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Abstract: Reliable precipitation is crucial for hydrological studies over Tibetan Plateau (TP) basins 
with sparsely distributed rainfall gauges. In this study, four widely used precipitation products, 
including the Asian Precipitation Highly Resolved Observational Data Integration Towards 
Evaluation of the water resources (APHRODITE), the High Asia Reanalysis (HAR), and the satellite-
based precipitation estimates from Global Precipitation Measurement (GPM) and Tropical Rainfall 
Measurement Mission (TRMM), were comprehensively evaluated by combining statistical analysis 
and hydrological simulation over the Upper Brahmaputra (UB) River Basin of TP during 2001–2013. 
In respect to the statistical assessment, the overall performances of GPM and HAR are comparable 
to each other, and both are superior to the other two datasets. For hydrological assessment, both 
daily and monthly GPM-based streamflow simulations perform the best not only at the UB outlet 
with very good results, but they also illustrate satisfactory results at Yangcun and Lhasa 
hydrological stations within the UB. Runoff simulation using HAR only performs well at the UB 
outlet, whereas it shows poor results at both Yangcun and Lhasa stations. The simulated results 
based on APHRODITE and TRMM show poor performances at UB. Generally, the GPM shows an 
encouraging potential for hydro-meteorological investigation over UB, although with some bias in 
flood simulation. 
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1. Introduction 
With an area of about 2.5 million km2, the Tibetan Plateau (TP) is located in Central 

Asia and has an average elevation of approximately 4000 m above mean sea level (AMSL) 
[1]. As the Asia’s ‘water tower’, the TP is the source regions of many large rivers, such as 
the Brahmaputra, Mekong, Indus, Yangtze, and the Yellow River. Under the global 
climate change, the TP is also experiencing rapid warming during recent decades, with a 
mean annual temperature rise of 0.46 °C per decade [2], much higher than the global 
average. The accelerated warming climate has changed the composition of the cryosphere 
over the TP, such as the glacier retreat, snow-cover reduction, and permafrost 
degradation, which will cause the corresponding changes in local hydrology and water 
resources. 

Meanwhile, precipitation is the most important source of water in the TP and has a 
decisive role in shaping basin hydrological cycle [3,4]; thus, accurate and reliable 
precipitation information is crucial for hydro-meteorological studies, such as hydrological 
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simulation, water resources management, and climate modeling [5]. Currently, rain-
gauge observation is the major source of precipitation data. However, measurements from 
these in situ observational networks are limited in remote mountainous terrain with 
complex topography, such as TP and its surrounding areas [6]. Due to the high altitude, 
harsh environment, and the inaccessibility, precipitation observation networks with long-
term series are sparse or nonexistent in many regions of the TP, so they are not sufficient 
enough to accurately depict the precipitation distribution and also hamper reliable 
hydrological predictions. 

As an alternative to precipitation data from traditional ground gauges, many gridded 
precipitation datasets at the global or regional scale are now available to the public, such 
as satellite observation, re-analysis data, gauge-based products, and regional climate 
model outputs. During the last few decades, a series of satellite precipitation products 
have been developed, including the Tropical Rainfall Measuring Mission (TMMM 3B42) 
[7], Global Precipitation Measurement (GPM) [8], Climate Prediction Centre Morphing 
Algorithm (CMORPH) [9], and Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks–Climate Data Record (PERSIANN–CDR) 
[10]. In terms of gauge-based precipitation products, several gridded datasets for global 
or Asia have been constructed and widely utilized, such as Climate Research Unit (CRU) 
[11], Global Precipitation Climatology Center (GPCC) data [12], and Asian Precipitation—
Highly-Resolved Observational Data Integration Towards Evaluation of the water 
resources (APHRODITE) [13]. It has been believed that the APHRODITE dataset is one of 
the most realistic gridded precipitation datasets for Asia [14]. With respect to output from 
atmospheric model, using a regional numerical weather prediction model to dynamically 
downscale global climate data to high spatial resolution over data-sparse mountainous 
regions is one method for providing sufficiently detailed precipitation information for 
driving hydrological and water resources models [15]. For example, the High Asia 
Reanalysis (HAR) dataset was generated by dynamical downscaling of global analysis 
data using the Weather Research and Forecasting (WRF) model [16]. The HAR dataset 
could provide detailed and process-based precipitation fields at 10 km resolution for TP 
and its surrounding area. 

Due to differences in spatiotemporal resolution and the algorithms for developing 
them, there are inevitably some uncertainties and errors in these gridded precipitation 
products especially in the remote mountain areas such as TP. Therefore, it is significant 
and necessary to evaluate these precipitation datasets through validation by using reliable 
observed data. The evaluation work can be generally classified into two categories: (1) 
direct comparison of the gridded precipitation to the corresponding rainfall gauge’s 
precipitation data; (2) evaluation of gridded precipitation products based on their 
predictive ability of streamflow rate in a hydrological modeling framework. Evaluation 
works involved in different gridded precipitation datasets have been made over a range 
of scales from basin to global extent [17–25]. Meanwhile, recently some efforts have been 
put into evaluating and validating gridded precipitation over the TP and the basins within 
it [6,26–32]. 

The Upper Brahmaputra (UB) River Basin is located in the southeastern of TP (Figure 
1), which is the highest river in the world with an average altitude over 4000 m AMSL and 
the fifth longest river in China. Runoff from UB is not only crucial for the water resources 
management and exploitation in the local region, but also affects the utilization of water 
resources in downstream basins, such as agricultural production and hydropower 
development in India. Precipitation is the most important source of runoff in this basin 
[33]. Some works have been performed to evaluate and validate the suitability of different 
gridded precipitation products over the UB. For example, Tong et al. [34] found that the 
TMPA and APHRODITE are 22–25% lower than the corrected-CMA (Chinese 
Meteorological Administration) in the UB. Moreover, based on a dense rain gauge 
network in the Southern Tibetan Plateau, primarily including the UB, Xu et al. [35] 
evaluated GPM IMERGE and TRMM 3B42V7 and indicated that the performance of GPM 
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is superior to the TRMM in this region. Meanwhile, Xuan et al. [36] used the TRMM 
3B42V7 as the input forcing to the SWAT model over a tributary river basin in the UB, and 
the results revealed that TRMM data are very useful in the hydrological simulation over 
this cold and high-altitude region. In addition, the studies from Ji et al. [14] indicated that 
the APHRODITE dataset underestimates the precipitation amount in this region. 
However, comprehensive evaluations of all gridded precipitation datasets by integrating 
statistical indices and hydrological validation methods are still lacking in the UB. 

 
Figure 1. Location and topography of the Upper Brahmaputra River Basin. The black solid dots 
denote the meteorological stations. 

In this study, based on more precise gauge-based reference precipitation data, four 
widely used gridded precipitation products (HAR, APHRODITE, TRMM, and GPM) 
were evaluated over the Upper Brahmaputra (UB) River Basin. The novelty of this 
research is twofold. First, statistics-based direct comparison and hydrological simulation-
based indirect validation by using Variable Infiltration Capacity glacier (VIC-glacier) 
model were combined to assess the utility of four gridded precipitation data. Second, both 
daily and monthly hydrological modeling based on the four gridded precipitation 
datasets as input were evaluated not only on the outlet of the UB, but also in two internal 
subbasins with available measured flow data within the UB. 

