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Abstract: The matching problem for heterologous remote sensing images can be simplified to the
matching problem for pseudo homologous remote sensing images via image translation to improve
the matching performance. Among such applications, the translation of synthetic aperture radar
(SAR) and optical images is the current focus of research. However, the existing methods for SAR-to-
optical translation have two main drawbacks. First, single generators usually sacrifice either structure
or texture features to balance the model performance and complexity, which often results in textural
or structural distortion; second, due to large nonlinear radiation distortions (NRDs) in SAR images,
there are still visual differences between the pseudo-optical images generated by current generative
adversarial networks (GANs) and real optical images. Therefore, we propose a dual-generator
translation network for fusing structure and texture features. On the one hand, the proposed network
has dual generators, a texture generator, and a structure generator, with good cross-coupling to
obtain high-accuracy structure and texture features; on the other hand, frequency-domain and spatial-
domain loss functions are introduced to reduce the differences between pseudo-optical images
and real optical images. Extensive quantitative and qualitative experiments show that our method
achieves state-of-the-art performance on publicly available optical and SAR datasets. Our method
improves the peak signal-to-noise ratio (PSNR) by 21.0%, the chromatic feature similarity (FSIMc) by
6.9%, and the structural similarity (SSIM) by 161.7% in terms of the average metric values on all test
images compared with the next best results. In addition, we present a before-and-after translation
comparison experiment to show that our method improves the average keypoint repeatability by
approximately 111.7% and the matching accuracy by approximately 5.25%.

Keywords: SAR-to-optical image translation; dual-generator; texture and structure fusing; SAR and
optical image matching

1. Introduction

Different sensors can capture different features. In particular, synthetic aperture
radar (SAR) images and optical images are widely used in map production [1]. Optical
images conform to human vision, but are susceptible to objective factors such as cloud
interference [2], whereas SAR images are immune to the imaging defects of optical images
and have the advantages of all-weather acquisition, a long line of sight, and some level
of penetration capability. Therefore, the fusion of optical and SAR images is widely used
in pattern recognition [3], change detection [4], and landslide recognition [5]. However, a
prerequisite for the fusion of SAR and optical images is high-accuracy matching. In recent
decades, many feature matching methods for homologous images have been proposed, e.g.,
SIFT [6], SURF [7], ORB [8], and LoFTR [9]. The LoFTR method mainly focuses on dense
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matching of weakly textured regions of homologous images. However, these methods are
applicable to homologous image matching, but not to SAR and optical image matching
because NRDs are not considered. Recently, to address severe NRDs between SAR and
optical images, Cui et al. [10] implemented MAP-Net by introducing spatial pyramid
aggregated pooling (SPAP) and an attention mechanism to improve the matching precision
of optical and SAR images. Li et al. [11] proposed the radiation-variation insensitive feature
transform (RIFT) for different types of images. Cui et al. [12] extended scale invariance
based on RIFT, but their method was more sensitive to noise, and Li et al. [13] proposed
the locally normalized image feature transform (LNIFT) using a local normalization filter
to convert images of different modalities into the same intermediate modality, turning
the multimodal image matching problem into a homogenous matching problem, and
making different modalities similar to improve the matching accuracy. In recent years,
deep learning has been successfully introduced into the field of remote sensing image
processing for applications such as image matching [14], image fusion [15], and image
translation [16]. It is noteworthy that generative adversarial networks (GANs) can better
convert multimodal image matching problems into homologous matching problems. Many
researchers have implemented matching between SAR and optical images based on SAR-
to-optical translation. Quan, D. [17] proposed a generative matching network (GMN) to
generate a corresponding simulated optical image for a real SAR image or a pseudo-SAR
image for a single optical image, and then input these matched pairs into a matching
network to infer whether they matched, achieving improved performance in SAR–optical
image matching. Merkle et al. [18] jointly implemented the translation of single-polarization
SAR images into optical images by means of a conditional generative adversarial network
(CGAN) and verified the possibility of using the transformed pseudo-optical images for
image matching. A k-means clustering-guided generative adversarial network (KCG-
GAN) [19] has also been proposed for use in SAR and optical image matching, and the
results showed that the quality of SAR-to-optical translation limits the matching accuracy
between SAR and optical images. Therefore, the key question that needs to be urgently
answered is how to design a high-precision SAR-to-optical translation method to enhance
the SAR–optical matching performance.

