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Abstract: In order to combine the spectral information of the multispectral (MS) image and the spatial
information of the panchromatic (PAN) image, a pan-sharpening method based on β-divergence Non-
negative Matrix Factorization (NMF) in the Non-Subsampled Shearlet Transform (NSST) domain is
proposed. Firstly, we improve the traditional contrast calculation method to build the weighted local
contrast measure (WLCM) method. Each band of the MS image is fused by a WLCM-based adaptive
weighted averaging rule to obtain the intensity component I. Secondly, an image matting model is
introduced to retain the spectral information of the MS image. I is used as the initial α channel to
estimate the foreground color F and the background color B. Depending on the NSST, the PAN image
and I are decomposed into one low-frequency component and several high-frequency components,
respectively. Fusion rules are designed corresponding to the characteristics of the low-frequency
and high-frequency components. A β-divergence NMF method based on the Alternating Direction
Method of Multipliers (ADMM) is used to fuse the low frequency components. A WLCM-based rule
is used to fuse the high-frequency components. The fused components are inverted by NSST inverse
transformation, and the obtained image is used as the final α channel. Finally, the final fused image
is reconstructed according to the foreground color F, background color B, and the final α channel.
The experimental results demonstrate that the proposed method achieves superior performance in
both subjective visual effects and objective evaluation, and effectively preserves spectral information
while improving spatial resolution.

Keywords: non-subsampled shearlet transform (NSST); weighted local contrast measure (WLCM);
image matting model; alternating direction method of multipliers (ADMM)

1. Introduction

Multi-source remote sensing satellites can provide numerous remote sensing images
with different spatial, spectral, and temporal resolutions. The panchromatic (PAN) image
has a high spatial resolution and can reflect the overall spatial structure and detail the
features of the remote sensing image. The multispectral (MS) image contains rich spectral
information which can be used in various fields, such as the identification, classification,
and interpretation of ground objects. By fusing the MS image with rich spectral information
and the PAN image with high spatial resolution, a fused image with high spatial and
spectral resolution can be obtained. This process is also called pan-sharpening. The pan-
sharpening method can be used to obtain a fused image that contains more complete and
richer information than a single type of remote sensing image. It is widely used in land use
planning, vegetation cover analysis, earth resources surveying, and other fields, as shown
in Figure 1.
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Figure 1. Application of the pan-sharpening method. 

In the past, many pan-sharpening methods have been proposed to fuse the MS and 
PAN images. The component substitution-based (CS) methods can transform the MS im-
age into a new projection space. In the new projection space, the MS image is decomposed 
into spectral and spatial components and then the spatial component is replaced with the 
PAN image. Finally, a fused image can be obtained by inverse transform. The CS-based 
methods mainly include the intensity–hue–saturation (IHS) transform method [1,2], prin-
cipal component analysis-based (PCA) method [3], Gram–Schmidt-based (GS) method, 
adaptive GS (GSA) method [4], band-dependent spatial-detail with physical constrains 
(BDSD-PC) method [5], partial replacement-based adaptive component substitution 
(PRACS) method [6], etc. The CS-based methods operate more efficiently, and the spatial 
details of the fused image are clearer. They are robust to alignment errors and blending 
mistakes. 

The multi-resolution analysis-based (MRA) methods inject the spatial details ob-
tained from the PAN image by multi-resolution decomposition into the MS image, such 
as the wavelet transform-based method [7] and the additive wavelet luminance propor-
tional (AWLP) method [8], etc. Compared with the CS-based methods, the MRA-based 
methods can maintain the spectral information of the MS image, but it will cause spatial 
structure distortion in the fused image. 

Moreover, Fu et al. [9] proposed a variational local gradient constraints-based 
(VLGC) pan-sharpening method that can make full use of the spatial information con-
tained in the PAN image. Wu et al. [10] proposed a new multi-objective decision-based 
(MOD) pan-sharpening method. This method models the parameters from a multi-objec-
tive perspective while maximizing the quality of all the pixels in the fused image. Khan et 
al. [11] proposed a pan-sharpening method that combines Brovey and Laplacian filter. 
The Laplacian edge sharpening plays an important role in enhancing edge contrast and 
improving image visibility. Li et al. [12] proposed a pan-sharpening method based on a 
guided filter method. This method first decomposes the MS and PAN images into high-
frequency and low-frequency components. Then, a guided filter is used to enhance the 
spectral information. 