2. Materials and Methods 
2.1. Study Area 

The Brahmaputra River is an important international river which flows through 
China, Bhutan, India, and Bangladesh. It originates from the Gyima Yangzoin Glacier of 
the Tibetan Plateau, with a draining area of about 520,000 km2; it has the fifth largest runoff 
in the world [37]. In this study, the focus area was the upstream of the Brahmaputra River 
Basin (UB) above the hydrological gauge station Nuxia (Figure 1) with a drainage area of 
about 201,200 km2. In addition, the Yangcun gauge at the main stream of UB and the Lhasa 
gauge at its tributary river of the Lhasa basin, an important subbasin of UB, were also 
selected to validate the hydrological simulation for the four gridded precipitation 
products (Figure 1 and Table 1). The UB is located in the southeast of the TP, within 81°E–
95°E, 27°N–32°N. This basin has a complex topography, with elevation ranging from 3000 
to 6000 m AMSL. Dominated by the southeast monsoon, the wet season begins from May 
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and lasts to September, while the dry season is from October to the next April, as a result 
of westerlies prevailing. Meanwhile, annual precipitation exhibits a southeastern to 
northwestern gradient, ranging from approximately 1200 mm to less than 300 mm in 
order. Moreover, as located in the TP, glaciers are broadly distributed over the UB, and 
the total proportion of glaciers over the UB is about 2.11%. 

Table 1. Basic information of the three flow gauges in the Upper Brahmaputra River Basin. 

Gauge Latitude (°N) Longitude (°E) Drainage Area (km2) 
Glacier Area 

(km2) 
Percent of Drainage Area for 

Glacier (%) 
Lhasa 29.63 91.15 26,235 356 1.36 

Yangcun 29.28 91.88 153,191 3295 2.16 
Nuxia 29.47 94.57 201,200 4225.2 2.11 

2.2. Data 
2.2.1. Reference Precipitation Data Based on Dense Rain Gauges 

Traditionally, ground rain gauges are utilized to evaluate the performance of gridded 
precipitation products, but sparsely distributed rain gauges (Figure 1) in the UB cannot 
represent the spatial distribution of precipitation in this region; thus, the evaluation based 
on these scarce precipitation observations may contain large uncertainty. In this study, 
the utilized reference precipitation is a newly developed daily gridded precipitation 
dataset with a spatial resolution of 10 × 10 km for 1961–2016 from Sun and Su [4]. For 
simplicity, we named this gridded precipitation from Sun and Su PCP_Sun in the 
following text; it was reconstructed for the UB based on China Meteorological 
Administration (CMA) stations and 262 newly added rain gauges within this area, and it 
is believed to best represent the real precipitation amount thus far in the UB [4]. 
Meanwhile, by employing a glacio-hydrological model to evaluate the feasibility and 
reliability of PCP_Sun in reverse, the results show that it gives a good performance 
regarding hydrological simulation, snow cover, and glacier mass balance modeling in this 
region. Therefore, in this study, we chose the precipitation dataset PCP_Sun as the 
reference or benchmark precipitation to evaluate the performance of the four gridded 
precipitation products over the UB. 

2.2.2. Four Gridded Precipitation Products 
In this study, four widely used gridded precipitation products were selected as 

evaluation objects: HAR, APHRODITE, TRMM 3B42V7, and GPM IMERGE V06. These 
products were chosen because they have not been comprehensively examined together 
by using both statistics-based and hydrological modeling methods over UB with complex 
terrains and high altitude. The features of the four datasets are summarized in Table 2 and 
are introduced briefly in the following part. 

Table 2. Description of the four gridded precipitation products. 

Product 
Spatial 

Resolution 
Spatial Coverage 

Temporal 
Resolution 

Temporal 
Coverage 

Data Access Reference 

HAR ~0.1° (10 km) High Asia domain Daily 2001–2014 
https://www.klima.tu-berlin.de, accessed 

on 7 January 2022 
[16] 

APHRODITE (V1901) 0.25° 60°E–150°E; 15°S–55°N Daily 1998–2015 
http://aphrodite.st.hirosaki-

u.ac.jp/download/, accessed on 7 January 
2022 

[13] 

TRMM/TMPA 3B42 V7 0.25° 
−180°E–180°E; 50°S–

50°N 
Daily 1998–2019 

https://disc.gsfc.nasa.gov/datasets, 
accessed on 7 January 2022 

[7] 

GPM IMERG-F V06 * 0.1° 
−180°E–180°E; 60°S–

60°N 
Daily 2000.6–2021.9 

https://pmm.nasa.gov/data-
access/downloads/gpm, accessed on 7 

January 2022 
[8] 

* GPM IMERG-F V06 denotes the GPM IMERG Final Run Version 06. 
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The HAR (High Asian Reanalysis) was generated by dynamical downscaling of 
global analytical data through WRF (Weather Research and Prediction) model over the 
TP and its surrounding areas [16]. The HAR provides precipitation products with two 
kinds of resolution, namely, at 30 km and 10 km resolutions. In this study, the 
precipitation dataset with 10 km resolution for 2001–2013 was selected. 

The APHRODITE precipitation product is a daily gridded dataset covering the whole 
Asia and spans from 1951 to 2015 with a spatial resolution of 0.25° × 0.25° [13]. This dataset 
was produced by collecting 5000–12,000 rainfall stations, which represents 2.3–4.5 times 
the data made available through the Global Telecommunication System network for most 
precipitation products. 

The Tropical Rainfall Measuring Mission (TRMM) [7] Multi-satellite Precipitation 
Analysis (TMPA) products consist of two versions, i.e., the post-processed research 3B42 
product and the real-time 3B42RT product. One important difference between these two 
products is employing monthly rain gauges for bias adjustment in the research 3B42 
datasets. Some studies have already implied that the post-processed research product is 
more suitable for research work than the real-time product [32]. Therefore, the daily 
precipitation data from version 7 of post-processed research daily product, TMMM 
3B42V7 with a spatial resolution of 0.25°, were used in this study. 

Since the GPM era is coming to us, some studies have focused on the evaluation of 
satellite precipitation products from GPM. Among the GPM products, the Integrated 
Multi-satellite Retrievals for GPM (IMERG) has recently received more attention. The 
GPM IMERG algorithm provides three levels of products, namely the near-real-time 
‘Early’ and ‘Late’ run products and the post-real-time ’Final’ run product [18]. Compared 
to the ‘Early’ and ‘Late’ run products, the IMERG final run product is more accurate since 
it is adjusted with the Global Precipitation Climatology Centre (GPCC) monthly gauge 
observations [38]. In this study, the GPM IMERGE final run version 6 with the daily 
timescale and a spatial resolution of 0.1° × 0.1° was used. 

For brevity purposes, shorter names (TRMM and GPM) are used from here instead 
of complete names of satellite-based products (TMMM 3B42V7 and GPM IMERGE V6, 
respectively). 

2.2.3. Other Data 
In addition to precipitation data, other meteorological data such as air temperature 

and wind speed were required as inputs into the Variable Infiltration Capacity (VIC) 
glacier model. In this study, these meteorological data were obtained from China 
Meteorological Administration (CMA) stations within and around the UB (Figure 1). 

Meanwhile, geographical data, including soil texture, topography, and vegetation, 
were also used to drive the VIC model. The soil data are from the Harmonized World Soil 
Database with a spatial resolution of 30 arc-second (https://www.fao.org/soils-portal/soil-
survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/, accessed on 9 
January 2022). The global Digital Elevation Models (DEMs) with a spatial resolution of 1 
km were obtained from GTOPO30 
(http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info, accessed 
on 9 January 2022). The vegetation data were obtained from the global vegetation 
classifications provided by the University of Maryland [39]. 

The glacier distribution over the UB can be obtained from the Chinese Glacier 
Inventory (CGI); it was released by the National Cryosphere Desert Data Center of China 
(http://www.ncdc.ac.cn, accessed on 9 January 2022). 

Moreover, for hydrological evaluation, the daily and monthly streamflow data at 
Nuxia and Lhasa gauges for years 1990–2013 were obtained from the Tibetan 
Hydrological Bureau, while only monthly runoff data for the years 1990 to 2013 at 
Yangcun station have been collected. 
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2.3. Methods 
In this study, the 10 km × 10 km gridded precipitation dataset PCP_Sun, which was 

reconstructed by using the densest rainfall stations network so far in the UB, was utilized 
as a benchmark to evaluate the four gridded precipitation products. Meanwhile, since the 
spatial resolutions of the four precipitation datasets are different, in order to a facilitate 
comparison with the PCP_Sun, they were all resampled to 10 km × 10 km resolution by 
using the nearest-neighbor method, which has been widely employed in satellite 
precipitation evaluation studies [16,29,34]. In addition, the evaluation period was set from 
2001 to 2013, which is the overlapping period of precipitation data and available observed 
streamflow data, so that statistics-based direct comparison and hydrological-simulation-
based indirect validation period can be consistent with each other in regard to the time 
span. 