In recent decades, many researchers have proposed methods, which are mainly based
on image enhancement algorithms and pseudo-colour encoding algorithms, for SAR–
optical translation. In the field of image enhancement, a wavelet transform-based method
was used for SAR image denoising to achieve SAR image enhancement from the perspec-
tive of noise suppression, but it was found that there was a possibility of increasing the
amount of other types of clutter [20]. By introducing visualization algorithms to map
high-dynamic-range SAR amplitude values to low-dynamic-range displays via reflectivity
distortion, entropy maximization can be preserved to improve the visual quality of SAR
images by maximizing the display information [21], and an adaptive two-scale enhance-
ment method can be used to visualize all greyscale information and enhance local target
peaks [22]. However, the previous approaches enhance SAR images by means of visual-
ization methods that cannot effectively resolve differences caused by nonlinear radiation
distortion (NRDs). In the field of pseudo-colour coding, the pixels of SAR images are
mainly encoded to make them as similar as possible to those of optical images [23–25];
however, a greyscale image is obtained instead of a three-channel image, and because the
results are highly dependent on the specifics of the model, the performance may decline in
practical use. The images processed by image enhancement algorithms and pseudo colour
encoding algorithms are enhanced in terms of visual features, but both types of algorithms
ignore the NRDs differences between SAR images and optical images; consequently, large
differences in structure and texture remain in the resulting pseudo-optical images compared
to the real optical images. For the task of automatic image colorization, a deep learning
model can be used to predict the pixel-by-pixel colour histogram suitable for the colouring
task without structurally transformed image pairs [26]. In the field of SAR image pro-
cessing, a convolutional neural network (CNN)-based approach has been used to convert
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a single-polarization greyscale SAR image into a full-polarization image [27]. Moreover,
generative adversarial networks (GANS) [28] are widely used for image translation. A
dialectical GAN using conditional Wasserstein generative adversarial network–gradient
penalty (WGAN-GP) loss functions has been applied to translate Sentinel-1 images into
TerraSAR-X images [29]. Based on the proposal of a boundary equilibrium generative
adversarial network (BEGAN) [30], an adversarial network was designed for SAR image
generation, and it was demonstrated that the proposed method could improve the classifi-
cation accuracy [31]. Many GAN-based methods have also been used in SAR-to-optical
transformation, such as Pix2pix [32], CycleGAN [33], S-CycleGAN [34], and EPCGAN [16].
Pix2pix and CycleGAN can both be used for SAR–optical translation, but they have certain
drawbacks. With Pix2pix, the structure is vague, and some objects have missing structural
information, whereas CycleGAN can retain structural information, but ignores land cover
information; accordingly, S-CycleGAN combines the advantages of CycleGAN, preserving
both land cover information and structural information. He, W. [35] proposed a model
combining residual networks and CGANs that can simulate optical images from multitem-
poral SAR images. However, there is a major problem with such methods; they usually
rely on a network structure designed for optical image transformation, with only simple
modifications, which is not applicable for SAR–optical translation because of the differences
between the imaging principles of SAR images and optical images. Based on this under-
standing, a feature-guided method based on a discrete cosine transform (DCT) loss has
been proposed [36], and edge information has been used to guide SAR–optical translation
to obtain pseudo-optical images with better edge information [37]. Similarly, EPCGAN con-
siders the edge blurring problem for pseudo-optical images, and uses gradient information
to preserve the edge information in generated pseudo-optical images. The pseudo-optical
images obtained in this way contain better structural information, but a situation may arise
in which structure and texture features cannot be effectively fed back, resulting in poor
and unrealistic imaging effects due to the inability to achieve deep fusion of the structure
and texture features. Inspired by [38], in which more natural image inpainting results
were obtained by means of a two-branch network, we also treat SAR-to-optical image
translation as consisting of two complementary subtasks, namely, texture translation and
structure translation, considering the NRDs of SAR images. We reduce the gap between
pseudo-optical and real optical images by introducing a spatial-domain loss function and
frequency-domain loss function, and thus, obtain pseudo-optical translation results with
high accuracy (see Figure 1).
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Figure 1. High-quality image translation results obtained with our method. The pseudo-optical im-
age is the image generated from the SAR image through our method. 
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Figure 1. High-quality image translation results obtained with our method. The pseudo-optical
image is the image generated from the SAR image through our method.

In this paper, we propose a dual-generator translation network that fuses texture and
structure features to obtain enhanced pseudo-optical images for SAR–optical matching.
The proposed network consists of dual generators, bidirectional gated feature fusion (Bi-
GFF) [38], and contextual feature aggregation (CFA) [39] modules and discriminators. First,
the input SAR image is decomposed into structure and texture features based on the Canny
edge detection algorithm [40]. Then, the structure features and greyscale map are input
into the structure encoder, the SAR image is input into the texture encoder, and the feature
maps of different dimensions from the texture encoder and structure encoder are stitched
together to join the structure and texture decoder to obtain texture features and structure
features, which are then fused and refined by the Bi-GFF module and CFA module. Finally,
a frequency-domain loss function (focal frequency loss [41]) and a spatial-domain loss
function (mean square error) are introduced to reduce the gap between the pseudo-optical
and real optical images during the learning process. We present comparative experiments
and ablation experiments conducted on the same dataset. The experimental results show
that the proposed method yields images with clearer textures and structures that are used
to achieve better evaluation results that exhibit better visual properties than the results of
Pix2pix [32], CycleGAN [33], S-CycleGAN [34], and EPCGAN [16].

Specifically, the major contributions of this paper are as follows:

1. We propose a dual-generator translation network that fuses texture and structure
features to improve the matching of SAR images with optical images. The proposed
network includes both structure and texture generators, and the structure and texture
features are coupled with each other by these dual generators to obtain high-quality
pseudo-optical images.

2. We introduce spatial-domain and frequency-domain loss functions to reduce the
gap between pseudo-optical images and real optical images, and present ablation
experiments to prove the superiority of our approach.

3. To demonstrate the superiority of the proposed algorithm, we select training and
test data from public datasets, and we present keypoint detection and matching
experiments for comparisons between pseudo-optical images and real optical images
and between real optical images and SAR images before and after translation.

The remainder of this paper is organized as follows. The proposed dual-generator
translation network fusing texture and structure features for SAR–optical image translation
is introduced in Section 2. We present the experimental results and matching applications
in Section 3. A discussion is provided in Section 4. Finally, the conclusions are summarized
in Section 5.
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2. Methods

In this section, we introduce the proposed dual-generator translation network fusing
texture and structure features for SAR–optical image matching. As illustrated in Figure 2,
the dual generators provide feedback to each other to obtain the structure and texture
features, which are fused by the Bi-GFF and CFA modules. In the following subsections,
we present the details of the generators, discriminator, and loss functions.
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Figure 2. The generators and discriminator of our network. Generators: The SAR-to-optical transla-
tion process is divided between two generators, i.e., a structure generator and a texture generator,
which borrow each other’s depth features, and the Bi-GFF and CFA modules are used to refine and
fuse the features from these structure and texture reconstruction branches to form the final pseudo-
optical image. Discriminator: The texture branch guides texture generation, and the structure branch
guides structure generation.