Figure 1. Application of the pan-sharpening method.

In the past, many pan-sharpening methods have been proposed to fuse the MS and
PAN images. The component substitution-based (CS) methods can transform the MS image
into a new projection space. In the new projection space, the MS image is decomposed into
spectral and spatial components and then the spatial component is replaced with the PAN
image. Finally, a fused image can be obtained by inverse transform. The CS-based meth-
ods mainly include the intensity–hue–saturation (IHS) transform method [1,2], principal
component analysis-based (PCA) method [3], Gram–Schmidt-based (GS) method, adaptive
GS (GSA) method [4], band-dependent spatial-detail with physical constrains (BDSD-
PC) method [5], partial replacement-based adaptive component substitution (PRACS)
method [6], etc. The CS-based methods operate more efficiently, and the spatial details of
the fused image are clearer. They are robust to alignment errors and blending mistakes.

The multi-resolution analysis-based (MRA) methods inject the spatial details obtained
from the PAN image by multi-resolution decomposition into the MS image, such as the
wavelet transform-based method [7] and the additive wavelet luminance proportional
(AWLP) method [8], etc. Compared with the CS-based methods, the MRA-based methods
can maintain the spectral information of the MS image, but it will cause spatial structure
distortion in the fused image.

Moreover, Fu et al. [9] proposed a variational local gradient constraints-based (VLGC)
pan-sharpening method that can make full use of the spatial information contained in the
PAN image. Wu et al. [10] proposed a new multi-objective decision-based (MOD) pan-
sharpening method. This method models the parameters from a multi-objective perspective
while maximizing the quality of all the pixels in the fused image. Khan et al. [11] proposed
a pan-sharpening method that combines Brovey and Laplacian filter. The Laplacian edge
sharpening plays an important role in enhancing edge contrast and improving image
visibility. Li et al. [12] proposed a pan-sharpening method based on a guided filter method.
This method first decomposes the MS and PAN images into high-frequency and low-
frequency components. Then, a guided filter is used to enhance the spectral information.

While the existing pan-sharpening methods perform well in many aspects, there
are still some areas in need of improvement. For example, the CS-based and MRA-based
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methods can improve the spatial resolution of the fused images but cause spectral distortion
in the fused images. Moreover, the deep learning-based methods often require a large
number of training datasets, but specialized remote sensing datasets are scarce. Different
satellites have different data types, so it is difficult to train different satellite datasets at the
same time. In addition, it takes substantial time to train the network model.

To solve the spatial and spectral distortion problems in the remote sensing image
fusion process, we propose a pan-sharpening method based on an image matting model,
a Non-Subsampled Shearlet Transform (NSST), and an Alternating Direction Method of
Multipliers-based (ADMM) β-divergence Non-negative Matrix Factorization (NMF). The
proposed method combines the advantages of the CS-based and MRA-based methods, and
it mainly comprises the following three processes:

Firstly, inspired by the superior spectral preservation ability of an image matting
model, this model is introduced into the process of pan-sharpening. However, in the
process of remote sensing imaging, due to different signal-to-noise ratio, the characteristics
of the MS and PAN images are not exactly the same. If the PAN image is directly used
as the α channel, spectral distortion will occur in the fused image. Thus, we improve the
traditional local contrast measurement method and establish a weighted local contrast
measure (WLCM) method. According to the WLCM method, each band of the MS image is
fused to obtain the intensity component I as the initial α channel.

Then, the NSST decomposition is performed on the MS and PAN images separately,
and a low-frequency component and several high-frequency components are obtained.
Based on the NSST decomposition, two different fusion rules are designed according to
the different characteristics of the high-frequency and low-frequency components. The
high-frequency components contain rich detailed information of the source image, such
as edges and textures. Thus, a WLCM-based rule is adopted to fuse the high-frequency
coefficients. The low-frequency component is the approximation of the original image and
describes the basic structure of the original image. Thus, an ADMM-based β-divergence
NMF method is used to fuse the low frequency components.

Finally, the image fused by the PAN image and I is used as the final α channel.
According to an image matting model, a fused image with high spatial and spectral
resolution can be reconstructed based on the foreground color F, background color B, and
the final α channel.

The main contributions of the method proposed in this paper are as follows:

(1) An image matting model is introduced in the fusion process, which can effectively
maintain the spectral resolution of the MS image.