2.3.1. Statistical Metrics 
To assess the four gridded precipitation products, several widely used statistical 

indices were adopted in this study (Table 3). The Pearson correlation coefficient (CC) 
describes the linear agreement between the gridded precipitation datasets and observed 
precipitation. The relative bias (RB) depicts the systematic bias between the gridded 
precipitation and observation. The root-mean-squared error (RMSE) corresponding to the 
square root of the average of the squared differences between the gridded datasets and 
the observed precipitation was used to measure the average magnitude of absolute error. 
In addition, the probability of detection (POD), false-alarm ratio (FAR), and critical 
success index (CSI) were used to examine the capability of gridded precipitation products 
to detect the rainfall events. The POD describes the fraction of occurred precipitation 
events that were correctly detected by the precipitation products. FAR measures the ratio 
of rainfall events where gridded precipitation products detect rainfall but observed 
rainfall does not occur. CSI indicates the overall ratio of rainfall events correctly captured 
by the gridded precipitation. 

Table 3. List of the statistical metrics used for evaluating precipitation products. 

Statistic Metrics Formula Unit Perfect Value 

Correlation coefficient (CC) 
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Notation: n, number of samples; hit (H, observed precipitation correctively detected); miss (M, 
observed precipitation not detected); false (F, precipitation detected but not observed); Ri, reference 
observed precipitation; Gi, gauged precipitation. 

2.3.2. Hydrological Model 
In this study, the Variable Infiltration Capacity glacier (VIC-glacier) model [33] was 

used, which couples a degree–day glacier algorithm with the original VIC model [40]. In 
the VIC-glacier model, the total runoff, including the glacier melt water from each grid, is 
calculated as follows: 

RMR vicii
ff ×−+×= )1(  (1)
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where R i  is the total runoff for gird i, f is the fraction of glacier area, Mi is the calculated 
glacier runoff by using the degree–day model, and Rvic is the runoff from glacier-free area. 
The parameter f can be derived by dividing the grid area by glacier area on the grid cell. 
The VIC-glacier model also includes a two-layer energy balance snow model, frozen soil, 
and permafrost algorithm to represent the cold land processes. Therefore, the VIC-glacier 
model has been recently utilized to simulate runoff in a few river and lake basins over the 
TP [4,41–43]. 

In the VIC-glacier model, two categories of model parameters need to be determined: 
(1) parameters in the degree–day model, which mostly involves the determination of 
degree–day factors; and (2) some sensitive parameters in the VIC model, including the 
infiltration parameter (binfilt), the thickness of the second soil layers (d2), and the base flow 
parameters (Ws, Ds, and Dsmax) (Table 4). The initial values for DDFsnow/ice in the degree–
day model and VIC model parameters were set by referring to previous research studies 
[33,43]. Then the manual calibration, i.e., the trial-and-error method, was employed to 
calibrate the VIC-glacier model by using the daily observed flow data from 1990 to 2000 
at Nuxia gauge, while the validation period was set for years 2001–2013. The percent bias 
(PBIAS), Nash–Sutcliffe efficiency coefficient (NSE), and Kling–Gupta efficiency (KGE)  
[44,45] were employed to evaluate the streamflow simulation. These indices are listed as 
follows: 

 −
 −

=

=−=
n

i

n

YY

YY
meanobsobs

i

sim
i

obs
iNSE

1

2

1

2

)(

)(
,

1

 
(2)

100
)(

1

1 ×
−

=



=

=
n

i

obs

i

n obs

i

sim

i

Y
YYPBIAS

 
(3)

)1()1()1(
222

1 −−− ++−= γβrKGE
 

(4)

μμβ
os

=
 

(5)

μσ
μσγ

oo

ss

O

s

CV
CV ==

 
(6)

where n is the number of samples; Y
obs
i  and Y sim

i  are the observed and the corresponding 

simulated values, respectively; Y
meanobs,

and Y
meansim,

 are the arithmetic means of the observed 
and simulated values, respectively; r is the correlation coefficient between simulated and 
observed runoff; β is the bias ratio; γ  is the variability ratio; μ is the mean runoff in m3/s; 
CV is the coefficient of variation; σ  is the standard deviation of runoff in m3/s; and the 
subscripts s and o represent simulated and observed runoff values, respectively. Table 4 
lists the final determined values of model parameters after model calibration. 

Table 4. Summary of model parameters, ranges, and calibrated values used in VIC-glacier model 
over the UB. 

Model Parameter Unit Range Determined Value 
Degree–day factor for ice-melt (DDFice) mm °C−1 day−1 3.4–11.8 9 

Degree–day factor for snowmelt (DDFsnow) mm °C−1 day−1 3.0–7.9 4.1 
Fraction of Dsmax where non-linear baseflow begins (Ds) None 0–1 0.3 

Maximum velocity of baseflow (Dsmax) mm/d 0–50 10 
Fraction of maximum soil moisture where non-linear baseflow occurs (Ws) None 0–1 0.9 

Variable infiltration curve parameter (binfilt) None 0–0.4 0.2 
Thickness of the second soil moisture layer (d2) m 0–3 1.1 
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3. Results 
3.1. Statistical Evaluation of Gridded Precipitation Products 

Figure 2 shows the spatial patterns of the 2001–2013 annual mean precipitation for 
reference precipitation and four gridded precipitation datasets over the UB. PCP_Sun 
presents a southeast-to-northwest gradient, ranging from over 1000 mm/year in the 
southeast to less than 300 mm/year in the northwest. The large amount of precipitation in 
the southeastern part of the basin is due to the Himalayas intercepting much of the water 
vapor from the Indian Ocean monsoon and producing large amounts of precipitation. In 
contrast, affected by both weak activity from the Indian monsoon and westerlies, the 
Western UB receives relatively less precipitation compared to the eastern region. With 
respect to the four precipitation products, on the whole, their spatial patterns are basically 
similar to the reference precipitation, all showing a general increasing trend from 
northwest to southwest. However, in the eastern part of the basin, there is still a large 
magnitude difference between them and the reference precipitation, especially for 
APHRODITE and TRMM. The reference precipitation exhibits a more than 900 mm/year 
in the Eastern UB, while only less than 750 mm/year can be found for the APHRODITE 
and TRMM datasets. As for HAR and GPM, the extent of underestimation seems to be 
some alleviated in this local region. The precipitation differences among the five datasets 
in the UB is possibly related to their different ways of generation. The HAR product was 
generated by dynamical downscaling of global analysis data by the WRF model. The 
APHRODITE dataset is an interpolated product based on observed precipitation gauges. 
TRMM and GPM are satellite remote-sensing products. On the whole, GPM generally 
outperformed the other products in terms of spatial consistency to the observed 
precipitation. 

 
Figure 2. Spatial distributions of annual mean precipitation for reference precipitation (PCP_Sun) 
and four gridded precipitation datasets among 2001–2013 over the UB (mm/year). 

Supplementary Figure S1 exhibits the relative bias of the four precipitation datasets 
against the reference data during the annual period, rainy season (June to September), and 
non-rainy season (October to the next May). At the annual period, the underestimation 
can be found almost over the whole UB for the APHRODITE and TRMM datasets, and 
the magnitude of negative bias can be more than 50% in the Northeastern UB for both 
products. For HAR, overestimation dominates over the Northern UB, with positive bias 
over 50% in the northwest, whereas there is large underestimation in the southern part, 
and even the negative bias can be more than 50% in the southeastern area. With respect 
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to the GPM, except for the relatively large negative bias over local areas of Eastern UB, the 
negative deviation in the north and the positive deviation in the south are within ±20%. 
In respect to the rainy season, the spatial distribution of relative bias for the four 
precipitation datasets is similar to that of the annual period. However, the negative bias 
for both APHRODITE and TRMM not only tends to be more widely spread, but also the 
amplitude of negative bias for TRMM is even larger than that of the annual period. With 
regard to the non-rainy season, the four precipitation products, excluding GPM, exhibit 
positive bias over most of the UB. 

