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Abstract: Miscanthus holds a great potential in the frame of the bioeconomy, and yield prediction 
can help improve Miscanthus’ logistic supply chain. Breeding programs in several countries are 
attempting to produce high-yielding Miscanthus hybrids better adapted to different climates and 
end-uses. Multispectral images acquired from unmanned aerial vehicles (UAVs) in Italy and in the 
UK in 2021 and 2022 were used to investigate the feasibility of high-throughput phenotyping (HTP) 
of novel Miscanthus hybrids for yield prediction and crop traits estimation. An intercalibration 
procedure was performed using simulated data from the PROSAIL model to link vegetation indices 
(VIs) derived from two different multispectral sensors. The random forest algorithm estimated with 
good accuracy yield traits (light interception, plant height, green leaf biomass, and standing 
biomass) using a VIs time series, and predicted yield using a peak descriptor derived from a VIs 
time series with 2.3 Mg DM ha−1 of the root mean square error (RMSE). The study demonstrates the 
potential of UAVs’ multispectral images in HTP applications and in yield prediction, providing 
important information needed to increase sustainable biomass production. 

Keywords: Miscanthus; remote sensing; UAV; multispectral images; high-throughput phenotyping; 
machine learning; yield prediction; trait estimation; PROSAIL; multi-sensor interoperability 
 

1. Introduction 
Miscanthus is a high yielding perennial biomass crop. Yield is one of the most 

important traits of Miscanthus [1] and has been the primary focus of the research portfolio 
on Miscanthus in the last ten years [2–4]. Independent and collaborative efforts to breed 
high-yielding Miscanthus hybrids to produce sustainable biomass for the growing bio-
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based European market are ongoing in several countries [5–7]. In the EU-BBI demo-project 
GRACE, novel and highly upscalable seed-based Miscanthus hybrids are evaluated [5,7–
10] in seven European countries. Most yield prediction to date has relied on crop growth 
models driven by climate and soil data with crop specific parameters [11–13]. For 
example, MISCANFOR is a crop growth model specifically developed to predict 
Miscanthus × giganteus yields in a wide range of environments [14]. It has been widely used 
and validated at the European [6] and national level [15] for Miscanthus and other 
perennial biomass crops [16], but new parameterization data to predict yield production 
of the novel Miscanthus hybrids [5] is required [14].  

Yield trait screening and prediction using remote sensing with unmanned aerial 
vehicles (UAVs) can help both in breeding activities and in obtaining spatial and temporal 
information for optimizing Miscanthus biomass supply chain logistics, from field to 
facilities creating bioproducts or biopower [17,18]. Impollonia et al. [19] recently 
demonstrated the feasibility of moisture content estimation in Miscanthus hybrids using 
vegetation indices (VIs) derived from UAV-based remote sensing. Remote sensing 
approaches can also be used to (i) estimate yield-related traits for high-throughput 
phenotyping (HTP) [20–22], (ii) to calibrate crop growth models [23,24], and (iii) to predict 
the yield of many crops for commercial purposes [25]. To date, few studies have focused 
on the estimation and prediction of perennial biomass crops traits using remote sensing 
technologies from satellite or UAV [26–28], and only two on Miscanthus [18,19]. Crop traits 
such as the plant height [29], the fraction of absorbed photosynthetically active radiation 
(fAPAR) [30], and the aboveground biomass [31] can be estimated from the VIs in 
combination with machine learning (ML) algorithms. One of the most used ML 
algorithms in remote sensing analyses for crop traits estimation is random forest (RF) [32–
35]. RF proved to be robust to outliers and noise, does not suffer from overfitting, and can 
manage a high training size [36]. The use of ML algorithms demonstrates great potential 
in crop yield prediction [37–40]. In particular, the use of a VIs’ time series helped to derive 
descriptors of land surface phenology (LSP, i.e., the spatial and temporal development of 
the vegetated land surface) [41–45] such as the start of season (SOS), the peak of growing 
season, the stay-green duration (onset of senescence), the end of the season (EOS), and 
growing season length [46]. Among the available descriptors of LSP, the peak of a VI is 
one of the most important descriptors for crop yield prediction, such as the peak of NDVI 
[47] and EVI2 [17] for grain yield and the peak of GNDVI for biomass yields of perennial 
grass [26]. Yield prediction is, in many studies, theoretical, as it requires to fit the whole 
seasonal curve for deriving the peak of the time series of VIs. This renders impossible the 
yield prediction before having obtained the data of the whole seasonal time series. Being 
able to perform yield prediction months before harvest with a partial time series should 
permit optimization of Miscanthus biomass supply chain logistics for practical 
applications. 

In addition, the VIs’ values used for estimation and prediction of crop traits are 
influenced by many factors, such as sensor characteristics, atmospheric conditions during 
acquisition, viewing angle, field of view, and sun elevation [48]. In the context of crop 
phenotyping, where the field trials are often carried out in multi-locations and with 
different UAV sensors, these factors could have a relevant effect on the compatibility of 
VIs. Among different sensors characteristics, the full width at half maximum (FWHM) is 
the main factor that influences the comparability of VIs’ values among different sensors 
[49]. Indeed, due to the different spectral characteristics of the UAV multispectral sensors 
available on the market, differences among VIs derived from multiple UAV sensors for 
the same target can be found [48]. For this reason, there is a need to increase the 
interoperability of the sensors using equations that are able to overcome these differences 
through advanced linking procedures between the VIs of sensors [50,51]. The multi-sensor 
interoperability is an important topic in remote sensing science [52–54] when multi-
location monitoring is conducted. Overcoming this problematic can be realised by 
intercalibrating the VIs obtained by different sensors and evaluating the correlation 
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through linear regressions [55–57]. This intercalibration can be realised in two main ways: 
a direct approach where VIs are measured by sensors [58] and an indirect approach where 
VIs data are simulated by radiative transfer models [59]. A major limitation of the direct 
regression approach is that it is not transferable because it is site-specific [50]. On the 
contrary, the indirect approach permits retrieval of VIs’ data from radiative transfer 
models, such as the PROSAIL model [60,61]. The PROSAIL model is commonly used for 
the retrieval of biochemical and biophysical crop traits from remotely sensed images for 
vegetation studies in agricultural applications [62]. PROSAIL has also been used to assess 
the performances of different satellite sensors for multiple VIs [63], but a similar 
application is currently lacking in UAV science. Hence, the use of such an approach for 
VIs’ intercalibration in UAV science might allow for overcoming the problematic of multi-
sensor interoperability across different sites.  