(2) A NSST is introduced in the multi-resolution analysis process, which has the advan-
tages of multi-scale, multi-direction, and translation invariance. In addition, the NSST
can overcome the pseudo-Gibbs effect when reconstructing images and can capture
more feature information of the source image.

(3) The low-frequency components are fused according to an ADMM-based β-divergence
NMF method. Moreover, the ADMM-based β-divergence NMF method has a faster
convergence speed and better solution results.

(4) The traditional local contrast measure method is improved and a WLCM method is
proposed in this paper. Initially, the local contrast measure value is calculated using
the median of the neighborhood. Then, the mean of the difference between the local
pixel values and the middle pixel value is introduced to weight the local contrast
measure value. The WLCM method can enhance the faint spatial details and suppress
the irrelevant backgrounds, which in turn improves the detection rate of detailed
information and ultimately enhances the fusion effect.

The rest of this paper is organized as follows. Section 2 introduces the principles
of NSST decomposition, image matting model, ADMM-based β-divergence NMF, and
WLCM. Section 3 describes the detailed steps and principles of the proposed method.
Section 4 conducts experiments and comparative analysis. Finally, Section 5 consists of the
conclusion and some future plans.
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2. Materials and Methods
2.1. NSST Decomposition

A Shear wave is a special case of continuous wavelet [13]. In two dimensions, it is
defined as follows:

QLJ(ψ) =
{

ψm,n,k(x) = |detL|m/2ψ(JnLmx− k) : m, n ∈ M, k ∈ M2
}

(1)

where ψ is a function set and ψ ∈ D2(T2). D2(·) represents the two-dimensional energy
finite function space; T denotes a real number; M denotes an integer; L represents the
anisotropic matrix of multi-scale partition; J represents the shear matrix that is used for
directional analysis; m, n, and k are scale, direction, and shift parameters, respectively. If
∀ f ∈ D2(T2), satisfying ∑

m,n,k
|
〈

f , ψm,n,k
〉
| = ‖ f ‖2, then the elements of QLJ(ψ) are called

synthetic wavelets.
When a > 0 and J ∈ R, L and J are 2-order invertible matrices as follows:

L =

[
l 0
0
√

l

]
, J =

[
1 j
0 1

]
(2)

Suppose that l = 4 and j = 1, the continuous wavelet is the Shearlet. Shearlet is a special
case of synthetic wavelets, when L is an expansion matrix with anisotropy and J is a shear
matrix. L and J are as follows.

L =

[
4 0
0 2

]
, J =

[
1 1
0 1

]
(3)

The discretization process of NSST is mainly divided into two steps: multiscale
decomposition and direction localization. In the process of multi-scale decomposition, Non-
Subsampled Laplace Pyramid transform (NSLP) [14] is adopted. Thus, it has translational
invariance. If we perform m-scale decomposition, we can get m + 1 components with the
same size as the original image, including m high-frequency components and one low-
frequency component. The multi-directional decomposition is realized by the improved
Shearlet filters (SF). This maps the standard SF in the Shearlet from pseudo-polarized
coordinates to Cartesian coordinates, and the whole process is achieved directly by two-
dimensional convolution to avoid down-sampling operations and to make it translation
invariant. These filters are formed by avoiding secondary sampling to satisfy shift invari-
ance. Thus, NSST has the advantages of structural simplicity, multi-scale, multi-directional,
and translational invariance. Figure 2 shows a three-level NSST decomposition model.

2.2. Image Matting Model

According to an image matting model [15], an image can be divided into foreground
and background color. This means that the color of the i-th pixel is the linear combination of
the corresponding foreground color Fi and background color Bi. The details are as follows:

Zi = αiFi + (1− αi)Bi (4)

where Fi is the foreground color of the i-th pixel, Bi is the background color of the i-th
pixel, and α is the opacity of F. When determining the input image Z and the α channel,
the foreground color F and background color B can be estimated by solving the following
function:

min∑
i

∑
k
(αiFi

k + (1− αi)Bk
i )

