 dataset.
All point clouds are colored by height. The network begins to identify the occlusion areas in the
initial epochs and then refines the details in later epochs: (a) 10 epochs, (b) 50 epochs, (c) 100 epochs,
(d) 150 epochs, (e) 200 epochs, (f) 250 epochs, (g) 300 epochs, (h) Ground Truth.

We can observe how close the predicted and ground truth points match visually.
Figure 12 shows examples of the input point clouds, as well as the generated and ground
truth point clouds shown side by side. We observe a high degreeof fidelity between the
predicted and the ground truth. The proposed network is successful in learning to mimic
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the expected shape and can predict multiple occluded areas, as seen in Figure 12b,k in
separate parts of the scene. We note that the predicted point clouds have a slightly smoother
contour and more jitter or random noise than the ground-truth clouds.

Original Predicted Ground Truth

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 12. The above image shows examples of areas of occlusion that have been reconstructed
with our method using the DALES Viewpoints Version 2 dataset. All point clouds are colored by
height. The initial input point clouds are in the left-hand column, our predicted point clouds are in
the middle column, and the right-hand column depicts the ground truth.

We can also observe the quantitative results shown in Table 1. We show that our
method outperforms all other state-of-the-art techniques in both the Chamfer and EMD
metrics. We implemented six other state-of-the-art networks, choosing from the top per-
formers in the Completion3D and PCN dataset. We saw that our results had a significantly
lower distances in both categories. We also observe that the parallel network setup and the



Remote Sens. 2022, 14, 2955 19 of 26

combination of using both the EMD and Chamfer’s distance in our loss function allows for
consistent performance across both metrics, unlike other networks.

Table 1. Overall results comparing our method to current state-of-the-art point cloud completion
methods on the DALES Viewpoints Version 2 dataset.

Overall Results: DALES Viewpoints Version 2 Dataset

Method Mean CD ↓ Mean EMD ↓
TopNet [16] 0.002167 0.071537

PCN [14] 0.001802 0.068283

ATLASNet [51] 0.000474 0.067515

PointNetFCAE [16] 0.000468 0.112022

SA-Net [52] 0.000433 0.039664

FoldingNet [53] 0.000424 0.097007

Ours 0.000375 0.035604

4.2. Point Cloud Completion Network

We also compared the overall results on our network to published methods on the PCN
dataset. Although point cloud completion on synthetic data is not our direct application,
we wanted to test our network in an “apples-to-apples” comparison against other point
cloud completion methods.

Figure 13 shows the performance of our network on the PCN dataset. In this configu-
ration, there are 2048 input points and 16,384 output points. The network is tasked with
rearranging the set number of points to describe the shape fully. Our network successfully
produced a wide variety of shapes throughout all eight classes. We can see from Figure 13
that the network can even produce convincing results from a severely reduced shape, as in
the case of the chair image in Figure 13j.

Original Predicted Ground Truth

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13. Cont.
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(j) (k) (l)

Figure 13. The above image shows examples of our method when applied to the PCN dataset.
All point clouds are colored in the horizontal direction. Original occluded point clouds are on the
left-hand side, the predicted clouds are in the center column, and the ground-truth point clouds are
in the right-hand column.

We also consider the results regarding the distance from the ground truth cloud.
Table 2 shows the overall results; in this case, we only consider the Chamfer distance for
consistency with other synthetic point cloud methods. Our network outperforms all others
in the overall mean Chamfer distance and five out of the eight classes. Although we did
not develop our method for this specific application, this shows that it could be used for a
wide variety of applications and data types.

Table 2. Point cloud completion comparison on Point Cloud Completion dataset in terms of per point
Chamfer distance ×104 (lower is better).

Overall Results: Point Cloud Completion Network Dataset

Methods Mean Plane Cab. Car Chair Lamp Couch Table Boat

AtlasNet [51] 17.69 10.37 23.4 13.41 24.16 20.24 20.82 17.52 11.62

FoldingNet [53] 16.48 11.18 20.15 13.25 21.48 18.19 19.09 17.8 10.69

PCN [14] 14.72 8.09 18.32 10.53 19.33 18.52 16.44 16.34 10.21

TopNet [16] 9.72 5.5 12.02 8.9 12.56 9.54 12.2 9.57 7.51

SA-Net [52] 7.74 2.18 9.11 5.56 8.94 9.98 7.83 9.94 7.23

Ours 7.10 2.51 10.29 10.29 8.07 6.54 6.64 6.61 5.87

4.3. Discussion
4.3.1. Eigen Feature Selection Sampling

This section explores the effects of the proposed sampling method, compared to other
common sampling techniques. For these experiments, we use the DALES Viewpoints
Version 1 dataset. First, we examine the implementation using FPS sampling, then with the
learned SampleNet, and finally, our Eigen Feature Sampling implementation. The quantita-
tive results are in Table 3.