In summary, the overall objectives of this study, based on UAV remote sensing, were: 
(i) to estimate crop traits (light interception, plant height, green leaf biomass, and standing 
biomass) for supporting breeding programs and for providing modelling parameters for 
Miscanthus, (ii) to predict yield to obtain spatial and temporal information for improving 
the logistics biomass supply chain of Miscanthus, and (iii) to explore the potential impact 
of the timeliness on the yield prediction, by evaluating the performance of the yield 
prediction model using the peak derived from a partial time series of VIs. To achieve these 
overarching objectives, UAV multispectral images and ground phenotypic data were 
collected at two locations within the same multi-environment trial: one in Italy and one in 
the UK. These data were analysed using: (i) the PROSAIL model to simulate crop spectral 
signatures in order to intercalibrate VIs of two different common multispectral sensors, 
(ii) the random forest (RF) algorithm to estimate crop traits using the VIs time series and 
to predict yield using the peak descriptor derived from the VIs time series, for the 
reliability it achieved in previous studies [17,26,47], and (iii) the generalized additive 
model (GAM) to derive the peak from a complete and partial time series of VIs. 

2. Materials and Methods 
2.1. Experimental Design 

The field trials were conducted in two locations (Figure 1): PAC 1, located in San 
Bonico in the Italian province of Piacenza (NW Italy) (45°00′11.70″N, 9°42′35.39″E), and 
TWS 1, located in Trawscoed near Aberystwyth in Wales (UK) (52°24′59.8″N, 
4°04′02.6″W). These sites are two of the seven plot scale (PS) trials conducted within the 
EU-BBI GRACE demo-project. In PAC 1, the climate is temperate with a mean annual 
precipitation of 792 mm, while the climate in TWS 1 is oceanic with a mean annual 
precipitation of 984 mm. The trials were established in April 2018 with 14 Miscanthus 
hybrids with n = 4 replicates for a total of n = 56 plots. The trials were planted with eight 
novel intraspecific M. sinensis × M. sinensis hybrids (M. sin × M. sin), five novel interspecific 
hybrids M. sinensis × M. sacchariflorus (M. sin × M. sac), and M. × giganteus as the control 
genotype (for more details see Impollonia et al. [19]). 
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Figure 1. Field experiment locations: PAC 1 is situated in Piacenza (North-West Italy) and TWS in 
Aberystwyth (Mid-West Wales). 

2.2. Phenotypic and Yield Measurements 
Phenotypic measurements were taken from the emergence of the crop in spring 2020 

until the winter harvest in the early months of 2021. This season will thereafter be referred 
to as the 2020 growing season. These phenotypic measurements were carried out in the 
two locations and on four out of the fourteen hybrids in the trial: GRC 3 (M. sin × M. sin), 
GRC 14 (seeded) and GRC 15 (clonal) (M. sin × M. sac), and GRC 9 (standard clonal M. × 
giganteus). The measurements of this study were carried out during the third growing 
season. Five contiguous plants along a central row in each plot were used for monitoring 
during the growing season. The following list of crop traits were measured during the 
growing season: plant height (cm) and light interception (%) were measured weekly, and 
green leaf biomass (Mg DM ha−1) and standing biomass (Mg DM ha−1) were measured 
fortnightly; 172 and 145 data were collected for light interception, 240 and 204 for plant 
height, 232 and 316 for green leaf biomass, and 268 and 328 for standing biomass in PAC 
1 and TWS 1, respectively. Plant height was measured from the soil to the height of the 
last ligule of the tallest stem using a graduated pole until the crop reached complete 
flowering or started to senesce in November. Light interception was measured with a lab-
constructed 1 m “line ceptometer” with 10 photodiodes at 10 cm spacings, generating an 
electric current that is converted with simple circuitry to a voltage linearly proportional 
to the light intensity. Light intensity was measured above the canopy and at the base of 
each of the five selected plants. Light interception measurements were carried out from 
emergence until full canopy closure (around 95% of light is intercepted by the crop 
canopy) on a weekly basis and later at a lower frequency. Standing aboveground biomass 
was estimated on a monthly basis, starting after emergence in 2020 until harvest in winter 
2021. Ten randomly sampled shoots per plot each fortnight (aka “serial cuts”) were related 
to the final quadrat yields at spring harvest and used to back calculate the seasonal 



Remote Sens. 2022, 14, 2927 5 of 25 
 

 

dynamics of above ground biomass (Mg DM ha−1) from spring emergence until final 
harvest in the following spring. Each 10 shoot serial cuts were separated into green leaf, 
brown leaf, and stem fractions. The fresh weight measured in the field and the dry weight 
measured after oven drying to a constant weight at 80 °C were used to calculate the mass 
and moisture contents of each fraction and were scaled to Mg DM ha−1. The crop’s 
phenological stages were estimated using thermal time accumulation, following the 
method proposed on M. × giganteus by Tejera et al. [64]. Two main phenological stages 
were estimated: vegetative growth and senescence. The GDD accumulation started at 
plant emergence, and the accumulation of 1500 GDD was used as the threshold marking 
the difference between the vegetative growth and senescence. The final harvested yield 
was measured for all 14 hybrids, using a quadrat area of 6.6 m2 (10 plants per plot planted 
at 1.5 plants m−2 (M. × giganteus and M. sin × M. sac) or 20 plants per plots at 3 plants m−2 
(M. sin × M. sin)) and a cutting height of 10 cm. In each plot, the fresh weight of all plants 
in the quadrat was recorded, and a subsample of approximately five stems per plot was 
used to determine the moisture content and calculate the yield in Mg DM ha−1. Plants were 
harvested on 02 February 2021 (Days of year (DOY): 33) at PAC 1 and on 08 March 2021 
(DOY: 67) at TWS 1. 