Meanwhile, Figure 3 shows the mean monthly basin-average precipitation from the 
reference and four gridded precipitation products during 2001–2013 over the UB. For 
HAR, it slightly overestimated the observed precipitation for the dry season, especially 
during January to March, while it was basically consistent with the reference precipitation 
in the rest of the months. APHRODITE basically follows the reference precipitation’s 
seasonal variation but largely underestimated precipitation in the wet season. Meanwhile, 
the TRMM could roughly grasp the characteristics of monsoon precipitation; that is, there 
is more precipitation in summer and less precipitation in winter. However, it 
underestimated the measured summer precipitation a lot, whereas some overestimation 
can be noticed for the winter precipitation. GPM showed the closest agreement to the 
monthly reference precipitation among the four products, especially during the dry 
season. In addition, Table 5 lists several key statistical indices at the annual scale for the 
reference precipitation and four precipitation datasets over the UB, respectively, thus 
indicating that the statistical feature of HAR and GPM is closer to that of PCP_Sun than 
the other precipitation products. 

 
Figure 3. Mean monthly precipitation from four products (a) HAR, (b) APHRODITE, (c) TRMM and 
(d) GPM versus reference precipitation during 2001–2013 over the UB. 
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Table 5. Statistics of annual precipitation at basin scale over the UB. 

Precipitation Products 
Mean 
(mm) 

Minimum 
(mm) 

Maximum 
(mm) 

Standard Deviation 
(mm) 

Median 
(mm) q25 *(mm)  q75 *(mm) 

PCP_Sun 563.3 417.9 680.3 80.7 581.1 501.1 623.7 
HAR 576.8 337.6 785.8 127.0 551.6 518.7 688.2 

APHRODITE 402.5 308.4 456.3 41.4 411.7 380.2 423.0 
TRMM 399.4 238.9 529.6 87.8 362.2 345.1 481.3 
GPM 528.7 441.0 596.8 49.8 534.7 496.0 567.0 

* q25 and q75 correspond to the quartile values of 25% and 75% of the box plot. 

Furthermore, Figure 4 shows the box plots of grid-scale statistics for the four 
precipitation datasets at the daily timescale during years 2001–2013 over the UB, based on 
the benchmark precipitation of PCP_Sun. In addition, the median values of the six 
statistical metrics on the daily scale during the rainy season (June to September) and non-
rainy season (October to the next May) are also listed in Table 6. In terms of the relative 
bias (RB) (Figure 4a), the median RB is 6.82% and −6.78%, respectively, for HAR and GPM, 
while both of the median RBs from APHRODITE and TRMM exhibit significant negative 
bias, with a magnitude of about −30%. For the RMSE and CC indices, it is apparent that 
APHRODITE performs the best, followed by HAR, GPM, and TRMM in order. 
Meanwhile, there is a slight difference between the results from HAR and GPM, and both 
of them have an acceptable performance in terms of these two statistical metrics. For 
contingency statistics, except for APHRODITE, which has the highest POD, the HAR and 
GPM have comparatively similar values in respect to the three indices, and, 
simultaneously, both of them outperform among the four gridded precipitation datasets 
in terms of FAR and CSI metrics. With regard to performances during the rainy and non-
rainy seasons (Table 6), for the RB metric, an interesting phenomenon can be found in that 
there is a strong underestimation for APHRODITE and TRMM in the rainy season, 
whereas the two products witness overestimation in the non-rainy season, especially for 
TRMM, with considerable positive bias. Meanwhile, it can be found that the RMSE in the 
rainy season is higher than that of the non-rainy season for all the four precipitation 
datasets. Some research studies over TP also indicate that the RMSE is larger during 
summer than that of winter [6]. As for the CC, the performance in rainy season is better 
than that in the non-rainy season. Meanwhile, the scatter plots of the daily four gridded 
precipitation products and reference precipitation in the rainy and non-rainy seasons 
basin-wide during 2001–2013 are also shown in Figure 5. At the basin scale, APHRODITE 
also displays the best results, with CC over 0.6 for both periods, whereas TRMM has the 
worst performance, especially during the non-rainy season, with a low CC of 0.09. The 
HAR and GPM exhibit acceptable outcomes, both with a CC more than 0.6 and 0.5 in the 
rainy and non-rainy periods, respectively. Generally, the CC metric is relatively small 
between the four gridded precipitation datasets and reference precipitation. Based on 
observed precipitation from TP meteorological stations, Li et at. [38] also found that there 
are small CC values between satellite precipitation products (TRMM and GPM) and rain 
gauge measurements. The complex topography; high-altitude areas covered by snow, 
glaciers, permafrost; and sparsely distributed precipitation gauges over UB would affect 
the accuracy of these precipitation products and result in a low correlation with the 
reference precipitation as compared with other regions in the world. For the contingency 
statistics, all the four products in the rainy season behave significantly better than they do 
in the non-rainy season, with a remarkably smaller FAR and a considerably higher POD 
and CSI. Combining the results of the above six statistical metrics, on the whole, we see 
that HAR performs comparably to GPM, and both of them outperform the other two 
products. 
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Table 6. Statistical indices’ median values during rainy and non-rainy seasons. 

Period Precipitation Dataset RB (%) RMSE CC POD (%) FAR (%) CSI (%) 
 HAR 2.05 6.02 0.33 87.02 19.54 69.95 

Rainy season APHRODITE −35.21 4.71 0.47 97.28 22.82 74.56 
 TRMM −51.39 5.95 0.22 75.76 18.63 62.39 
 GPM −4.49 6.66 0.29 81.36 16.07 68.69 
 HAR 33.30 2.11 0.28 55.79 58.05 26.09 

Non-rainy season APHRODITE 0.87 1.36 0.46 81.94 63.31 30.34 
TRMM 55.54 2.21 0.03 48.97 75.56 15.71 

 GPM −12.37 1.82 0.28 49.16 61.85 24.09 

 
Figure 4. Box plots of grid-based statistical metrics at daily scale for years 2001–2013: (a) RB, (b) 
RMSE, (c) CC, (d) POD, (e) FAR, and (f) CSI. The number at the base of the box plot is the median 
value of each statistical metric. The short dash line in box plots denotes the mean value of statistical 
metric. The green horizontal line indicates the optimum value. The symbol “+” in box plots 
represents the outlier of statistical metric value. 
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Figure 5. Scatterplots of daily basin-wide precipitation between gridded precipitation and reference 
precipitation during rainy season ((a) HAR, (c) APHRODITE, (e) TRMM, (g) GPM), and non-rainy 
season ((b) HAR, (d) APHRODITE, (f) TRMM, (h) GPM). The solid line shows the linear least-
squares result, and the diagonal dash line shows the 1:1 line. 
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3.2. Hydrological Evaluation of Gridded Precipitation Products 
A hydrological model is an efficient method to know the basin’s hydrological regime. 

For hydrological models, errors in precipitation input can cause significant uncertainties 
in flow simulation and other hydrological processes [5]. Therefore, it is important to assess 
the predictability and reliability of gridded precipitation products in a hydrological 
modeling scheme. In this section, the capability of four gridded precipitation datasets in 
hydrological simulation over UB is evaluated by driving the VIC-glacier model. 