We note that the original implementation with FPS has a mean Chamfer of 0.00208
and a mean EMD of 0.07595. The SampleNet learned sampling was less successful when
compared to the initial FPS implementation. The mean Chamfer increased from 0.00208 to
0.00282, and the mean EMD increased from 0.07594 to 0.13035. We speculate two reasons
for this worsened performance: the first is that this sampling method is exclusively tested
with small CAD models. Secondly, we note that this sampling method is a pre-processing
step for downsampling before the initial task. Thus, additional improvements may be
needed to transform the SampleNet implementation for scene-based hierarchical sampling.

Finally, we implement our Eigen feature selection. We find that this gives an improve-
ment over the FPS and SampleNet methods. We report a mean Chamfer of 0.00184 and a
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mean EMD of 0.05244. These results present an 11.6% improvement in mean Chamfer over
the FPS method and a 31% improvement in mean EMD.

Table 3. Comparison of the proposed sampling method against FPS and SampleNet learned sampling.
Lower is better.

Ablation Study: Eigen Feature Sampling

Sampling Method Mean CD ↓ Mean EMD ↓
FPS 0.00208 0.07594

SampleNet [38] 0.00282 0.13035

Eigen Feature Sampling (Ours) 0.00184 0.05244

4.3.2. Point Projection for Stabilizing Point Correspondences

This next section examines the overall performance when comparing the single net-
work implementation to our proposed Point Correspondence Loss with a parallel network
setup. The overall performance results on the DALES Viewpoints Version 1 dataset are in
Table 4. We find that this setup significantly improves both metrics, with a 19.7% improve-
ment in the mean Chamfer and a 34.8% improvement in the mean EMD from the single
network implementation. Comparing feature channels between original and augmented
feature levels allows a more robust network structure.

Table 4. Overall results on the DALES Viewpoints dataset comparing the original SA-Net implemen-
tation with the same implementation and our proposed point correspondence loss.

Ablation Study: Point Projection for Stabilizing Point Correspondences

Method Mean CD ↓ Mean EMD ↓
Single Network 0.00208 0.07594

Parallel Network (Ours) 0.00167 0.04951

4.3.3. Timing

The parallel structure of our network has unique implications for the timing of our
training. Each epoch consists of two runs of our network, one for the initial input and one
for the augmented point cloud from the Gaussian mixture model. When comparing the
timing for training between a single network and our parallel network, we find that we
only need half as many epochs, with a single epoch representing two runs through our
shared weight model.

We also see a slight timing improvement when comparing our Eigen Feature Selection
Sampling and the FPS. The Eigen Feature Selection performs a single neighborhood opera-
tion at the initialization, while the FPS performs a neighborhood operation for each epoch.
While this results in a significant improvement in the timing of the sampling module,
the overall runtime is comparable with Skip Attention Net.

4.4. Semantic Segmentation

The final experiment that we run is the semantic segmentation experiment. Previous
experiments have focused on comparing our generative network against other generative
networks. This experiment focuses on the overall realism of our generated points and
whether they can be successfully processed as part of a larger workflow.

Table 5 shows the semantic segmentation’s overall results. We use the PointNet++
architecture to perform the semantic segmentation; the network is trained using the ground
truth point clouds without occlusions. Dataset 1 refers to the semantic segmentation using
only the point clouds with occlusions. Dataset 2 refers to the semantic segmentation using
the point clouds with occlusions that have been supplemented with points generated by
our occlusion reduction method. We can see that the overall accuracy of Dataset 2 is 18%
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higher, and the mean IoU increases by 5.5% when we generate the missing occluded points.
We can see a significant increase in the semantic segmentation results when we generate a
fuller point cloud that more closely matches the network’s data. These results also show
that our generated points are realistic enough to be semantically segmented by a deep
learning algorithm.

Table 5. Comparison of the overall accuracy and mean IoU of the semantic segmentation results
using the PointNet++ architecture. Dataset 1 refers to the DALES Viewpoints Version 2 dataset using
only the input points containing occlusions. Dataset 2 refers to the DALES Viewpoints Version 2,
which includes the input points with occlusions, supplemented by our generated points.

Semantic Segmentation: Overall Results

Overall Accuracy Mean IoU

Dataset 1 0.685 0.395

Dataset 2 0.865 0.451

Table 6 shows the per-class IoU. We can see that the semantic segmentation outperformed
in six of the eight overall classes. The largest increase was in the vegetation and ground classes.
This increase is expected because most occlusions happen in the ground vegetation and building
classes, as these are the largest and most commonly occurring classes.