2.3. UAV Multispectral Data and Vegetation Indices 
Unmanned aerial vehicle (UAV) multispectral data acquisition flights were 

performed approximately fortnightly from 24 April 2020–1 February 2021 at the PAC 1 
(25 flights) site and from 9 June 2020–25 February 2021 at the TWS 1 (17 flights) site (Table 
S1). Table 1 details the specifications of the UAVs and the multispectral cameras used at 
the two sites. All the flights were performed between 11 am and 3 pm, with the flight 
altitude above ground level (AGL) fixed at 50 m and 40 m at PAC 1 and TWS 1, 
respectively. The forward and lateral overlap was set at 80% and 75% of the images, 
respectively. Light sensors mounted on top of the UAVs were used for the radiometric 
calibration of the images. In addition, in PAC 1, images of the reflectance panel provided 
by MicaSense were also taken for calibrating images, to reduce the effects of the day’s 
changing lighting conditions during the flight [65]. The radiometric calibration and 
orthomosaic generation were done using the Pix4D mapper (Pix4D, S.A., Lausanne, 
Switzerland). The 15 vegetation indices (VIs) were calculated as illustrated in Table 2, 
using the orthomosaic. The mean of the VIs was extracted for each plot using the polygons 
of the experimental designs that were drafted in AutoCAD (Autodesk; San Rafael, CA, 
USA) and georeferenced with QGIS software (QGIS Development Team, 2021). 

Table 1. Unmanned aerial vehicles (UAVs) and multispectral cameras used to perform flights in the 
two locations, with their respective characteristics of spectral bands, central wavelength, and full 
width at half maximum (FWHM). 

Location UAV 
Multispectral Camera Characteristics 

Model Band Centre 
(nm) 

FWHM (nm) 

PAC 1 DJI M210 RTK 
MicaSense 

RedEdge-Mx 

Blue 475 32 
Green 560 27 
Red 668 14 

Red edge 717 12 
Near-infrared 840 57 

TWS 1 DJI M210 SlantRange 4P 

Blue 470 100 
Green 550 100 
Red 650 40 

Red edge 710 20 
Near-infrared 850 100 
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Table 2. List of the vegetation indices evaluated in random forest models for crop traits estimation 
and yield prediction of Miscanthus. 

VIs Equation Reference 

Datt1 
NIR − RedEdgeNIR + Red  [66] 

EVI2 2.4 NIR − Red1 + NIR + Red [67] 

GNDVI 
NIR − GreenNIR + Green [68] 

GOSAVI 
NIR − GreenNIR + Green +  0.16 [69] 

greenWDRVI 
0.1NIR − Green0.1NIR + Green + 1 − 0.11 +  0.1 [70] 

MSAVI 2NIR +  1 − ඥ(2NIR +  1)ଶ −  8(NIR −  Red)2  [71] 

MTVI1 1.2(1.2 (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) − 2.5(𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛)) [72] 

MTVI2 1.5 1.2(NIR −  Green)  −  2.5(Red −  Green)ට(2NIR +  1)ଶ −  6NIR − 5√Red −  0.5   [72] 

NDRE 
NIR − RedEdgeNIR + RedEdge [73] 

NDVI 
NIR − RedNIR + Red [74] 

OSAVI (1 +  0.16) NIR − RedNIR + Red +  0.16 [75] 

OSAVI2 (1 +  0.16) NIR − RedEdgeNIR + RedEdge +  0.16 [76] 

rededgeWDRVI 
0.1NIR − RedEdge0.1NIR + RedEdge + 1 − 0.11 +  0.1 [70] 

SAVI (1 +  0.5) NIR − RedNIR + Red +  0.5 [77] 

WDRVI 
0.1NIR − Red0.1NIR + Red + 1 − 0.11 +  0.1 [70] 

2.4. Using the PROSAIL Model to Intercalibrate VIs from Different Multispectral Sensors 
The PROSAIL model was used to simulate crop spectral signatures to intercalibrate 

the VIs (Table 2), calculated from the two different multispectral sensors used in this study 
(Table 1). PROSAIL can simulate the canopy reflectance, between 400 and 2500 nm, by 
combining the PROSPECT and SAIL models. The PROSPECT model simulates the optical 
properties of the leaves using four input parameters: leaf structure parameter (N), leaf 
chlorophyll content (LCC), relative leaf equivalent water thickness (Cwr), and leaf dry 
matter content (Cm). The SAIL model simulates the bidirectional reflectance of a canopy 
using six input parameters: leaf area index (LAI), leaf inclination distribution (LIDF), 
hotspot parameter (hot), solar zenith angle (tts), observer zenith angle (tto), and relative 
azimuth angle (psi). The canopy and leaf parameters for Miscanthus were retrieved from 
available data in the literature [78,79]. The hsdar R package [80] was used to simulate the 
canopy reflectance of the PROSAIL model [60,61] using the function PROSAIL which uses 
the FORTRAN code of the PROSAIL model (Version 5B). The look-up table (LUT) 
generated included 430,080 parameter combinations, following the min-max ranges of 
input parameters summarized in Table 3. 
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Table 3. Ranges of input parameters for the PROSAIL model for the generation of the LUT. 

Parameter Abbreviation Unit Values (Step) 

Leaf 

Structure parameter N Unitless 1–2 (1) 
Chlorophyll content LCC µg cm−2 10–80 (10) 

Relative equivalent water 
thickness Cwr % 20–80 (20) 

Dry matter content Cm g cm−2 0.01–0.025 (0.005) 

Canopy 

Leaf area index LAI m2 m−2 1–8 (1) 
Leaf inclination distribution LIDF  Spherical 

Hotspot parameter hot m m−1 0.05–0.45 (0.2) 
Solar zenith angle tts deg 20–80 (10) 

Observer zenith angle tto deg 5–10 (5) 
Relative azimuth angle psi deg 180–220 (10) 

Structure parameter N Unitless 1–2 (1) 

The present work considers all potential parameter combinations for LUT generation 
because the novel Miscanthus hybrids evaluated have not previously been studied in the 
literature, and because the crop monitoring was performed on the whole growing season 
(vegetative growth and senescence). The spectral reflectance simulated were resampled 
based on the UAV sensor characteristics (Table 1) and the 15 VIs used in this study were 
calculated. For each VI, regression analysis was conducted to intercalibrate the VI values 
calculated from the two multispectral sensors. Linear regressions were performed using 
the VIs and not the spectral bands, in order to (i) evaluate the different sensitivity of the 
VIs to sensor characteristics and (ii) identify which VIs need an intercalibration procedure 
between sensors. The final database of VIs was built by scaling the SlantRange sensor VIs 
data toward the MicaSense sensor. 