3.2.1. Comparison at Daily Scale 
Firstly, the VIC-glacier model was calibrated at the UB outlet, i.e., Nuxia hydrological 

station for 1990–2000, based on the reference precipitation (PCP_Sun) as driving data. 
Next, in the validation period (2001–2013), the observed daily flow at Nuxia station was 
used to evaluate the model’s efficiency. In addition, the observed daily flow at Lhasa 
station and observed monthly flow at Yangcun station were also used to assess the 
capability of this model in the two gauge stations during the respective calibration and 
validation periods. Finally, using the same parameters determined in the above 
calibration, the four gridded precipitation products were utilized to drive the VIC-glacier 
model, and their hydrological utility was evaluated by making a comparison to the 
observed streamflow during 2001–2013. 

Seven sensitive parameters to the hydrological simulation in the VIC-glacier model 
were chosen as the calibrated targets, and their final values were determined by using the 
trial-and-error technique (listed in Table 4). Figures 6–8 show daily observed and 
simulated flow driven by the reference precipitation (PCP_Sun) at Nuxia and Lhasa 
gauges during calibration and validation periods, respectively. The NSE, PBIAS, and KGE 
are also presented in Figure 6 for the calibration period during 1990–2000, and Table 7 
shows their values in the validation period among 2001–2013. At Nuxia gauge, it can be 
seen that the simulated flow based on reference precipitation can reproduce the evolution 
and amplitude of daily observed streamflow for both calibration and validation periods 
of 1990–2000 and 2001–2013 well. The values of the NSE, PBIAS, and KGE are 0.85, 2.5%, 
and 0.92 in the calibration period and are 0.85, −2.34%, and 0.91 during the validation 
period. For Lhasa gauge, the reference precipitation-driven model simulations can 
basically follow the observed daily hydrograph well, with an NSE of 0.66 and 0.67, PBIAS 
of −1.31% and 1.02%, and KGE of 0.82 and 0.83 in the calibration and validation periods, 
respectively. Based on the model evaluation guidelines [46], the performances of VIC-
glacier model driven by the reference precipitation at Nuxia and Lhasa gauges can be 
ranked as being at the ‘very good’ and ‘good’ level, respectively, thus further confirming 
the reliability of using the reference precipitation as the model input data. 
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Figure 6. Daily flow simulation at Nuxia (a) and Lhasa hydrological stations (b) during the 
calibration period (1990–2000). 

 
Figure 7. Daily flow simulation driven by (a) reference precipitationand four precipitation datasets: 
(b) HAR, (c) APHRODITE, (d) TRMM and (e) GPM, at Nuxia hydrological station during years 
2001–2013. Qobs represents the observed streamflow. Qcal(PCP_Sun), Qcal(HAR), 
Qcal(APHRODITE), Qcal(TRMM) and Qcal(GPM) represent the calculated streamflow using the 
corresponding individual precipitation dataset. 
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Figure 8. Daily flow simulation driven by (a) reference precipitation and four precipitation datasets: 
(b) HAR, (c) APHRODITE, (d) TRMM and (e) GPM, at Lhasa hydrological station during years 
2001–2013. 

After the model was calibrated by the reference precipitation data, the VIC-glacier 
model was driven by the four gridded precipitation products from 2001 to 2013 over the 
whole basin, without any further adjustments to the parameters. Keeping the same 
parameters can let us analyze the model performance’s difference pertained to the four 
precipitation datasets as driving input. The comparisons between observed and simulated 
daily streamflow at Nuxia and Lhasa gauges during the validation period of years 2001–
2013 are shown in Figures 7 and 8, respectively. Meanwhile, Table 7 also exhibits the 
statistical metrics of flow simulation for all hydrological gauges during 2001–2013. 

Table 7. Statistical indices of the simulated streamflow at the three hydrological stations during 
2001–2013 in the UB. 

Hydrological 
Station 

Precipitation Inputs 
Daily Simulation Period (2001–2013) Monthly Simulation Period (2001–2013) 

PBIAS (%) NSE KGE PBIAS (%) NSE KGE 
Nuxia PCP_Sun −2.34 0.85 0.91 −2.40 0.95 0.95 

 HAR 3.23 0.60 0.78 2.99 0.70 0.82 
 APHRODITE −54.86 0.13 0.38 −54.97 0.15 0.40 
 TRMM −37.70 0.07 0.32 −37.85 0.11 0.33 
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 GPM −7.61 0.80 0.83 −7.82 0.88 0.86 
Yangcun PCP_Sun - - - 6.91 0.88 0.91 

 HAR - - - 42.52 0.22 0.53 
 APHRODITE - - - −41.75 0.25 0.42 
 TRMM - - - −19.64 −0.20 0.16 
 GPM - - - 23.45 0.72 0.73 

Lhasa PCP_Sun 1.02 0.67 0.83 0.99 0.87 0.86 
 HAR 26.71 0.29 0.56 26.92 0.48 0.57 
 APHRODITE −60.64 0.21 0.34 −60.43 0.17 0.35 
 TRMM −63.83 −0.13 0.06 −64.12 −0.15 0.08 
 GPM −15.81 0.61 0.72 −15.90 0.74 0.74 

At Nuxia gauge, GPM shows the best performance in terms of streamflow simulation 
during 2001–2013 among the four precipitation products, with an NSE of 0.8, PBIAS of 
−7.61%, and KGE of 0.83 (Figure 7e). The model captures the rising and recession of the 
hydrographs well; the baseflow is especially well mimicked by the model. However, 
underestimation of high flow during the summer can be noticed in some years. This 
phenomenon may be caused by underestimation of heavy rain in GPM summer data. 
During the rainy season, the median RB for GPM is about −4.5% (Table 6), which could be 
transformed into a negative bias in the simulated peak flow in the summer season. The 
HAR takes the second place in terms of flow simulation and performs satisfactorily with 
an NSE of 0.6, PBIAS of 3.23%, and KGE of 0.78. Figure 7b shows that the HAR-driven 
simulations can basically follow the seasonal variation of observed flow and 
simultaneously demonstrates moderate results in respect to the base flow simulation. 
However, the peak flow simulated by the HAR underestimates the observed data before 
the year 2007 and overestimates it afterward. For APHRODITE and TRMM (Figure 7c,d), 
the two modeling runs driven by them produce generally poor simulations in terms of the 
NSE, PBIAS, and KGE indices (Table 7). This might be ascribed to the considerable 
underestimation contained in these two precipitation datasets. On the one hand, the large 
negative errors included in the precipitation input could propagate into the flow 
simulations. On the other hand, due to the nonlinearities involved in the hydrological 
processes, any positive or negative bias in precipitation input can be magnified into a 
larger bias in the simulated streamflow[32,47]. For example, the precipitation estimate 
from the APHRODITE demonstrates an underestimation of the observed precipitation by 
30.42%, causing the simulated discharge to be 54.86% lower than the measured flow. 

At Lhasa gauge (Figure 8), the GPM-based streamflow simulation also outperforms 
the other three precipitation products’ results, with an NSE of 0.61, PBIAS of −15.81%, and 
KGE of 0.72, which can be classified as being at the ‘satisfactory’ level. The negative bias 
for the hydrological modeling (−15.81%) is due to the tendency of GPM to underestimate 
the observed precipitation in the Lhasa basin. As indicated in Figure 2, compared to 
PCP_Sun, the GPM displayed a prevailing underestimation over Lhasa Basin which can 
be propagated to simulated runoff. Meanwhile, it can be observed in Figure 8e that the 
GPM-driven simulation underestimates peak flows, and this also might be due to the 
underestimation of summer rainfall. For the other three precipitation datasets (HAR, 
APHRODITE, and TRMM), all of their hydrological simulation results were 
unsatisfactory according to the NSE, PBIAS, and KGE metrics (Table 7). The flow 
simulated by the HAR largely overestimates the observed runoff, whereas considerable 
underestimation can be detected from both APHRODITE- and TRMM-driven simulations 
(Figure 8b–d), and this may be attributed to the positive bias for HAR and large negative 
bias in both of APHRODITE and TRMM as the model inputs. 
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3.2.2. Comparison at Monthly Scale 
Figures 9–12 show the comparisons between the observed and simulated monthly 

streamflow driven by the PCP_Sun at the three gauges during the calibration (1990–2000) 
and validation periods (2001–2013), respectively. In addition, the NSE, PBIAS, and KGE 
in the calibration period are also listed on Figure 9, while Table 7 exhibits these metrics 
corresponding to the calibration period. On the whole, good agreement between the 
observed and simulated monthly flow can be seen at the three gauges during both 
calibration and validation periods. Furthermore, the high flow in summer and baseflow 
in winter can also be captured by the VIC-glacier model. The KGE and NSE are more than 
0.84, and PBIAS is within ±15% in both calibration and validation periods at Nuxia, 
Yangcun, and Lhasa gauges, indicating that the runoff simulation based on PCP_Sun as 
input performs good in the three gauges. 