Table 6. Comparison of per class IoU, semantic segmentation results using the PointNet++ archi-
tecture. Dataset 1 refers to the DALES Viewpoints Version 2 dataset using only the input points
containing occlusions. Dataset 2 refers to the DALES Viewpoint Version 2, which includes the input
points with occlusions, supplemented by our generated points.

Semantic Segmentation: Per Class IoU

ground buildings cars trucks poles power lines fences veg

Dataset 1 0.740 0.713 0.266 0.262 0.204 0.660 0.148 0.556

Dataset 2 0.871 0.724 0.245 0.256 0.214 0.667 0.152 0.769

Examples of the visual results of the semantic segmentation are seen in Figures 14 and 15.
We can see that the overall semantic segmentation is successful. The reconstructed scenes are
not overly noisy, and we can distinguish objects clearly. We see some confusion between the
vegetation and car and truck class in Figure 15d, which is reflected in the per-class IoU results.
Overall, the semantic labels successfully classified the vast majority of points. These results are
a great indication that we can use our generated points as a pre-processing step to improve the
performance in a wide variety of secondary tasks.

(a) (b)

Figure 14. Cont.
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(c) (d)

Figure 14. These images show examples of the scenes from Dataset 2. Dataset 2 contains the initial
occluded input point clouds and our generated points. These have been combined and then run
through a semantic segmentation network. Each scene has 18,882 total points with eight classes. Each
point is labeled by object category: ground (blue), vegetation (dark green), power lines (yellow), poles
(dark orange), buildings (red), fences (light orange), trucks (light green), cars (light green), unknown
(dark blue).

(a) (b)

(c) (d)

Figure 15. These images show examples of the scenes from Dataset 2. Dataset 2 contains the initial
occluded input point clouds and our generated points. These have been combined and then run
through a semantic segmentation network. Each scene has 18,882 total points with eight classes. Each
point is labeled by object category: ground (blue), vegetation (dark green), power lines (yellow), poles
(dark orange), buildings (red), fences (light orange), trucks (light green), cars (light green), unknown
(dark blue).



Remote Sens. 2022, 14, 2955 24 of 26

5. Conclusions

Data degradation and occlusions are considerable problems in point cloud process-
ing. Recent research has focused on various applications, such as classification, semantic
segmentation, instance segmentation, registration, and tracking. While research into these
areas has made significant progress, most focus on heavily curated datasets. For exam-
ple, ShapeNet and ModelNet present beautiful evenly sampled point cloud objects from
synthetic CAD models. Even real-world datasets such as ScanNet and S3DIS present
high-resolution, multi-scan data.

Collecting complete data may not always be an option in every scenario. Cost, time,
and view angle limitations can result in point clouds with a significant number of occlusions.
These occlusions make it difficult for human analysts to comprehend and can be difficult to
process when most models are trained with complete, labeled datasets without occlusions.

This work frames occlusion reduction as a point cloud inpainting problem. We take
successful algorithms in the point cloud completion space and add several key features
to be successful in real-world occlusion reduction. We make two specific proposals: we
propose a point cloud sampling method that can sample based on learned features within
the point clouds instead of spatial resolution. We also offer a model structure and a point
cloud loss configuration, which performs data augmentation to reduce the negative effects
of different scanning patterns on the final reconstruction result.

We implemented these suggestions and showed that they significantly improved
results when compared to current state-of-the-art point cloud completion networks. In ad-
dition to offering improved performance against other networks in traditional synthetic
datasets, such as PCN, we also tested the method on two real-world datasets, using aerial
LiDAR. This experiment is significant because it is the first quantifiable result for the point
cloud completion problem on a real-world dataset. Previous experiments, for example, on
the KITTI [24] dataset, only show a qualitative visual impact on real-world data, but no
measurable results from the reconstruction.

We showed that our generated point clouds are closer to the ground truth when
compared against other point cloud completion methods and are more visually appealing
than their occluded counterparts. In addition to this, we demonstrated that these occlusion
reduced point clouds, which could also be used as a pre-processing step in conjunction with
other point cloud processing techniques. We trained a PointNet++ semantic segmentation
network on the ground-truth point clouds from the DALES Viewpoint Version 2 data set.
We then tested the semantic segmentation results on the point clouds with occlusions
and the point clouds that had been filled in using our point clouds generation technique.
We showed that point clouds enhanced using our method have an increased mean IOU
compared to those that have not been enhanced with our methods.
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