2.5. Time Series of VIs and Peak Derivation 
The 15 Vis, calculated from UAV multispectral images of the two sites and 

intercalibrated using the linear models derived by the PROSAIL simulation, were 
smoothed using a generalized additive model (GAM) to generate daily VIs time series. 
The GAM is a non-parametric regression model which allows non-linear fitting of the 
variables. GAM models were fitted in the R package “mgcv” [81]. GAM fitting of VIs 
allows for removal of the outliers and regularizes the time series [19,82,83]. The time series 
of VIs for each plot were fitted against the modified days of the year (DOYM). The DOYM 
was used to overcome the problem of having non-sequential DOY throughout the 
growing season, as this last season overlaps two different years. DOYM were calculated as 
conventional DOY for the first year of the growing season (2020) and as DOY + 365 starting 
from the 1st of January for the year 2021. 

The daily time series of the VIs were used to estimate the crop traits by linking the 
traits values measured in the field with the VIs’ values of the time series. To predict yield, 
the peak descriptor was chosen among several land surface phenology (LSP) descriptors, 
due to the reliability it achieved in previous studies [17,26,47]. The peak descriptor is 
defined as the maximum value and was derived from the GAM fitting of each VI time 
series. Two types of VIs time series were evaluated to derive the peak descriptor value: 
the complete and partial times series. The complete Vis time series were obtained by 
fitting the GAM models to the VIs’ data acquired throughout the entire growing season. 
The partial time series were obtained in two steps. Firstly, by fitting the GAM models to 
the VIs’ values, obtained from a reduced set of initial UAV flights over the crop. The first 
seven flights (175 DOY in PAC 1 and 266 DOY in TWS 1) were selected to form this 
reduced set of initial UAV flights, based on the physiology and phenology of Miscanthus, 
to cover most of the vegetative phase, the seventh flight being close to the peak of biomass 
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accumulation. Secondly, the VIs’ data obtained from the following UAV flights were 
added one by one to the data fitted in the first step, up to the end of the season. The peak 
derived from the complete time series of VIs were used for the yield prediction modelling, 
and those from the partial time series of VIs were used to analyse the variation of peak 
values and the model performance in order to assess feasibility of “early season” yield 
prediction during Miscanthus crop growth. 

The random forest (RF) algorithm was used to estimate the crop traits (Section 2.2) 
and to predict the yield of Miscanthus hybrids. The RF models were created using the caret 
R package [84]. Three steps in RF modelling were adopted. Firstly, RF models were 
created for (i) traits estimation, using the 15 VIs of the 4 Miscanthus hybrids (see Section 
2.2) and phenological stages (encoded as 0 and 1 for the stages of vegetative growth and 
senescence, respectively) and (ii) yield prediction, using the peak values derived from the 
complete time series of the 15 investigated VIs of the 14 Miscanthus hybrids. Secondly, the 
importance of variables for each tested RF model was calculated by the dropout loss of 
the root mean square error (RMSE), and the variables with a median of RMSE loss greater 
than 0 were selected. Thirdly, the RF models used to estimate the variable of interest (i.e., 
crop traits or yield) were created using only the selected variables. The optimal size of the 
variable subset (“mtry”) for each model was obtained by a grid-searching method, using 
repeated k-fold cross-validation (ten-fold cross validation repeated five times). The 
training dataset was created using a stratified random sampling method [31]: data from 
both locations and genotypes were split into 2/3 of the dataset for training and 1/3 for 
testing, based on data distribution. The variable importance was calculated by the dropout 
loss of the RMSE (i.e., the increase of prediction in the RMSE [85]) using the DALEX 
package [86]. To demonstrate the uncertainty of importance estimation, the variable 
importance was calculated for 10 permutations [85]. The RF models’ performances were 
evaluated through the coefficient of determination (R2), the root mean square error, and 
the normalized root mean square error (NRMSE) [87]. The NRMSE was calculated by 
normalizing the RMSE using the mean of the measured values [19]. The RMSE and 
NRMSE metrics were also used to compare the performance of the yield prediction model 
using test datasets, with the peak derived from the complete and partial time series of VIs. 

3. Results 
3.1. PROSAIL Model for Intercalibration of VIs Derived from Different Multispectral Sensors 

The outputs of the linear regressions analysis for each VI of interest (see Table 2), as 
calculated from PROSAIL model simulation considering the specific spectral response 
function of the two sensors (y-the MicaSense VIs and x-the SlantRange VIs), are reported 
in Figure 2. EVI2, MSAVI, and SAVI were the three VIs with the slope values closest to 1 
and intercept values closest to 0 (Figure 2). The slope values of these VIs were 0.99 for 
EVI2, 0.99 for MSAVI, and 0.97 for SAVI, while the intercept was respectively 0.02 for 
EVI2, 0.02 for MSAVI, and 0.02 for SAVI. OSAVI had a similar relation (slope: 0.91) but 
demonstrated higher variability at VI values lower than 0.6. Datt1, NDRE, and OSAVI2 
had a relationship between the two sensors with a slope close to 1 but they displayed a 
different intercept, indicating an offset of the SlantRange sensor due to the 
underestimation of the VI compared to MicaSense (Figure 2). A slope close to 1, associated 
with a high variability for the whole range of VI values, was observed for MTVI1 (slope: 
1) and MTVI2 (0.97). GNDVI, GOSAVI, greenWDRVI, and NDVI illustrated, instead, the 
highest differences between the two sensors at the lowest values of VI. On the contrary, 
rededgeWDRVI demonstrated the highest differences at high VI values.  
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Figure 2. Linear regressions of each VI simulated by the PROSAIL model, between the two sensors 
(MicaSense and SlantRange). The color code represents the point count distribution scaled to 
maximum of 1 in each hexagon. The blue dashed line represents the 1:1 relationship and the black 
line represents the linear regression. 
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3.2. Importance of Variables in Machine Learning Models 
The importance of the random forest (RF) models’ variables for crop trait estimations 

and for yield prediction are illustrated in Figure 3. The analysis of variables’ importance 
for the RF models was evaluated by drop-out loss of the RMSE for each variable, 
compared to the full model [85,86]. The phenological stage (“Stage”) was the most 
important variable for estimating plant height, green leaf biomass, and standing biomass 
(Figure 3). For crop trait estimations, the two most important VIs were NDVI and MTVI1 
for light interception, rededgeWDRVI and NDVI for plant height, and greenWDRVI and 
GNDVI for green leaf biomass and standing biomass. For yield prediction using VIs peaks 
values, the most important VIs (with a median of RMSE loss greater than 0) were 
greenWDRVI, NDVI, WDRVI, GNDVI, and MTVI2 (Figure 3) and the peak values of these 
five VIs will therefore be used for RF modelling. 