 
Figure 9. Monthly flow simulation at (a) Nuxia, (b) Yangcun, and (c) Lhasa hydrological stations 
during calibration period (1990–2000). 
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Figure 10. Monthly flow simulation driven by (a) reference precipitation and four precipitation 
datasets: (b) HAR, (c) APHRODITE, (d) TRMM and (e) GPM, at Nuxia hydrological station during 
years 2001–2013. 
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Figure 11. Monthly flow simulation driven by (a) reference precipitation and four precipitation 
datasets: (b) HAR, (c) APHRODITE, (d) TRMM and (e) GPM, at Yangcun hydrological station 
during years 2001–2013. 
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Figure 12. Monthly flow simulation driven by (a) reference precipitation and four precipitation 
datasets: (b) HAR, (c) APHRODITE, (d) TRMM and (e) GPM, at Lhasa hydrological station during 
years 2001–2013. 

Then the monthly observed flow were compared with the simulated streamflow 
driven by the four precipitation products (HAR, APHRODITE, TRMM and GPM) at the 
three gauges (Figures 10–12). At Nuxia gauge, the GPM modeling discharge performs the 
best and can basically reproduce the measured runoff with an NSE of 0.88, PBIAS of 
−7.82%, and KGE of 0.86, which is even comparable to simulated results driven by the 
observed precipitation (PCP_Sun). Meanwhile, the simulated flow from the HAR as 
forcing also exhibits a general good result with an NSE of 0.7, PBIAS of 2.99%, and KGE 
of 0.82 during the entire period despite poor performance in some years. For APHRODITE 
and TRMM, however, their simulated flows significantly underestimate observed runoff 
on the whole and indicate unsatisfactory results due to the large negative bias in 
precipitation input. At Yangcun gauge, GPM also exhibits the best hydrological 
performance in terms of the NSE (0.72) but having a relatively large PBIAS; overall, the 
simulated result can be categorized as being at the ‘satisfactory’ level. The HAR-driven 
simulation overestimates the observed runoff by 42.5% due to the large overestimation of 
precipitation in the basin above Yangcun gauge. In contrast, as a result of the large 
negative bias for both APHRODTE and TRMM (Figure 3), the simulated runoff from them 
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has a respective low value and even a negative NSE. Generally, hydrological simulation 
outcomes based on all the other three precipitation products (HAR, APHRODITE, and 
TRMM) are all unsatisfactory. For Lhasa gauge, the hydrological simulations of these 
gridded precipitation datasets are similar to those of Yangcun gauge; that is, only the 
performance of GPM-driven simulation is satisfactory, whereas poor performances can 
be found in the other three precipitation-based hydrological simulations. 

3.2.3. Comparison at High Flow Simulation 
As floods during the rainy season are a major safety concern for local regions and 

downstream basins, in this section, the simulated performances of gridded precipitation 
datasets in rainy season and their high flow simulations are evaluated. From Section 3.2.1, 
it can be noticed that just the daily simulation of GPM is satisfactory at both Nuxia and 
Lhasa gauges; therefore, only the modeling results based on GPM are discussed here. 
Table 8 lists the statistical metric values for the daily simulated outcomes from reference 
precipitation (PCP_Sun) and GPM. It can be indicated that the performance from 
reference precipitation is satisfactory; meanwhile, GPM exhibits an acceptable result in 
rainy seasons during 2001–2013, although with relatively large negative bias. Figure 13 
displays the daily flow duration curves (FDCs) of the observed and simulated flow for the 
years 2001–2013, suggesting that the PCP_Sun-based FDC is generally consistent with that 
of the observed flow, whereas some discrepancies can be found in simulated high flow 
from GPM. To further quantitatively investigate the performance of high flow simulations 
using the PCP_Sun and GPM, the flows corresponding to 1%, 5%, and 10% quantile of 
FDC were compared to that of observed flow (Table 9). Among the high flow simulation 
using the two precipitation inputs, the PCP_Sun-based run has an excellent performance, 
with an RB no more than ±5% for the three high flow indices at the two gauges. As for the 
GPM, the computed high flow is 12.17–25.45% lower than the observations, thus 
suggesting that GPM cannot successfully catch the high flow over the UB; this also implies 
that there is still large room for GPM developers to further refine the algorithms to 
improve its flood prediction in the TP. 

Table 8. Statistics for the streamflow simulation during rainy season at Nuxia hydrological station 
over 2001–2013. 

Precipitation Inputs 
Daily Simulation during Rainy Season 

PBIAS (%) NSE 
PCP_Sun −1.37 0.56 

GPM −13.55 0.48 

Table 9. Statistics of the simulated flood events at the two hydrological stations in the UB. 

Station 
Exceedance 

Probability (%) 
Observed 

Flow (m3/s) Q_PCP_Sun (m3/s) 
RB * for 

Q_PCP_Sun (%) Q_GPM (m3/s) RB for Q_GPM (%) 

 1% (Q1) 8270 8185 −1.03 6594 −20.27 
Nuxia 5% (Q5) 6190 6251 0.99 5185 −16.24 

 10% (Q10) 4840 4876 0.74 4251 −12.17 
 1% (Q1) 1760 1826 3.75 1330 −24.43 

Lhasa 5% (Q5) 1230 1204 −2.11 917 −25.45 
 10% (Q10) 859 869 1.16 724 −15.72 

* RB denotes relative bias (%). 
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Figure 13. Flow duration curves of the observed and simulated daily discharge at (a) Nuxia and (b) 
Lhasa hydrological stations. 

3.3. Product-Specific Calibration for the HAR and APHRODITE 
In Section 3.2, the hydrological evaluation for the four gridded was based on 

parameters calibrated by using the reference precipitation data (PCP_Sun). Some studies 
have indicated that recalibrating the hydrological model with respective precipitation 
product could improve the simulation accuracy [5,6]. As GPM has already performed well 
in hydrological simulation at all the three stations (Lhasa, Yangcun, and Nuxia) with the 
parameters gained by the PCP_Sun benchmark calibration. Moreover, TRMM not only 
contains large bias but also does not get the seasonality of the PCP_Sun correct; therefore, 
in this part, only HAR and APHRODITE were separately used to recalibrate the VIC-
glacier model during 2001–2013. In addition, to be consistent with the evaluation period 
used in Section 3.2, the whole period for 2001–2013 was chosen as the assessment period. 

According to the study of Zhang et al. [33] in the major river basins over TP, the 
variable infiltration curve parameter (binfilt) and the second soil layer depth (d2) were 
identified as most sensitive among the VIC-glacier model parameters for calibration. 
Meanwhile, their research also indicated that an increase of binfilt and a decrease of d2 tend 
to enhance runoff production and vice versa. Thus, in this study, these two parameters 
(binfilt and d2) were further calibrated for the HAR and APHRODITE datasets. The final 
calibrated parameters for the respective HAR and APHRODITE datasets are shown in 
Supplementary Materials Table S1. The simulated daily and monthly streamflows at the 
Nuxia, Yangcun, and Lhasa stations based on the input-specific calibration of HAR and 
APHRODOTE are listed in Supplementary Figures S2–S5. Moreover, Table S2 exhibits the 
statistical performance of the discharge simulation under the product-specific calibration 
method. Meanwhile, to compare the performance differences between the PCP_Sun-
benchmarked calibration and the product-specific calibration, the statistical metrics for 
the model outcomes based on the PCP_Sun, are also listed in Supplementary Table S2 
(numbers in parentheses). 