2
+ |αix|((Fk

ix)
2
+ (Bk

ix)
2
) + |αiy|((Fk

iy)
2
+ (Bk

iy)
2
) (5)

where i denotes the i-th channel of the input image Z, and Fk
ix and Fk

iy are the horizontal and

vertical derivatives of the foreground color Fk, respectively. Bk
ix and Bk

iy are the horizontal
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and vertical derivatives of the background color Bk, respectively. αix and αiy are the
horizontal and vertical derivatives of the α channel, respectively. For more details, please
refer to the literature [15].
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2.3. β-Divergence Non-Negative Matrix Factorization Based on Alternating Direction Method of
Multiplier

Non-negative Matrix Factorization (NMF) is a common method for learning inter-
pretable features from non-negative data. The NMF method has a superior ability for
extracting local features. When the NMF method is used for the remote sensing image
fusion process, it can integrate the dominant regions of different remote sensing images.
Thus, the NMF method can strengthen the regional features and obtain superior fusion re-
sults. A β-divergence NMF method in the literature [16] is derived based on the Alternating
Direction Method of Multipliers (ADMM) framework.

The ADMM method is a simple and effective method to solve separable convex
programming problems, especially for large-scale problems. It can be regarded as a new
method developed based on the Lagrange augmentation method. In addition, it can equally
separate the objective function, which takes advantage of the separability of the objective
function. The original problem is decomposed into several sub-problems for which the
local solutions are easy to find. Then, the global solution of the original problem is obtained
by alternating analysis. The ADMM-based method has faster convergence speed and
accurate sparsity. It is easy to implement and only one adjustment parameter, λ, is needed.
In this paper, the value of λ is automatically chosen according to the literature [17]. In
addition, the ADMM-based method can reach a given level of accuracy much faster, which
is several orders of magnitude faster than the multiplication update rule. Thus, it is a small
price for tuning λ. The multiplication update rule is particularly susceptible to falling into
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local optimal state. However, the ADMM-based β-divergence NMF method has faster
convergence and better solution results.

The general form of the NMF problem is as follows:

minimize Dβ(E|UV)
subject to U ≥ 0, V ≥ 0

(6)

where Dβ(E|UV) denotes the β-divergence measure between E and its reconstruction, i.e.,
UV .

The divergence between two matrices is defined as the sum of element divergence,
which is shown below.

Dβ(E|Ê) = ∑ dβ(E|Ê) (7)

The expression of the β-divergence NMF method is as follows:

dβ(m|n) =


mβ

β(β−1) +
nβ

β −
mnβ−1

β−1 , β ∈ R\{0, 1}
1
2 (m− n)2, β = 2

m log m
n −m + n, β = 1

m
n − log m

n − 1, β = 0

(8)

The non-negative constraints of U and V make the optimization problems on U and
V more complex. The new variables U+ and V+ are introduced to apply non-negative
constraints, and the constraints are U = U+ and V = V+.

In general, Formula (7) can be rewritten as follows:

minimize Dβ(E|X)
subject to X = UV

U = U+, V = V+
U+ ≥ 0, V+ ≥ 0

(9)

The above expression represents an augmented Lagrangian function consisting of
eight variables, i.e., five primitive variables and three dual variables. For ADMM, this can
be optimized in three parts: U, V , and (X, U+, V+). Since the optimization goal is split into
X, U+, and V+, optimizing them separately is equivalent to optimizing them together:

Gλ(X, U, V, U+, V+, αX , αU , αV) =

Dβ(E|X) + 〈αX , X−UV〉+ λ
2 ‖X−UV‖2

F
+〈αU , U−U+〉+ λ

2 ‖U−U+‖2
F

+〈αV , V− V+〉+ λ
2 ‖V− V+‖2

F

(10)

Alternating update optimization Gλ is performed for each of the five original variables.
Then, a gradient ascent is performed for each of the three dual variables. The detailed
process of the ADMM-based β-divergence NMF [16] are as follows (Algorithm 1):
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Algorithm 1 The ADMM-based β-divergence NMF

Inputs E

Initialize X, U, V, U+, V+, αX , αU , αV

Repeat UT ← (VVT + I)\(VXT + UT
+ +

1
λ
(VαT

X − αT
U))

V← (UTU + I)\(UTX + V+ +
1
λ
(UTαX − αV))

X← argmin
X≥0

Dβ(E|X) + 〈αX , X〉+ λ

2
‖X−UV‖2

F

U+ ← max(U +
1
λ

αU , 0)

V+ ← max(V +
1
λ

αV , 0)

αX ← αX + λ(X−UV)

αU ← αU + λ(U−U+)

αV ← αV + λ(V− V+)

Until Convergence Return U+, V+

In the process of updating, it is difficult to update X, and the updating method varies
with the value of β. For more details, please refer to the literature [16].