2.1. Generators

As shown in Figure 2, the generator part of the SAR-to-optical translation network is
divided into two generators, namely, a structure generator and a texture generator, which
are based on U-Net variants [42], where final features from the structure encoder and
multilevel features from the texture encoder are added to the texture decoder via a skip
connection, and final features from the texture encoder and multilevel features from the
structure encoder are added to the structure decoder via a skip connection. We also show
the structural details of the texture and structure generators in Table 1. In the encoder stage,
the SAR image to be translated is passed to the texture encoder, and the greyscale image
and edge structure image of the SAR image to be translated are passed to the structure
encoder. In the decoder stage, the structure features from the structure encoder are used
as constraints in the texture decoder, and the texture features from the texture encoder
are used as constraints in the structure decoder. This coupled dual-generator structure
ensures good complementarity between the structure and texture features. Compared with
normal convolutional layers, partial convolutional layers can better capture the information
of irregular boundaries [42]; accordingly, considering the severe scattering noise, NRD,
and large irradiance differences between optical and SAR images, we also use partial
convolutional layers instead of normal convolutional layers. In addition, we add skip
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connections in the CFA module to join together low-level and high-level features during
the fusion of the structure and texture features to ensure robust prediction results.

Table 1. Details of the texture and structure generator architecture. PConv is defined as a partial
convolutional layer with the specified filter size, stride, and padding. Concat indicates that structure
features and texture features are connected by a skip connection.

Module Name Filter Size Channel Stride Padding Nonlinearity

Texture/Structure (T/S) Encoder

T/S Input 3/2
T/S Encoder PConv1 7 × 7 64 2 3 ReLU
T/S Encoder PConv2 5 × 5 128 2 2 ReLU
T/S Encoder PConv3 5 × 5 256 2 2 ReLU
T/S Encoder PConv4 3 × 3 512 2 1 ReLU
T/S Encoder PConv5 3 × 3 512 2 1 ReLU
T/S Encoder PConv6 3 × 3 512 2 1 ReLU
T/S Encoder PConv7 3 × 3 512 2 1 ReLU

Texture Decoder

S Encoder-PConv7 512 - - -
Concat (S Encoder-PConv7, T Encoder-PConv6) 512 + 512 - - -

T Decoder PConv8 3 × 3 512 1 1 LeakyReLU

Concat (T Decoder PConv8, T Encoder-PConv5) 512 + 512 - - -
T Decoder PConv9 3 × 3 512 1 1 LeakyReLU

Concat (T Decoder PConv9, T Encoder-PConv4) 512 + 512 - - -
T Decoder PConv10 3 × 3 512 1 1 LeakyReLU

Concat (T Decoder PConv10, T Encoder-PConv3) 512 + 256 - - -
T Decoder PConv11 3 × 3 256 1 1 LeakyReLU

Concat (T Decoder PConv11, T Encoder-PConv2) 256 + 128 - - -
T Decoder PConv12 3 × 3 128 1 1 LeakyReLU

Concat (T Decoder PConv12, T Encoder-PConv1) 128 + 64 - - -
T Decoder PConv13 3 × 3 64 1 1 LeakyReLU

Concat (T Decoder PConv13, T Input) 64 + 3 - - -
Texture Feature 3 × 3 64 1 1 LeakyReLU

Structure Decoder

T Encoder-PConv7 512 - - -
Concat (T Encoder-PConv7, S Encoder-PConv6) 512 + 512 - - -

S Decoder PConv14 3 × 3 512 1 1 LeakyReLU

Concat (S Decoder PConv14, T Encoder-PConv5) 512 + 512 - - -
S Decoder PConv15 3 × 3 512 1 1 LeakyReLU

Concat (S Decoder PConv15, T Encoder-PConv4) 512 + 512 - - -
S Decoder PConv16 3 × 3 512 1 1 LeakyReLU

Concat (S Decoder PConv16, T Encoder-PConv3) 512 + 256 - - -
S Decoder PConv17 3 × 3 256 1 1 LeakyReLU

Concat (S Decoder PConv17, T Encoder-PConv2) 256 + 128 - - -
S Decoder PConv18 3 × 3 128 1 1 LeakyReLU

Concat (S Decoder PConv18, T Encoder-PConv1) 128 + 64 - - -
S Decoder PConv19 3 × 3 64 1 1 LeakyReLU

Concat (S Decoder PConv19, S Input) 64 + 2 - - -
Structure Feature 3 × 3 64 1 1 LeakyReLU
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After the texture and structure generators have obtained their respective features,
the Bi-GFF module is applied to fuse the structure and texture features to enhance their
consistency, and then, the CFA module is applied to further refine the generated pseudo-
optical image.

Bidirectional Gated Feature Fusion (Bi-GFF): This module follows the structure and
texture generators, and implements information exchange between the structure and
texture features, as shown in Figure 3. The texture features are denoted by ft, the structure
features are denoted by fs, and the features after information exchange can be expressed as:

f́s = fs ⊕ (Ws(Concat( ft, fs))⊗ ft) (1)

f́t = ft ⊕ (Wt(Concat( ft, fs))⊗ fs) (2)

where ⊕ denotes elementwise addition, ⊗ denotes elementwise multiplication, and Ws and
Wt denote the convolutional layer mapping functions with a convolutional kernel of 3.
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Finally, f́s and f́t are fused at the channel level to obtain the fused features:

f = Concat
(

f́s, f́t

)
(3)