As indicated in Supplementary Table S2, the performances of all the simulations, 
except for HAR, at Nuxia hydrological stations were improved by a product-specific 
calibration relative to the simulation based on the PCP_Sun-benchmarked calibration, 
especially in terms of the NSE and PBIAS metrics. This phenomenon could be due to the 
fact that the model parameter recalibration is able to partially compensate the streamflow 
bias resulting from inaccurate precipitation inputs. For HAR, in order to reduce runoff 
production over the UB, the calibrated parameter, d2, increased from 1.1 m in the 
PCP_Sun-based model run to 2.9 m in the HAR-based recalibration. In contrast, for 
APHRODITE, to increase runoff-generated, the d2 was calibrated to be 0.1 m, which is 
much lower than that in the PCP_Sun-based run. However, it should be noticed that this 
compensation might be only valid within a certain range of precipitation bias. For HAR 
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recalibration, the determined d2 was 2.9 m, which is close to the physical upper limit of 
d2. Although the whole performances at all three hydrological stations (Lhasa, Yangcun, 
and Nuxia) can be ranked as satisfactory class, the PBIAS metric is still more than 15% at 
both Yangcun and Lhasa gauges; and this also suggests that the large positive bias of 
simulated total runoff by the specific input calibration could not be totally reduced by 
further calibration and might need bias correction of HAR at the two subbasins before 
being used as VIC-glacier model input data. With respect to the APHRODITE, although 
the simulated results were improved by product-specific calibration, the performances at 
all three hydrological stations are still poor in terms of a large negative bias and low NSE 
and KGE. As indicated in Supplementary Table S2, the d2 calibrated with APHRODITE is 
close to its lower limit, also implying that the VIC-glacier model’s performance could not 
be considerably improved by calibrating d2, because the large negative bias of 
APHRODITE might be beyond the threshold of precipitation error, and, thus, the 
parameter calibration could not offset the runoff biases deduced from the large 
APHRODITE error over the UB. In the UB, using the CMA data as VIC model forcing, 
Zhang et al. [33] also found that model performance cannot be considerably improved 
through calibration as a result of large underestimation of CMA precipitation input in this 
region. The unsatisfactory performance from the specific APHRODITE recalibration 
demonstrates its little potential in streamflow modeling in this region; this is basically in 
line with the conclusion derived by using benchmarking calibration. As the magnitude of 
TRMM is comparable to the APHRODITE, we speculate that its hydrological outcome by 
using the product-specific calibration is similar to that of APHRODITE. Meanwhile, 
although the modeling streamflow can be improved to some extent by product-specific 
calibration, this recalibration method should be taken with a grain of salt because it may 
result in unrealistic parameters values in some cases [6], and the other hydrological 
components, such as groundwater and evaporation, may not represent the real field 
condition, an issue that will be analyzed in our future work. 

4. Discussion 
4.1. Strengths and Limitations of the Four Precipitation Products 

In respect of statistical assessment, the overall performances of GPM and HAR are 
comparable to each other’s, and both are superior to that of the other two products 
(APHRODITE and TRMM). However, apart from the relative bias (RB) index, 
APHRODITE has also shown excellent results in other statistical metrics. For example, the 
median CC of APHRODITE is the largest, and its POD outperforms the other three 
products, as well. However, the median RB for APHRODITE is −30.42%, implying that it 
severely underestimates the benchmark precipitation over this basin. Some studies also 
found that the APHRODITE product underestimated precipitation not only in the UB but 
also over the areas in or around the Tibetan Plateau [34,48,49]. Based on corrected-Chinese 
Meteorological Administration precipitation, the research from Tong et al. [34] indicates 
that APHRODITE underestimates precipitation by 25% over the UB, while it also exhibits 
systematic negative bias in the other five river basins of TP, ranging from −13% to −24%. 
Moreover, Ji et al. [14] evaluated the APHRODITE data over the whole Brahmaputra River 
Basin and found that it demonstrates an average RB of −29.69% in this region. The large 
underestimation of APHRODITE in the UB is possibly related to the way of generating 
this product. The APHRODITE dataset is an interpolated product based on observed 
precipitation gauges. The rainfall stations are distributed sparsely over TP with its 
surroundings; moreover, most of stations are located in the valley, and this may cause 
large uncertainty in this interpolation-based product. Yatagai et al. [13] also pointed out 
that precipitation underestimation for APHRODITE over TP is due to a shortage of 
rainfall data input for Nepal, Bhutan, and Northern India. In addition, the inadequacies 
involved in the interpolation method may also affect the accuracy of this product in the 
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Himalaya mountain areas, including the UB[50]. All of these factors combined together 
might increase the uncertainty of APHRODITE over these regions. 

Meanwhile, the performance of the TRMM satellite estimate is also poor in respect to 
almost all statistical indices, probably due to its deficiencies in detecting precipitation over 
high-altitude areas covered by snow, glaciers, and permafrost of UB. The precipitation 
estimate from TRMM shows a large underestimation of the reference precipitation. Some 
studies have also found that satellite data underestimate precipitation in high mountains, 
including the TP [5]. Fortunately, as the successor of TRMM, GPM satellite precipitation 
leads to a new era of remote-sensing precipitation products, providing more chances for 
application in meteorological and hydrological studies. Compared to TRMM, there are 
several critical improvements in GPM sensors, such as upgrading the radar to two 
frequencies and adding high-frequency channels to the Passive Microwave imager, which 
adds sensitivity to light precipitation and snowfall[51]. These considerable increments 
make GPM IMERG products deliver a better performance than that of the TRMM product 
in the Tibetan Plateau[30,31,35,52-54]. In this study, the statistical metrics of GPM were 
also superior to those of TRMM in the UB; this can also corroborate the above conclusions. 

Furthermore, the predictive ability of four gridded precipitation datasets in 
streamflow was evaluated by employing the VIC-glacier model. The assessment based on 
the hydrological modeling framework is preferred because it is not subject to the scale 
discrepancy problem which may turn up when using rainfall station data for validation. 
At Nuxia gauge, the hydrological simulations of the four precipitation products indicate 
that the performances of GPM and HAR were rated as ‘very good’ and ‘good’ at the 
monthly scale, respectively, whereas unsatisfactory outcomes appeared in both 
APHRODITE and TRMM. For Yangcun and Lhasa gauges, however, only the simulated 
result from GPM as model-driven data was satisfactory, while all of the other three 
precipitation products behaved unsatisfactorily in modeling runoff at both the daily and 
monthly scales. The poor simulation of streamflow driven by APHRODITE and TRMM 
can be ascribed to their large negative deviation from the observed rainfall because errors 
in the precipitation inputs could be propagated into hydrological modeling results. 
Meanwhile, the low and even a negative NSE for the hydrological simulations of 
APHRODITE and TRMM at the three gauges could further imply their little potential in 
runoff modeling in this region. For HAR, its performances in hydrological application are 
inferior to that of GPM at Nuxia gauge, and they are even poor at Yangcun and Lhasa 
stations on the whole. The poor hydrological simulations at Yangcun and Lhasa gauges 
for HAR might be due to its large overestimation of observed rainfall over the two 
subbasins. As shown in Figure 2, it is clear that HAR has a large positive bias over most 
of the two subbasins, which can be propagated to the runoff simulation and results in an 
unsatisfactory outcome. In the upper reach of the Shule River Basin located in the 
northeast of the Tibetan Plateau, it was also found that the HAR obviously overestimated 
precipitation in this area[55]. The HAR product was generated by the dynamical 
downscaling of global analysis data by the WRF model. As a regional climate model, the 
WRF model may exhibit systematic deviations in simulated precipitation over TP and its 
surrounding due to the complex terrain. For example, the WRF model can still suffer from 
significant wet bias over the North Himalayas[56]. Therefore, to better apply the HAR in 
the hydrological simulation of UB, it might first need bias correction based on more 
ground precipitation stations in the future study. Moreover, based on the case of HAR, it 
also reminds us that the good hydrological simulation of one precipitation product at the 
basin outlet does not mean that it would also behave well in the runoff modeling over the 
other subbasins within the basin due to the complicated spatial variation of precipitation 
over this region. 