2.4. Weighted Local Contrast Measure

The high-frequency components of different scales and directions can be obtained by
NSST decomposition. It not only provides multi-scale and multi-directional information
in the original image, but also contains abundant spatial information, such as textures
and details. The components with more distinctly detailed features at the same scale and
direction have a larger pixel value as an absolute value. In the fusion process of high-
frequency components, if the component with the largest absolute value of pixel values
is simply selected as the final fusion result, the correlation between adjacent pixels of the
original image will be ignored. In addition, it will confer a lot of noise to the fused image.

The spatial details, such as edges and textures, have larger local contrast measure
values, which are the targets of image fusion. The traditional local contrast measure
(LCM) [18] method used the central pixel value and the maximum intensity of the eight
adjacent pixels to calculate the LCM value of an image. This method is susceptible to
highlight noise. In addition, the false alarm pixels will be introduced during operation,
which will increase the false alarm rate. The central pixel and its eight adjacent pixels are
shown in Figure 3.

In the proposed method, the median pixel value of the eight neighborhoods is used to
calculate the local contrast measure values. This method can avoid misjudging the high
luminance noise as detailed information, and reduce the false alarm caused by the high
luminance isolated noise. Thus, the local contrast measure value Cn between the center
pixel and eight adjacent pixels is defined as follows:

Cn =
P0 × P0

Pmed
(11)
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where P0 is the pixel value of the central pixel in the local area, and Pmed is the median of
the pixel values in the eight pixels adjacent to the central pixel, which can be calculated by
the following formula:

Pmed = median(Pi), i = 1, 2, . . . , 8 (12)

We can draw a conclusion from Formula (11): if the central area A0 is the detail target,
i.e., P0

Pmed
> 1, so Cn > P0. Then, the detail target will be enhanced. If the central area A0

is the background, there may be details around or all the background, i.e., P0
Pmed
≤ 1, so

Cn ≤ P0. Then, the background will be suppressed.
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Figure 3. The central pixel and its eight adjacent pixels.

Firstly, the local contrast measure value is calculated by using the median pixels of the
eight neighborhoods to avoid misclassifying noise as spatial detail. On this basis, the mean
value of the pixel value difference between the central pixel and adjacent neighborhoods
is introduced to weight the local contrast measure value, then the weighted local contrast
measure (WLCM) value can be calculated. The WLCM method can enhance the weak spa-
tial details and suppress the background, which greatly improves the significance of spatial
details and increases the detection rate of spatial detail information. The smaller the mean
value of the pixel value differences between the central area and the eight neighborhoods,
the less likely the central area is spatial detail. On the contrary, the greater the mean value
of the pixel value difference between the central area and the eight neighborhoods, the
greater the possibility that the central area is spatial detail. Mn is the average of the pixel
value differences between the central area and the eight neighborhoods. Then, the local
contrast measure value is weighted by Mn. The calculation details of Mn are as follows:

Mn =
1
8
×

8

∑
i=1
|P0 − Pi| (13)

Finally, the calculation formula of the WLCM method can be obtained. The details are
as follows:

WLCMn = Cn ×Mn (14)

3. The Steps and Principles
3.1. The Overall Image Fusion Steps

Through NSST decomposition, one low-frequency component and several high-
frequency components can be obtained. The low-frequency component is an approximate
version of the original image, which contains the main information of the original image.
In the fusion process of the low-frequency component, if only the low-frequency com-
ponent of I is used as the fusion result, the spectral information of the MS image can be
well maintained, but the spatial resolution of the fused image will be reduced. If only
the low-frequency component of the PAN image is used as the fusion result, the spatial
information of the PAN image can be well maintained, but the spectral resolution of the
fused image will be affected.
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In this paper, we design two different fusion rules according to the different character-
istics of low-frequency and high-frequency components. The low-frequency component
contains the main information and represents the approximate feature of the original image.
Thus, an ADMM-based β-divergence NMF method is used to fuse the low-frequency coef-
ficients. The high-frequency components represent the edge and texture information of the
original image. Thus, a WLCM-based rule is used to fuse the high frequency coefficients.