Contextual Feature Aggregation (CFA): As shown in Figure 4, the CFA module is
introduced to determine which information in the SAR image contributes to SAR-to-optical
translation, thereby enhancing the correlation between image features, and ensuring the
overall consistency of the image.
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First, the feature map F is divided into ∑n
i=1 Fxi 3 × 3 patches after being encoded

in convolutional layers, and attention scores are obtained by a contextual attention layer,
which calculates the cosine similarity between each pair of patches and applies the softmax
function to this similarity to obtain the corresponding attention score. Then, the attention
scores are multiplied by the 3 × 3 patches to obtain a reconstructed feature map. The
contextual attention layer is defined as:

F = EncoderConv(F) (4)

sAttention =

exp(
〈

Fxi
‖Fxi ‖2

,
Fxj
‖Fxj‖2

〉
)

∑n
i=1 exp(

〈
Fxi
‖Fxi ‖2

,
Fxj
‖Fxj‖2

〉
)

(5)

Frec =
n

∑
i=1

Fxi ∗ sAttention (6)

where Fxi and Fxj denote the i-th and j-th patches, respectively; sAttention denotes the
attention scores; and Frec denotes the reconstructed feature map.

Then, multiscale semantic features are captured from the reconstructed feature map
by using different dilation rates:

f k
rec = Convk(Frec) (7)

where Convk( .) denotes the k-th dilated convolution layer, k ∈ {1, 2, 4, 8}.
A weight generator module is defined to produce pixel-level prediction maps, which

are split into four weight modules:

W1, W2, W4, W8 = Slice(W) (8)

Frec = (F1
rec ⊗W1)⊕ (F2

rec ⊗W2)⊕ (F4
rec ⊗W4)⊕ (F8

rec ⊗W8) (9)
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Finally, we use skip connections to splice F and f1 to prevent semantic information
from being lost.

F́ = DecoderConv(Concat(Frec, F)) (10)

2.2. Discriminator

The discriminator [38] distinguishes pseudo-optical images from real optical images
by means of two branches: a texture branch and a structure branch. The last layer of the
discriminator uses the sigmoid nonlinear activation function, and the structure branch has
the same architecture as the texture branch. In the structure branch, the mapping for edge
detection is first obtained by a residual network module [43] and a convolutional layer
with a kernel size of 1. Then, the structure features are obtained by splicing with greyscale
features. In the texture branch, the pseudo-optical image is directly mapped to obtain
texture features, and finally, it is stitched to compute the adversarial loss. In addition, we
apply spectral normalization [44] in the network to effectively solve the instability problem
during network training.

2.3. Loss Functions

The algorithm proposed in this paper includes two generators, a texture generator
Gt and a structure generator Gs, and a discriminator to learn the translation from the
SAR image domain {xi}n

i=1 ∈ X to the optical image domain {yi}n
i=1 ∈ Y. The original

SAR image xSAR
i , the greyscale image xgray

i of the SAR image, and the edge image xEdge
i

of the SAR image are passed to the generators to generate the texture features ft through
the texture generator and the structure features fs through the structure generator. The
texture and structure features are then fused by the Bi-GFF module βBi−GFF and the CFA
module σCFA to obtain the pseudo-optical image Ypseudo. The discriminator D is similarly
divided into two branches, i.e., a structure branch Ds and a texture branch Dt. The edge
structure image YEdge

pseudo obtained through edge detection convolution is input into the
structure branch of the discriminator, the generated pseudo-optical image is input into
the texture branch of the discriminator, and finally, the features from the two branches
are concatenated in the channel dimension to distinguish a real optical image Yreal from a
generated pseudo-optical image Ypseudo:

The generator is defined as:

Ypseudo = σCFA

(
βBi−GFF

({
ft, fs =

(
Gt

(
xSAR

i

)
, Gs

(
xgray

i , xEdge
i

))}))
(11)

The discriminator is defined as:

Real/Fake = D
({

Dt

(
Ypseudo

)
, Ds

(
YEdge

pseudo, YGray
pseudo

) })
(12)

where ( .) denotes the projection function implemented by the convolutional layer and { .}
denotes concatenation in the channel dimension.

Reconstruction Loss: We define the reconstruction loss in terms of the differences
between a real optical image and the corresponding pseudo-optical image obtained after
the Bi-GFF and CFA modules have fused the structure and texture features.

(1) The mean square error (MSE) loss function is adopted to reduce the difference in
the spatial domain between the pseudo-optical and real optical images at the pixel level.
This loss function has the following form:

lrec
MSE = E

[
‖Ypseudo −Yreal‖2

]
(13)

(2) The focal frequency loss (FFL) function is adopted to reduce the difference between
the pseudo-optical and real optical images in the frequency domain, and to reduce the
artefacts in the pseudo-optical image. The FFL function was proposed in [41]. We first use
the 2D discrete Fourier transform (DTF) to separately adjust the frequency representations
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of the pseudo-optical image and the real optical image, dividing each frequency value
by
√

HW for standard orthogonalization to obtain a smooth gradient, and adjusting the
spatial frequency weights of each image by means of a dynamic spectral weight matrix
w(u, v). Then, the FFL function can be expressed as:

F(u, v)Y
pseudo = ∑H−1

x=0 ∑W−1
y=0 f (x, y)·e−i2π( ux

H +
vy
W ) (14)

F(u, v)Y
real = ∑H−1

x1=0 ∑W−1
y1=0 f (x1, y1)·e−i2π( ux

H +
vy
W ) (15)

lrec
FFL =

1
HW ∑H−1

u=0 ∑W−1
v=0 w(u, v)

∣∣∣F(u, v)Y
pseudo − F(u, v)Y

real

∣∣∣2 (16)

where F(u, v)Y
pseudo denotes a frequency value in the pseudo-optical image, F(u, v)Y

real
denotes the corresponding frequency value in the real optical image, (u, v) represents the
coordinates of a spatial frequency in the frequency spectrum, H ×W denotes the size of
the image, (x, y) denotes the coordinates of an image pixel in the spatial domain, f (x, y) is
the corresponding pixel value, and w(u, v) denotes the dynamic spectral weight matrix.