In addition, the above analysis also reveals that the statistical-indices-based direct 
evaluation or indirect assessment from the hydrological simulation alone might be 
insufficient to measure how good a precipitation product is at the basin scale, and it is 
preferable to combine the two evaluation strategies to comprehensively assess the 
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precipitation datasets, making the results more reasonable and reliable. Generally, the 
GPM product outperformed the four gridded precipitation datasets in both the statistical 
and hydrological evaluations in the UB. The high spatial resolution of this data may be 
useful for the hydrological simulations in the middle and lower reaches of the 
Brahmaputra River Basin. Meanwhile, the GPM product could also be a valuable 
reference precipitation in respect to analyzing the temporal and spatial patterns of rainfall 
over the TP, especially in the Western TP with sparsely distributed rainfall gauges. 
However, in this study, we also found that the detection capability of the GPM product 
varies with altitude. As indicated in Figure 14, when the altitude increases, the 
performance of the POD gradually tends to degrade, while the FAR tends to increase and 
simultaneously CSI tends to decease insignificantly. From Figure 14a, it can be noticed 
that there are two blocks in the scatter plot of the POD versus elevation, and this is 
possibly due to the weak correlation between these two variables. Some previous studies 
also found that the detectability decreases with altitude for GPM in the TP [29,38]. With 
the increasing altitude, the percentage of snowfall in precipitation tends to increase in the 
UB. Meanwhile, there is a relatively large bias between the high flow simulated by GPM 
and the observation, as shown in the Section 3.2.3. These limitations suggest that the 
current GPM-era satellite precipitation product still has much room to further develop its 
algorithms to improve the estimation of solid precipitation and extreme heavy rainfall in 
the UB or over the TP with complicated precipitation patterns. 

 
Figure 14. Relationship between the statistical metrics and the altitude for GPM: (a) POD, (b) FAR, 
and (c) CSI. Black lines show the linear trends estimated with the least-squares-error method. CC, 
correlation coefficient. 
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4.2. Uncertainty in Statistical Results Based on Different Benchmark Precipitation 
In this study, given that the available Chinese Meteorological Administration (CMA) 

stations are sparse and unevenly distributed in the UB (Figure 1), an assessment based on 
such scarce precipitation gauge networks may bring much uncertainty. Some studies also 
recommend utilizing more than one reference precipitation dataset to evaluate gridded 
precipitation products [18]. In Sections 3.1 and 3.2 we used the gauge-based gridded 
dataset PCP_Sun as the reference data in the statistical and hydrological evaluations, as 
they were reconstructed with a high-density gauge networks and may best represent the 
real precipitation data in the UB so far [4]. To investigate the uncertainty caused by using 
different benchmark precipitation datasets, fifteen CMA stations within the UB (Figure 1) 
were chosen as another benchmark precipitation to derive the corresponding statistical 
metric values by also using the nearest-neighbor method (Figure 15). As we can see, the 
most notable difference between the Figures 4 and 15 lies in the RB metric values for HAR 
and GPM. Based on the PCP_Sun as the benchmark, the median RB for the HAR exhibits 
a positive bias of 6.82%, whereas, in contrast, a negative bias of −28.26% for HAR can be 
found by using the 15 CMA stations as the benchmark. Moreover, there is a similar 
opposite conclusion to the GPM by using the PCP_Sun and 15 CMA stations as a 
respective benchmark precipitation dataset. This phenomenon implies that the selection 
of different precipitation dataset as a benchmark could severely impact the statistical 
results. However, we thought that the outcomes based on the PCP_Sun were more reliable 
and reasonable than the results gained by using the 15 CMA stations only. On the one 
hand, the CMA stations are sparsely distributed in the UB, and most of the stations are 
located in the valley; therefore, the utilized 15 CMA stations may not characterize the 
actual precipitation regimes of the UB, and the statistical results based on this low-density 
station may contain large uncertainty. In contrast, the PCP_Sun dataset was generated by 
using a relatively high density of rainfall stations and could more accurately depict the 
real precipitation distribution over UB. On the other hand, as precipitation is the major 
driver of river runoff in this basin, the hydrological performance is closely related to the 
quality of precipitation input. Thus, modeling runoff can provide an opportunity for 
independent validation of precipitation input in the UB. The satisfactory daily 
hydrological simulation and the acceptable flood-events simulation at Nuxia, Yangcun, 
and Lhasa gauges could indirectly indicate the reliability of PCP_Sun as the benchmark 
dataset. Of course, it is undeniable that the precipitation dataset PCP_Sun may contain 
uncertainty. In future work, more studies will be implemented to thoroughly investigate 
the uncertainties involved in precipitation evaluation, such as the selection of benchmark 
precipitation datasets, utilization of diverse hydrological models, and application of 
different parameter calibration methods. 
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Figure 15. Box plots of 15 CMA stations-based statistical metrics over the UB at the grid scale: (a) 
RB, (b) RMSE, (c) CC, (d) POD, (e) FAR, and (f) CSI at daily scale for years 2001–2013. The number 
at the base of the box plot is the median value of each statistical metric. The short dash line in box 
plots denotes the mean value of statistical metric. The green horizontal line indicates the optimum 
value. 

5. Conclusions 
In this study, based on newly developed more reliable reference precipitation data, 

we firstly assessed the accuracy and detection ability of HAR, APHRODITE, TRMM, and 
GPM products over the UB during 2001 to 2013. Then the potential utility of the four 
precipitation datasets for streamflow simulation was evaluated with the VIC-glacier 
model. The main findings are listed as follows. 

For statistical assessment, the overall results of GPM and HAR are comparable to 
each other, and both of them outperform APHRODITE and TRMM at the daily scale. 
Except for the statistical index ‘RB’, the APHRODITE also shows superior outcomes with 
the smallest RMSE and the  highest CC and POD. However, both APHRODITE and 
TRMM significantly underestimate the reference precipitation at the basin scale. In 
addition, for most of statistical indices, the four precipitation datasets generally indicate 
better results in the rainy season than in the non-rainy season. 

With regard to hydrological evaluation, the GPM-based simulation shows the best 
results among the four precipitation products on both daily and monthly scales at all the 
three gauges (Nuxia, Yangcun, and Lhasa). The simulated runoff derived from HAR only 
indicates a satisfactorily outcome at Nuxia gauge, whereas it performs poorly at both 
Yangcun and Lhasa gauges due to large overestimations of precipitation in these two 
subbasins. The poor hydrological prediction skills from both APHRODITE and TRMM at 
all three hydrological stations also imply their little potential in runoff simulation over the 
UB. 

The evaluation of the four gridded precipitation datasets in this study could provide 
valuable references to precipitation selection for streamflow simulation in the UB or even 
similar TP basins with sparse ground-based observed rainfall stations. Generally, GPM 
performs acceptably in both statistical assessments and hydrological evaluations, 
indicating an encouraging potential for meteorological and hydrological studies in the 
UB; however, it does exhibit some bias. In the near future, we will carry out bias correction 
of the GPM product, which could reduce the uncertainty involved in hydrological 
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simulation and the benefit for water resources assessment and management in these 
poorly gauged TP basins. 

It should also be noted that the investigation frame in this study could be used as a 
reference for choosing suitable precipitation products for hydrological applications in a 
local region, particularly in basins with scarce rainfall gauges. However, this study just 
focused on the accuracy of streamflow simulations driven by the four precipitation 
products and did not investigate their roles in modeling other hydrological components 
such as groundwater and evaporation. In the future work, we will pay attention to both 
streamflow simulation and other hydrological variables’ modeling to comprehensively 
evaluate the validity of different precipitation datasets. 
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and APHRODITE in the UB. 
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