 
Figure 3. Importance of the RF models variables for crop trait estimations and for yield prediction, 
expressed as the drop-out loss of model performance (RMSE) for each variable related to the drop-
out loss of the full model (dotted line). * The RMSE values are in (%), (cm), (Mg DM ha−1), (Mg DM 
ha−1), and (Mg DM ha−1), respectively, for the light interception, plant height, green leaf biomass, 
standing biomass, and yield. 
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3.3. Machine Learning Model for Crop Traits Estimation 
The crop trait distribution of contrasting Miscanthus hybrids, measured at two 

locations, is illustrated in Figure 4. The frequency distribution of the traits (light 
interception, plant height, green leaf biomass, and standing biomass), which values were 
used for training and testing the models, demonstrated that lower values were recorded 
in TWS 1 than in PAC 1 (Figure 4). For light interception, the range was from 5.2% to 100% 
in TWS 1 and PAC 1, and the mean was 58% in TWS 1 and 81.5% in PAC 1. The mean of 
plant height was 211 cm in PAC 1 and 147 cm in TWS 1, with the range from 28 cm to 344 
cm and from 22 cm to 280 cm in PAC 1 and TWS 1, respectively. The range and the mean 
of green leaf biomass were from 0.14 Mg DM ha−1 to 14.5 Mg DM ha−1 and 5 Mg DM ha−1 

in PAC 1 and from 0.05 Mg DM ha−1 to 6.3 Mg DM ha−1 and 1.5 Mg DM ha−1 in TWS 1. For 
standing biomass, the range was from 0.5 Mg DM ha−1 to 46.4 Mg DM ha−1 in PAC 1 and 
from 0.5 Mg DM ha−1 to 21.1 Mg DM ha−1 in TWS 1, and the mean was 8 Mg DM ha−1 in 
TWS 1 and 18.9 Mg DM ha−1 in PAC 1. 

 
Figure 4. Frequency distribution of Miscanthus traits at the two locations in PAC 1 and TWS 1: (a) 
light interception (%), (b) plant height (cm), (c) green leaf biomass (Mg DM ha−1), and (d) standing 
biomass (Mg DM ha−1). 

Overall, the RF model estimated crop traits with good model performance (Figures 5 
and 6). Among the crop traits, light interception was estimated with the greatest accuracy 
(NRMSE of 10.9%; Figure 5). High model accuracy was also achieved for the estimation 
of plant height (21.8% NRMSE), while the lowest model accuracies were observed for 
green leaf biomass and standing biomass (42.2% and 45.3% of NRMSE, respectively; 
Figure 5). For these last parameters, the RF model demonstrated good accuracy from low 
to intermediate values, while above values of 5 Mg DM ha−1 of green leaf biomass and 20 
Mg DM ha−1 of standing biomass the model performances dropped. The NRMSE 
performance metrics for each location and hybrid are reported in Figure 6. Generally, no 
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relevant differences were observed between the two locations (Figure 6). In PAC 1, the 
GRC 3 hybrid demonstrated the worst performance for green leaf biomass, for standing 
biomass, and for plant height, while in TWS 1, the GRC 14 hybrid demonstrated the worst 
performance for all the crop traits considered, except for plant height. 

 
Figure 5. Estimated vs. measured crop traits on the ground of four Miscanthus hybrids’ growth at 
PAC 1 and TWS 1: (a) light interception (%), (b) plant height (cm), (c) green leaf biomass (Mg DM 
ha−1), and (d) standing biomass (Mg DM ha−1). The blue dashed line represents the 1:1 relationship 
and the black line represents the linear regression. 

 
Figure 6. NRMSE values of the RF models obtained for each crop trait assessed in four hybrids 
grown at the two locations in PAC 1 and TWS 1. Note: lower values indicate higher estimation 
accuracies. 

3.4. Machine Learning Model for Yield Prediction 
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The frequency distribution of yield measured for the 14 Miscanthus hybrids in PAC 1 
and TWS 1 is provided in Figure 7. On average, the yield of Miscanthus was higher in PAC 
1 than in TWS 1. In PAC 1, the highest yield was recorded by M. sin × M. sac (a mean of 
18.3 Mg DM ha−1). M. sin × M. sin productivity averaged 11.3 Mg DM ha−1, while M. 
giganteus was less productive (mean of 9.6 Mg DM ha−1). In TWS 1, the highest yield was 
recorded by M. sin × M. sin (mean of 9.4 Mg DM ha−1). M. sin × M. sac productivity 
averaged 8.2 Mg DM ha−1 while M. giganteus was less productive (mean of 6.6 Mg DM 
ha−1). The RF model, trained and tested with the yield values reported in Figure 7, enabled 
a reliable prediction of Miscanthus yield for all hybrids, using the peak derived from the 
complete time series of VIs (Figure 8). The RF model obtained a RMSE value of 2.3 Mg 
DM ha−1 and a NRMSE value of 19.7% (Figure 8a). In PAC 1, M. sin × M. sac demonstrated 
the lowest NRMSE value, while M. sin × M. sin demonstrated the highest NRMSE value. 
On the contrary, in TWS 1, M. sin × M. sin demonstrated the lowest NRMSE value while 
M. sin × M. sac demonstrated the highest NRMSE value (Figure 8b). The modified days of 
the year (DOYM) of the peak of the Vis (greenWDRVI, NDVI, WDRVI, GNDVI, and 
MTVI2) are reported in Figure 8c. On average, the VIs reached the peak earlier in PAC 1 
(172 DOYM–20 June) than in TWS 1 (DOYM 232–19 August). In PAC 1, all hybrids reached 
the peak at the same time, while in TWS 1, all M. sin × M. sin hybrids were the earliest to 
reach the peak (228 DOYM-15th August), while M. sin × M. sac hybrids and M. × giganteus 
reached the peak along a wide timespan ranging from the end of September until mid-
November (Figure 8c). 