(3) The VGG loss is used for the perceptual loss of the pseudo-optical and real optical
images in terms of high-level semantic information. The pseudo-optical and real optical
images are input into the VGG model pretrained on ImageNet [45] to obtain their high-level
semantic information. The VGG loss can then be expressed as:

lrec
VGG = E

[
3

∑
i
‖ϕi

VGG

(
Ypseudo

)
− ϕi

VGG(Yreal)‖1

]
(17)

where ϕi
VGG(.) denotes the projection function of the i-th pooling layer of the pretrained

VGG network model.
(4) A style loss is used to ensure that SAR images are translated into pseudo-optical

images with the same style as real optical images. The style loss can be expressed as:

lrec
Style = E

[
3

∑
i
‖µi

VGG

(
Ypseudo

)
− µi

VGG(Yreal)‖1

]
(18)

where µi
VGG(.) = ϕi

VGG(.)
T , with ϕi

VGG(.) denoting the Gram matrix constructed from the
activation map ϕi

VGG. We choose to use the style loss [46] as demonstrated by Sajjadi
et al. [47], based on its effectiveness in eliminating checkerboard artefacts.

Adversarial Loss: We define the adversarial loss in terms of a criterion for similarity
evaluation between the pseudo-optical image and the real image.

(1) The GAN loss function is adopted to ensure that the generated pseudo-optical
image is as close as possible to a real optical image. The pseudo-optical image and the
corresponding real optical image are passed into the structure and texture branches, respec-
tively, of the discriminator to ensure the consistency of the structure and texture. The GAN
loss can be expressed as:

lGAN = minGmaxDE
[
log D

(
Yreal , YEdge

real

)]
+E
[
log 1− D

(
Ypseudo, YEdge

pseudo

)]
(19)

Structure Loss: We define the structure loss by comparing the structure features
generated by the structure generator with the structure features of the real optical image.

(1) The MSE loss function is adopted to ensure that the structure features generated by
the structure generator are close to those of a real optical image. The texture MSE loss can
be expressed as:

lStruture
MSE = E

[
‖ fs −YEdge

pseudo‖2

]
(20)
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Texture Loss: Distinct from the reconstruction loss, we define the texture loss by
comparing the texture features generated by the texture generator with the texture features
of the real optical image.

(1) The MSE loss function is adopted to ensure that the texture features generated by
the texture generator are close to those of a real optical image. The texture MSE loss can be
expressed as:

lTexture
MSE = E

[
‖ ft −Ypseudo‖2

]
(21)

(2) The FFL function is adopted to reduce the differences between the texture features
generated by the texture generator and those of a real optical image in the frequency
domain, and to reduce the artefacts in the texture features:

F(u, v)Y
ft
= ∑H−1

x=0 ∑W−1
y=0 f (x, y)·e−i2π( ux

H +
vy
W ) (22)

F(u, v)Y
real = ∑H−1

x1=0 ∑W−1
y1=0 f (x1, y1)·e−i2π( ux

H +
vy
W ) (23)

lTexture
FFL =

1
HW ∑H−1

u=0 ∑W−1
v=0 w(u, v)

∣∣∣F(u, v)Y
ft
− F(u, v)Y

real

∣∣∣2 (24)

where F(u, v)Y
ft

denotes the frequency value of the texture features generated by the texture

generator, F(u, v)Y
real denotes the corresponding frequency value of the real optical image,

(u, v) represents the coordinates of the spatial frequency in the frequency spectrum, H ×W
denotes the size of the image, (x, y) denotes the coordinates of an image pixel in the spatial
domain, f (x, y) is the corresponding pixel value, and w(u, v) denotes the dynamic spectral
weight matrix.

In summary, the total loss is written as:

L= λ1(lrec
MSE) + λ2(lrec

FFL) + λ3lrec
VGG + λ4lrec

Style + λ5lGAN

+λ6

(
lStruture
MSE + lTexture

MSE

)
+ λ7

(
lTexture
FFL

) (25)

where λ1, λ2, λ3, λ4, λ5, λ6, and λ7 are weighting coefficients of the loss functions, and the
values set for our experiments are λ1 = 10, λ2 = 50, λ3 = 0.1, λ4 = 250, λ5 = 0.1, λ6 = 1,
and λ7 = 5.

3. Experiments

To demonstrate the effectiveness of our method, comparative experiments with
Pix2pix [32], CycleGAN [33], S-CycleGAN [34], and EPCGAN [16] are presented. The
results of qualitative visualizations show that our method achieves the best results in terms
of both structure and texture. In quantitative experiments, three image quality assess-
ment (IQA) metrics are used, namely, the peak signal-to-noise ratio (PSNR), the structural
similarity (SSIM) [48], and the chromatic feature similarity (FSIMc) [49]. A higher PSNR
indicates higher image quality, and the SSIM and FSIMc reflect the similarity between the
pseudo-optical and real optical images, taking a value of 1 if the two images are identical.
Experiments show that our method improves the PSNR by 21.0%, the FSIMc by 6.9%, and
the SSIM by 161.7% in terms of the average metric values on all test images compared with
the next best results, and the considerable SSIM improvement, in particular, proves the
superiority of our dual-generator translation network in producing pseudo-optical images
with better structure features.

We also present ablation experiments to demonstrate the effectiveness of the adopted
loss functions. The superiority of the loss functions is demonstrated by qualitative visualiza-
tion results that show the gradual texture and structure enhancement of the pseudo-optical
images. In addition, quantitative experimental results show that adding the MSE loss
function to the method presented in [38] can improve the PSNR by 2.3%, the FSIMc by 1.5%,
and the SSIM by 13.9% in terms of the average metric values on all test images, whereas
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adding the FFL function can similarly improve the PSNR by 4.6%, the FSIMc by 0.7%, and
the SSIM by 6.9%) on average, thus proving the superiority of these loss functions.

To verify the improvement in the matching performance, the translation results of our
network are applied in keypoint detection and matching experiments, and experiments
are presented to compare the performance before and after image translation. These
experiments show that our method can improve the overall repeatability of image keypoint
detection before and after translation by 111.7% on average for different keypoint detection
methods and Euclidean distance thresholds, and the matching performance is also greatly
improved. In the following subsections, we give the details of the comparative, ablation,
and matching experiments.

3.1. Implementation Details
3.1.1. Datasets

The SEN1-2 datasets [50] contain 282384 optical and SAR images from all parts of the
world and all meteorological seasons, and the size of each image block is 256 × 256 pixels.
These data can be used for SAR-to-optical translation tasks. Similar to the research in [16],
we selected a training set consisting of 2100 images from SEN1-2 that depict many kinds
of land cover, such as mountains, forests, lakes, rivers, buildings, farmland, and roads.
Figure 5 shows some of the image blocks selected as training samples. At the same time, we
selected 222 images as the test set. The test images from SEN-1 and SEN-2 were only used
to validate the performance of the proposed method, and were not used during training.
The test SAR images were used for SAR-to-optical translation. The optical image blocks
in our test set were only used to calculate the image quality of the results of the proposed
method for SAR-to-optical translation. Figure 6 shows some of the image blocks selected as
test samples. The same dataset was used for retraining in all comparative experiments to
effectively evaluate the robustness of the network on the same dataset.
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3.1.2. Training Details

Our experiments were based on the deep learning framework PyTorch [51]. The GPU
used was an NVIDIA GTX3090, and the experimental operating system environment was
Windows 10. During training, the Adam optimization algorithm [52] was used to train
the network model. First, a learning rate of 2 × 10−4 was used in the initial training stage;
then, once the model stabilized, the learning rate was adjusted to 5 × 10−5 to fine tune
the model parameters, and the gradient of the batch normalization layer was frozen at the
same time. The generator learning rate was 10 times that of the discriminator learning rate,
which was 2 × 10−5. It took 10 h to train our model on the dataset using a batch size of
1. In the comparative experiments, the Adam optimizer with β1 = 0.5 and β2 = 0.999 was
used for the optimization of the Pix2pix, CycleGAN, S-CycleGAN, and EPCGAN models.
Specifically, the generators and discriminators were trained using the Adam optimizer for
200 epochs, and at 100 epochs, the learning rate began to be linearly reduced to 0.

3.2. A Comparison of Textural and Structural Information

To demonstrate the superiority of our proposed method, Figure 7 presents a visual
comparison of the different SAR-to-optical translation methods. We can see that, as is
evident from Test 2 in Figure 7, Pix2pix fails to preserve the details in the pseudo-optical
image, with some shift in style and poor results in terms of both texture and structure. The
CycleGAN results are visually superior to those of Pix2pix, containing better texture and
structure information, but the details of the structure are blurred and unclear. S-CycleGAN
produces images that are relatively clear in texture, but the structure features are distorted.
EPCGAN adds gradient information branching on the basis of S-CycleGAN; as a result, its
structure information is improved, but the gradient information and the backbone network
cannot be fully coupled, and structure or texture features may be sacrificed to some extent
to fit the model, which leads to poor results. In contrast, our proposed method yields the
best texture and structure information in Tests 1–4.
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3.3. Results and Analysis

We quantitatively evaluated Pix2pix [32], CycleGAN [33], S-CycleGAN [34], EPC-
GAN [16], and our method using the Test 1–4 data to demonstrate the superiority of our
method. In addition, we computed the mean values of the PSNR, SSIM, and FSIMc metrics
for 222 pairs of test images to further demonstrate the strong robustness of our method.
The experimental results show that our method achieves large improvements in Tests 1–4,
improving the PSNR by 21.0%, the FSIMc by 6.9%, and the SSIM by 161.7% in terms of
the average metric values on all test images compared with the next best results, as shown
in Table 2.

The main reasons for these findings are as follows. The performance of Pix2pix is
relatively weak because it has less constrained loss conditions, whereas CycleGAN, which
is based on the idea of cycles with more strongly constrained SAR-to-optical translation,
produces better texture and structure features by virtue of the addition of cyclic loss
functions. However, CycleGAN still faces problems with image translation and artefacts.
S-CycleGAN improves the CycleGAN network by adding an MSE loss function to solve
the above problems. However, the NRDs-induced differences between SAR and optical
images still lead to poor structural information in the generated pseudo-optical images.
To address this shortcoming, EPCGAN incorporates gradient information to guide the
SAR-to-optical translation process, thereby improving the structural similarity and visual
effect. Compared with the other methods, our proposed dual-generator translation network
fuses texture and structure information to achieve considerable enhancement of both the
texture and structure features, thus achieving the best performance in these tests.
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Table 2. IQA results for different methods obtained by averaging the evaluation metrics over 222 pairs
of images in the test set. The best values for each evaluation index are shown in bold.