 
Figure 7. Frequency distribution of yield (Mg DM ha−1) for the different Miscanthus hybrids at the 
two locations, PAC 1 and TWS 1. 
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Figure 8. The (a) predicted vs. measured yield (Mg DM ha−1), (b) NRMSE of the RF model for yield 
prediction, and (c) boxplot of the modified days of the year (DOYM) of the peak derived from the 
complete time series of the 5 VIs (greenWDRVI, GNDVI, MTVI2, NDVI, and WDRVI,) of different 
Miscanthus hybrids, at two locations, PAC 1 and TWS 1. 

3.5. Time Series of VIs and Yield Prediction Analysis 
The complete time series of the five VIs identified as the most important for yield 

prediction (see Section 3.2 and Figure 3) are reported in Figure 9a for PAC 1 and Figure 
10a for TWS 1. In PAC 1, all VIs values recorded throughout the growth of Miscanthus 
were the highest for M. sin × M. sac and the lowest for M. giganteus (Figure 9a), following 
the same order of the mean yield measured in the field (Figure 7). In TWS 1, a similar time 
series of all the Vis were recorded for the M. sin × M. sac and M. giganteus (Figure 10a). In 
particular, the peaks of M. sin × M. sac and of M. giganteus were reached later than that of 
M. sin × M. sin, as illustrated in Figure 8c. The variation throughout the season of the peak, 
derived by fitting the VIs via the generalized additive model (GAM), are displayed in 
Figure 9b for PAC 1 and Figure 10b for TWS 1. In PAC 1, the difference between the value 
of the peak derived from the complete time series of VIs and the value of the peak derived 
from the partial time series of VIs is the lowest (close to zero) after the 302 DOYM (end-
October). Before this date, the peaks’ differences are lower for M. sin × M. sin than M. sin 
× M. sac and M. giganteus (Figure 9b). In TWS 1, the difference between the value of the 
peak derived from the complete time series of VIs and the value of the peak derived from 
the partial time series of VIs is lowest after 331 DOYM (end-November). As for PAC 1, the 
peaks differences are lower for M. sin × M. sin than M. giganteus and M. sin × M. sac (Figure 
10b) in TWS 1 before 331 DOYM. The timeline of the performance of the RF model tested 
with the VIs peak from partial time series is reported in Figure 11. In PAC 1, the NRMSE 
decreased until 302 DOYM for M. giganteus and M. sin × M. sac while for M. sin × M. sin, it 
remained stable for all UAV flights performed from 175 DOYM onward. In TWS 1, no 
relevant differences in NRMSE were observed between the UAV flights performed from 
266 DOYM onward. 
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Figure 9. (a) Time series of the five VIs (GNDVI, greenWDRVI, MTVI2, NDVI, and WDRVI) fitted 
via the generalized additive model (GAM) throughout the growing season of Miscanthus in PAC 1. 
Modified days of the year (DOYM) were calculated by adding 365 to the DOY of the corresponding 
year from January on. (b) Variation of the peak of the VIs derived from the complete time series of 
the VIs as compared to the peak of the VIs derived from the partial time series of the VIs. The DOYM 
of the UAV flights performed during the season in PAC 1 are reported in the x-axis. In the y-axis, 
the peak differences between the peak derived to the end of the season in PAC 1 (397 DOYM) and 
the peak derived from partial time series fitted until the DOYM of the UAV flight, are reported. 
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Figure 10. (a) Time series of the five VIs (GNDVI, greenWDRVI, MTVI2, NDVI, and WDRVI) fitted 
via the generalized additive model (GAM) throughout the growing season of Miscanthus in TWS 1. 
Modified days of the year (DOYM) were calculated by adding 365 to the DOY of the corresponding 
year from January on. (b) Variation of the peak of the VIs derived from the complete time series of 
the VIs as compared to the peak of the VIs derived from the partial time series of the VIs. In the x-
axis, the DOYM of the UAV flights performed during the season in TWS 1 are reported. In the y-axis, 
the peak differences between the peak derived to the end of the season in TWS 1 (421 DOYM) and 
the peak derived from partial time series fitted until the DOYM of the UAV flight are reported. 
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Figure 11. NRMSE values of the RF model for yield prediction trained with the peak of the VIs, 
derived from the complete time series and tested with the peak of the VIs derived from the partial 
time series fitted until the modified days of the year (DOYM) of the UAV flight, at the two locations 
PAC 1 and TWS 1. 

4. Discussion 
The use of UAV-based remote sensing provides a great potential for high-throughput 

phenotyping (HTP) at the plot scale, with applications in both breeding and in estimating 
the quality and quantity of the biomass needed for optimising downstream management 
of biomass fluxes. In this study, vegetation indices (VIs) and their peak were derived from 
unmanned aerial vehicles’ (UAVs) mounted multispectral sensors to estimate crop traits 
(light interception, plant height, green leaf biomass, and standing biomass), and to predict 
the final harvestable yield of novel Miscanthus hybrids and common M. × giganteus grown 
at two sites (Italy and UK).  