IQA DATA Pix2pix CycleGAN S-CycleGAN EPCGAN Ours

PSNR

Test 1 11.2090 11.8234 13.6493 13.1767 19.0867
Test 2 12.0022 13.0566 14.3403 15.7064 20.2105
Test 3 13.1578 12.8568 16.5878 16.6274 20.1606
Test 4 11.6502 14.7996 14.1882 16.0283 20.2383

all_test
(Average) 11.2212 12.0270 14.4801 14.7253 17.8228

FSIMc

Test 1 0.5962 0.6062 0.6262 0.6210 0.7357
Test 2 0.5980 0.6071 0.6712 0.6623 0.7736
Test 3 0.5222 0.5622 0.6651 0.6859 0.7793
Test 4 0.5383 0.7011 0.6942 0.7005 0.7837

all_test
(Average) 0.5719 0.6055 0.6699 0.6611 0.7167

SSIM

Test 1 0.0711 0.0413 0.0566 0.0746 0.4574
Test 2 0.0825 0.0642 0.0909 0.1318 0.4586
Test 3 0.0567 0.0601 0.2367 0.2326 0.4911
Test 4 0.0616 0.2023 0.1697 0.2042 0.4263

all_test
(Average) 0.0528 0.0533 0.1204 0.1264 0.3308

3.4. Ablation Experiment

In our proposed method, we incorporated multiple loss functions to improve the
translation quality. To demonstrate the superiority of our method, we conducted ablation
experiments to demonstrate the effects of the different loss functions, as manifested in
the variations of the three evaluation metrics. The gradual improvement in the texture
and structure of the pseudo-optical images, as shown in the qualitative visualization
results in Figure 8, proves the superiority of adding these loss functions. The quantitative
experimental results further show that adding the MSE loss function can improve the PSNR
by 2.3%, the FSIMc by 1.5%, and the SSIM by 13.9% in terms of the average metric values
on all test images, whereas adding the FFL function can further improve the PSNR by 4.6%,
the FSIMc by 0.7%, and the SSIM by 6.9% on average, as shown in Table 3.
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Table 3. IQA results in the ablation experiment obtained by averaging the evaluation metrics over
222 pairs of images in the test set. The best values for each evaluation index are shown in bold.

IQA DATA Guo [38] Ours (+MSE Loss) Ours (+MSE Loss +FFL Loss)

PSNR

Test 5 22.6563 22.8161 23.3868
Test 6 13.0547 13.8798 16.4298
Test 7 16.4138 16.5352 19.4805
Test 8 22.5349 22.7283 24.8288

all_test (Average) 16.6327 17.0269 17.8228

FSIMc

Test 5 0.7227 0.7255 0.7271
Test 6 0.6789 0.7026 0.7231
Test 7 0.7745 0.7837 0.8068
Test 8 0.7747 0.7734 0.7824

all_test (Average) 0.7007 0.7117 0.7167

SSIM

Test 5 0.3237 0.3344 0.3756
Test 6 0.2493 0.3038 0.3818
Test 7 0.3534 0.4079 0.4459
Test 8 0.4897 0.5259 0.5364

all_test (Average) 0.2714 0.3092 0.3308

3.5. Matching Applications

To further verify the superiority of our proposed algorithm, the results of comparative
experiments on the repeatability of keypoint detection and matching between real optical
and generated pseudo-optical (O-PO) images and between real optical and real SAR (O-
S) images with different Euclidean distance thresholds and different keypoint detection
methods are shown in Table 4. The higher the keypoint repeatability is, the higher the
likelihood that the extracted keypoints are correctly matched [53]. From the results, it can be
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seen that our method can be applied for keypoint detection well. The smaller the Euclidean
distance threshold is, the more obvious the improvement in keypoint repeatability. The
average improvements for different keypoint detection methods are 58.4%, 77.6%, 104.1%,
138.6%, and 179.9% for Euclidean distance thresholds of 3.0, 2.5, 2.0, 1.5, and 1.0, respectively.
Overall, the average repeatability of image keypoint detection before and after translation
is improved by 111.7%, indicating that our translation method can substantially improve
the number of potential matching points and further improve the root mean square error
(RMSE) of correctly matched point pairs.

Table 4. O-PO: real optical images and generated pseudo-optical images; O-S: real optical images
and real SAR images. Experimental comparison of O-PO and O-S image keypoint repeatability under
different Euclidean distance thresholds and keypoint detection methods.

Keypoint
Repeatability

Keypoint
Detection Methods

Optical Keypoint
Number

PO/S
Keypoint Number

Translation
Mode

Euclidean Distance Threshold (L2)
3.0 2.5 2.0 1.5 1.0

Test 1
% Rep.

SuperPoint [54] 603 488/288
O-PO 56.64% 45.55% 30.25% 20.18% 9.93%
O-S 26.23% 19.25% 11.07% 7.46% 4.09%

Key.Net [55] 494 593/419
O-PO 40.66% 36.40% 28.07% 22.37% 15.29%
O-S 19.27% 14.68% 9.20% 5.91% 3.72%

SIFT [6] 564 600/597
O-PO 51.20% 42.27% 34.36% 23.19% 14.95%
O-S 39.28% 29.80% 22.22% 13.61% 5.50%

SURF [7] 530 517/542
O-PO 53.30% 46.03% 36.87% 26.93% 17.38%
O-S 35.45% 24.63% 16.79% 10.26% 5.41%

BRISK [56] 613 604/585
O-PO 67.05% 61.13% 49.96% 39.77% 24.65%
O-S 39.23% 30.55% 21.70% 14.02% 6.51%

Harris [57] 587 599/576
O-PO 50.08% 38.11% 27.65% 18.21% 9.10%
O-S 40.24% 30.26% 18.57% 10.83% 4.64%

PC-Harris [58] 532 458/581
O-PO 53.13% 43.23% 30.30% 19.80% 9.90%
O-S 40.61% 29.11% 18.86% 9.88% 5.03%

Hessian 569 563/588
O-PO 55.83% 44.52% 33.92% 22.61% 11.84%
O-S 41.83% 33.36% 24.20% 12.96% 5.36%

We use the number of correct matches (NCM) and the RMSE to quantify the improve-
ment in matching performance. The experimental results for the O-PO and O-S image
matching performance on the images from Tests 1–4 under different matching methods
are compared in Table 5. It can be seen that the pseudo-optical images obtained using our
method for heterologous source image matching have high application value. In matching
experiments using the radiation-variation insensitive feature transform (RIFT), as shown
in Figure 9, there are improvements in both the NCM and RMSE. Specifically, the average
NCM increases by 137 on the Test 1–4 data, and the average RMSE accuracy improves by
5.25%. The experimental results obtained using the scale-invariant feature transform (SIFT),
position scale orientation SIFT (PSO-SIFT), LoFTR [9], and SAR-SIFT also show that our
method successfully converts heterologous images that cannot be correctly matched into
pseudo homologous images that can be correctly matched, providing a new approach for
solving the problem of matching heterologous remote sensing images.
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Table 5. O-PO: real optical images and generated pseudo-optical images; O-S: real optical images and
real SAR images. Experimental comparison of O-PO and O-S matching performance under different
matching methods.

Match
Pairs

Translation
Mode

LoFTR [9] RIFT [11] PSO-SIFT [59] SAR-SIFT [60] SIFT [6]
NCM RMSE NCM RMSE NCM RMSE NCM RMSE NCM RMSE

Test 1
O-PO 638 0.1113 232 1.6275 75 1.5361 22 0.5712 29 0.6069
O-S 0 / 86 1.8802 0 / 0 / 0 /

Test 2
O-PO 485 0.1861 328 1.7807 69 1.5554 18 0.5427 26 0.5795
O-S 0 / 131 1.8214 0 / 0 / 0 /

Test 3
O-PO 335 0.6239 211 1.8689 20 1.3701 7 0.4694 14 0.5907
O-S 0 / 91 1.9132 0 / 0 / 0 /

Test 4
O-PO 404 0.2441 265 1.8538 57 1.7190 8 0.6512 15 0.5801
O-S 72 1.1113 180 1.9114 11 1.0988 0 / 8 0.4473
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4. Discussion

There are large NRDs between optical and SAR images in terms of both structure
and texture, which pose a great challenge for optical–SAR image translation. In most
image translation tasks, there is a strong connection between the source and target image
domains; for example, the structural information may be identical, with the only differences
appearing in texture and colour. In contrast, in optical–SAR image translation, both texture
and structure information need to be considered. The existing methods all have the problem
of favouring either texture features or structure features, and the two cannot influence
each other, which can lead to serious structure or texture distortion; furthermore, simply
increasing the gradient information of SAR images cannot yield good results. To overcome
these challenges, our method considers the dual generation of texture and structure, and
fuses the deep structure and texture features thus obtained to produce pseudo-optical
images with clear structure and texture information (see Figure 7).

To qualitatively evaluate the structural features of the pseudo-optical images generated
by our network, inspired by the research in [61], a fast Fourier transform (FFT)-accelerated
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sum of squared differences (SSD) method is used to measure the similarity between the
structural features of pseudo-optical images obtained via different methods and those of
real optical images. The value of the SSD score plot indicates the offset between image pairs,
and a smaller value indicates a higher similarity of their features [62]. In addition, it is noted
that the SSD score map obtained with the maximum offset set to 8 pixels has dimensions
of 17 × 17. For clarity of observation, we set the maximum offset value to 8 pixels. As
shown in Figure 10, the structural features of the pseudo-optical image obtained using our
proposed method have the highest similarity with the structural features of the real optical
image. Because our network has two generators, one for texture and one for structure, the
texture and structure features are coupled and provide feedback to each other to enhance
the edge information. Moreover, we add an MSE loss function and an FFL function to
reduce the difference between pseudo-optical and real optical images in both the spatial and
frequency domains to achieve greater structural enhancement. Consequently, our method
can produce pseudo-optical images with significantly improved structural features.
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The use of our translation results in matching applications can substantially improve
the matching performance for SAR and optical images, enhancing the number of potential
matching points obtained through keypoint detection, and significantly improving the
number of correctly matched point pairs. The practical value of high-precision SAR-to-
optical translation for SAR–optical image matching has been explored, and the necessity of
high-precision SAR-to-optical translation networks for image matching has been demon-
strated. However, in the practical application of SAR images, motion error is a key problem
that needs to be solved, and the presence of motion error will lead to unfocused SAR
images [63]. Edge features and texture features cannot be obtained, which leads to the poor
robustness of our method. In the future, we will work on improving the robustness of the
algorithm to apply it in practical applications.

5. Conclusions

In this paper, considering the NRDs in the texture and structure features of optical and
SAR images, we summarize the current methods of SAR-to-optical image translation and
propose a dual-generator translation network fusing structural and texture features for SAR–
optical image matching. Comparative experiments with the latest methods and ablation
experiments are conducted to demonstrate that our method achieves superior performance
in SAR-to-optical translation. Our method improves the PSNR by 21.0%, the FSIMc by
6.9%, and the SSIM by 161.7% in terms of the average metric values on all test images
compared with the next best results. Furthermore, the ablation experiments demonstrate
that our introduction of an MSE loss function and an FFL function can effectively reduce the
spatial- and frequency-domain differences between pseudo-optical images and real optical
images and enhance the visual quality of the generated pseudo-optical images, especially in
regard to texture, structure, and color information. In addition, to further demonstrate the
superiority of our method, comparative experiments of keypoint detection and matching
in heterologous remote sensing images before and after translation are presented, and the
results prove that the proposed high-precision image translation method can significantly
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improve the matching performance for heterologous remote sensing images. Our method
improves the average keypoint repeatability by approximately 111.7% and the matching
accuracy by approximately 5.25%. In the future, we will strive to further improve the
accuracy of our model and enhance its generalization ability.
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