4.1. The Importance of VIs Intercalibration Procedure for Multi-Sensor Interoperability 
Intercalibrating the VIs of multi-sensors is relevant for remote sensing crop 

monitoring [54], particularly when the objective is to build models to estimate crop traits 
or to predict yield, and when sensors with different spectral characteristics are used. 
Indeed, the models might not reach the same accuracy if the VIs are calculated with 
sensors with different spectral band characteristics. The spectral signatures simulated 
from the PROSAIL model were used in this study to intercalibrate Vis, calculated from 
two common multispectral cameras (MicaSense RedEdge-MX and SlantRange 4P). 
Ideally, the VIs from any sensor can be then intercalibrated against the VIs of a selected 
reference sensor. This intercalibration approach is commonly adopted for VIs obtained 
from different satellites, [59] but, to our knowledge, this is the first time that such an 
approach is applied to UAV multispectral sensors. The PROSAIL model was used to 
simulate the canopy reflectance based on the value of specific Miscanthus traits, such as 
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LAI, chlorophyll content, dry matter content, relative equivalent water thickness, leaf 
inclination distribution, and two site-specific values: solar zenith angle and relative 
azimuth angle. This approach was applied to the values of 15 VIs. EVI2, MSAVI, and SAVI 
were the three VIs with the closest 1:1 relation, which indicates that these VIs have a very 
low sensitivity to the spectral characteristics of the two sensors used in the present work. 
Similar results with no need for intercalibration for the same VIs were reported by Li et 
al. [88], comparing ETM+ and OLI satellite imageries. However, the other VIs evaluated 
in this study (Datt1, GNDVI, GOSAVI, greenWDRVI, MTVI1, MTVI2, NDRE, NDVI, 
OSAVI, OSAVI2, rededgeWDRVI, and WDRVI) demonstrated a higher sensitivity to 
sensor characteristics, underlining the importance of intercalibrating VIs for multi-sensor 
interoperability. In particular, the VIs based on green and red-edge bands demonstrated 
a higher variation than the VIs based on the red band, at all ranges of values. These 
differences are explained by the differences in the spectral characteristics of MicaSense 
and SlantRange in the green and red-edge bands. In particular, the SlantRange sensor has 
a broader green FWHM (100 nm) and a different central wavelength (710 nm) of the red 
edge compared to the MicaSense sensor (green FWHM: 27 nm and red edge central 
wavelength: 717 nm). This difference was already reported to cause considerable signal 
differences in other studies [89,90].  

This study highlighted the importance of intercalibrating different multispectral 
sensors to increase interoperability in remote sensing. Kim et al. [91] and Villaescusa-
Nadal et al. [92] reported that the use of linear regression equations to intercalibrate multi-
sensors contributes to significantly correct (up to 50%) the effects of different spectral 
characteristics on VIs. However, it would be interesting to validate this procedure by 
flying simultaneously on the same field with two UAV sensors, comparing the values of 
the VIs with and without the intercalibration procedure, in order to evaluate the 
improvement in terms of VIs compatibility and multi-sensor interoperability. In fact, even 
if the spectral characteristics of the multispectral sensor are the factor that influences the 
compatibility of the VIs of different sensors the most [49], other factors cause differences 
of Vis, such as the atmospheric conditions during acquisition [48]. In the UAV images 
acquisitions, the changing light and meteorological conditions during the flights can affect 
the quality of the spectral data [65]. Therefore, this procedure is limited by other factors 
that cannot be considered by applying a simulated regression coefficient. However, using 
equations that are able to intercalibrate VIs derived by multiple multispectral sensors can 
reduce differences in Vis, improving crop monitoring and modelling for estimation of 
crop traits and prediction of yield. 
4.2. Estimating Miscanthus Traits with Machine Learning 

This study estimated Miscanthus traits using the random forest (RF) machine learning 
algorithm. The RF model was trained with the data collected on three novel seed-based 
Miscanthus hybrids and the common rhizome-based genotype M. × giganteus, at two 
contrasting locations (North-West Italy and Mid-West Wales). The RF algorithm, using 15 
common VIs, successfully estimated crop traits, solving the non-linear responses between 
VIs and crop traits observed by Li et al. [28] for other perennial crops. The estimation of 
the crop traits from the time series of VIs acquired by UAV-based remote sensing can 
generate more data useful to calibrate existing Miscanthus crop models and to re-fine these 
models for novel Miscanthus hybrids in contrasting environments. The crop trait estimated 
with the greatest accuracy was light interception, which demonstrated a RMSE of 8.4%, 
the accuracy being especially good at high values of light interception (Figure 5). This 
result is in agreement with Guillen-Climent et al. [93], who found that the fraction of 
intercepted photosynthetically active radiation (fIPAR) was successfully estimated by a 
ML algorithm. Upreti et al. [30] found similar values of NRMSE (12.06% ) using the RF 
tree bagger approach for estimating the fraction of absorbed photosynthetically active 
radiation (fAPAR) of durum wheat. Good model accuracy was also achieved for plant 
height estimation (RMSE = 42 cm and NRMSE = 21.8%; Figure 5). A similar RMSE value 
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(41 cm) was found by Han et al. [31] for plant height estimation of maize using the crop 
surface model, and by Tao et al. [94] (NRMSE = 21.2% ) in the estimation of plant height 
of winter wheat using UAV hyperspectral images. The worst model accuracy was found 
for the green leaf biomass and standing biomass, with 1.3 Mg DM ha−1 and 5.8 Mg DM 
ha−1 of RMSE, respectively (Figure 5). However, for these parameters, the model 
demonstrated good accuracy from low to intermediate values, while, above values of 5 
Mg DM ha−1 of green leaf biomass and 20 Mg DM ha−1 of standing biomass, the model 
performance dropped. The model could be affected by errors in the estimation in these 
intervals due to the fewer data used to train the model [95]; in fact, most of them were 
collected in PAC 1 (Figure 4). The different levels of accuracy of the models in estimating 
light interception and plant height compared to green leaf biomass and standing biomass 
could also be related to the period in which the measurements were taken and to the 
response of VIs during senescence. Field measurements of light interception and plant 
height were carried out in each environment from emergence until they peaked, which 
explains their good model accuracy. Estimation of crop traits with data coming from 
single UAV flights across the growing seasons is particularly affected after biomass 
reaches its maximum value in autumn. After biomass peak, with the start of the 
senescence period, the values of VIs start to decrease (Figures 9a and 10a) [96], while 
Miscanthus green leaf biomass and standing biomass values remained stable or slightly 
decreased during this period. The difference of rate of decrease between the VIs and crop 
traits during senescence is a key aspect to consider in remote sensing estimation of crop 
traits. The importance of the senescence stage in the crop traits estimation is confirmed by 
the results on the variables’ importance (Figure 3). Indeed, the phenological variable 
“Stage” was the most important variable in the estimation of plant height, green leaf 
biomass, and standing biomass. The plant height of the GRC 3 (a M. sin × M. sin planted 
at high density) were poorly estimated, and this could be due to its canopy architecture 
and flowering time. The M. sin × M. sin hybrid has many distinguishable stems flowering 
(where plant height is measured), but its leaves are particularly curved and attached along 
the stem at a lower height than M. sin × M. sac. In addition, this genotype was transplanted 
at higher densities (3 plants m−2) and flowered earlier (end of August) compared to other 
genotypes, which flowered in early autumn. This more “prostrate” canopy architecture 
(with a higher stem segment between inflorescences and bent leaves) introduced noise in 
the plant height estimation from UAVs [97], since most of the reflectance comes from bent 
leaf mass. This noise caused by changes in plant architecture and the onset of flower can 
be seen in the NRMSE values of the RF models at the PAC 1 site (Figure 6). In fact, the 
earlier a genotype with prostrate architecture flowers, the worse is the estimation of plant 
height and biomass from an UAV. 

4.3. Yield Prediction Using Machine Learning and Peak of VIs 
The random forest (RF) trained with the peak derived from complete time series of 

five VIs acquired by UAVs was able to predict the yield of the 14 Miscanthus hybrids. The 
peak value of greenWDRVI, NDVI, WDRVI, GNDVI, and MTVI2 resulted the most 
important features for RF modelling, as derived from previous analysis (see Section 3.2, 
Figure 3). The RF model accurately predicted the yield, with 2.3 Mg DM ha−1 of RMSE and 
19.7% NRMSE (Figure 8a). The peak for Miscanthus hybrids occurs on average in mid-
summer and early autumn in southern/warm (Italy) and northern/cold (UK) locations, 
respectively. The importance of the peak as land surface phenology (LSP) descriptors for 
yield prediction was already reported by Prasad et al. [98], who found that the peak had 
the highest correlation with cotton yield prediction compared to other LSP descriptors. 
Similar results were reported by Montazeaud et al. [47], who found a high correlation 
between the peak of NDVI and the yield, and by Liu et al. [17], who found that the EVI2 
peak was a good predictor of grain yield. Among the VIs used in the RF model, the peak 
of the VIs based on the green band as GNDVI and greenWDRVI (Figure 3) were the most 
important variables for predicting not only Miscanthus yield at harvest, but also in 
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estimating standing biomass and green leaf biomass during the growing season (Figure 
4). Similar results for GNDVI were found in switchgrass and other warm-season perennial 
grasses [26]. In order to assess the capability of the model to predict the yield months 
before harvest (i.e., using only early season UAV acquisition and not waiting to perform 
UAV monitoring during the entire crop season), the RF model was calculated using the 
peak derived from the partial time series of Vis, and performance analysed. In the UK, the 
RF model accurately predicted the yield five months before harvest for all Miscanthus 
hybrids. In Italy, the yield of the M. sin × M. sin hybrids can be predicted with good 
accuracy seven months before harvest while M. giganteus and M. sin × M. sac hybrids 
required more time, as a good accuracy was obtained 3–4 months before harvest. This 
capability of the model to predict yield months before harvest is possible if no damage to 
plants later in the season occurs, thus considering a steady development process. Given 
the good accuracy achieved by the RF model even when peak value is assessed on a 
limited number of data (see Section 3.5, Figure 11), this approach can be considered as a 
suitable method to predict yield several months before harvest. However, it is possible 
that no time series analyses (i.e., a complete series of dense observation from sowing to 
harvest) are required, and the 5 VIs values could be used directly as inputs for yield 
prediction modelling, if the UAV data is acquired in the range of expected peak 
occurrence. This opportunity was also reported for switchgrass [26] using multispectral 
images acquired from multiple UAV flights, underlying the possibility of reducing the 
number of multispectral observations (e.g., 25 UAV flights were performed in PAC 1) to 
2–3 UAV flights in proximity of the VIs’ peak period. In this context, the identification of 
VIs’ peak period, which is generally related to crop physiology and phenology (reaching 
the maximum production), is important in terms of cost (reduction of the number of 
observations) and of operationality of the yield prediction model. This model operability, 
intended as a capability of the model to accurately predict the yield some months before 
the harvest, is extremely relevant for improving the logistics of the biomass supply chain 
of Miscanthus and for supporting the improvement of crop modelling with remote sensing 
data.  

5. Conclusions 
This study demonstrated that vegetation indices (VIs) derived from unmanned aerial 

vehicle (UAV) multispectral images acquired in Italy and the UK can be successfully used 
in random forest (RF) machine learning (ML) algorithms to estimate the light interception, 
plant height, green leaf biomass, and standing biomass, and to predict the yield of novel 
Miscanthus hybrids using the peak derived from the VIs’ time series. This study evaluated 
the timeline of the performance of the model using peaks derived from the partial VIs’ 
time series, and the RF model demonstrated a good capability to predict the yield months 
before the harvest, both in Italy and in the UK, by using a limited number of UAV 
observations. In particular, the results suggested that the VIs’ values acquired during the 
peak period (without using the complete or partial time series) could be used directly for 
yield prediction, increasing the model operability. Yield prediction and high-throughput 
phenotyping, based on ML algorithms and on UAV remote sensing, can improve the 
logistics of the biomass supply chain, supporting breeding programs, and improving the 
crop modelling of novel Miscanthus hybrids. UAV platforms are suitable tools for HTP 
applications, as they enable the monitoring of small plots or field scale trials with 
numerous genotypes, due to their ability to capture high-resolution images. However, the 
satellite platforms are more suited for yield prediction, as they can collect data of many 
fields simultaneously and can develop applications to predict commercial yield at 
regional and national scales. In addition, this study reported for the first time a 
methodology to overcome the issue of multi-sensor interoperability among UAV 
multispectral sensors. The use of intercalibrating equations derived from the PROSAIL 
model proved to be a powerful tool to intercalibrate VIs from multi-sensors with different 
spectral characteristics. Although this intercalibration procedure is relevant for the 
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upscaling of models from experimental plots to field by intercalibrating the UAV with 
satellites sensor characteristics, it is limited because it only considers the spectral sensor 
characteristics and no other factors, such as light and meteorological conditions during 
the flights, which may affect the quality of the spectral data and cannot be considered by 
applying a simulated regression coefficient. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/rs14122927/s1, Table S1. Seasonal calendar of UAV flights 
performed in the two locations according to the estimated phenological stages (vegetative growth 
and senescence). 
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