Figure 4 shows the flow chart of the proposed method. The detailed fusion process is
as follows:

(1) Adaptive Weighted Average Calculates the MS Intensity Component
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If a simple average fusion rule is adopted, the details of the original image will be lost.
The accurate selection of the weighting coefficient determines the quality of the fused image.
In order to generate the MS intensity component I, an adaptive weighted average method
based on the WLCM method is used to fuse each band of the MS image. The WLCM value
can be used as an index to evaluate the detailed information in the spatial domain. The
pixels with larger WLCM values are considered to be more weighted information, such as
edges or textures, which are given more weight in the fusion process. Thus, an adaptive
weighted average coefficient ωi is designed according to the WLCM value. The details are
as follows:

I(x, y) =
n

∑
i=1

1
ωi(x, y)

MSi(x, y) (15)

ωi(x, y) =
WLCMi(x, y)

n
∑

i=1
WLCMi

(16)

where n is the band number of the MS image, WLCMi denotes the WLCM value of the i-th
band of the MS image at the position (x, y), MSi(x, y) denotes the pixel value of the i-th
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band of the MS image at the position (x, y), ωi(x, y) denotes the weighting factor of the
i-th band of the MS image at the position (x, y), and I(x, y) denotes the pixel value of the
intensity component I at the position (x, y).

(2) Spectral Estimation

Taking I as the initial α channel, the foreground color F and background color B are
calculated according to Formula (5). F and B contain abundant spectral information, but
not spatial information. The main purpose of the steps discussed below is to obtain spatial
detail information from the PAN image by the fusion process.

(3) NSST Decomposition

The intensity component I and the PAN image are separately decomposed by NSST,
and the corresponding components of different scales and directions can be obtained.
Specifically, a low-frequency component and a plurality of high-frequency components
can be obtained. Subsequently, we design two different fusion strategies according to the
characteristics of low-frequency and high-frequency components.

(4) High-Frequency Components Fusion

The high-frequency components at different scales and directions not only provide
multi-scale and multi-directional information, but also contain abundant edge and textural
detail information. The edges, textures, and other spatial details have high local contrast
values, which is the target of image fusion. A WLCM-based rule is used to fuse the high-
frequency components. The detailed fusion process of the high-frequency components is
described in Section 3.2.

(5) Low-Frequency Components Fusion

The low-frequency component is an approximation of the original image, which
describes only the basic structure of the image and does not include spatial details such
as edges and textures. An ADMM-based β-divergence NMF method is used to fuse the
low-frequency components. The detailed fusion process of the low-frequency components
is described in Section 3.3.

(6) NSST Inverse Transformation

The fused components are inverted by NSST inverse transformation to obtain the
fused image. Then, the fused image is used as the final α channel to participate in the final
reconstruction.

(7) Image Reconstruction

According to Formula (4), the final fusion result is obtained by using α, F, and B for
reconstruction.

3.2. High-Frequency Components Fusion Algorithm

The high-frequency components at different scales and directions not only provide
multi-scale and multi-directional information, but also contain abundant spatial detail
information such as edges and textures. At the same scale and direction, the absolute
values of the components representing the detailed information are relatively large. In the
fusion process of high-frequency components, if the component with the largest absolute
value of pixel values is simply selected as the final fusion result, the correlation between
the adjacent pixels of the original image will be ignored. In addition, it will confer a lot
of noise to the fused image. According to the literature [19], when the difference between
the WLCM values of the two components is less than 0.015, we can say that the difference
between these two components is small. On the contrary, above this value, we can say
that the difference between these two components is relatively large. Thus, this fusion
rule with a threshold value of 0.015 can be used to select high quality high frequency
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components and fuse them into the final result. Finally, A WLCM-based rule is used to fuse
the high-frequency components, and the details are as follows:

HF
m,n(i, j) =


wI(i, j)H I

m,n(i, j) + wP(i, j)HP
m,n(i, j), |MlCMD(i, j)| ≤ 0.015

H I
m,n(i, j), |MlCMD(i, j)| > 0.015, MlCMI(i, j) > MlCMP(i, j)

HP
m,n(i, j), |MlCMD(i, j)| > 0.015, MlCMI(i, j) < MlCMP(i, j)

(17)

MlCMD = MlCMI(i, j)−MlCMP(i, j) (18)

wI(i, j) =
MlCMI(i, j)

MlCMI(i, j) + MlCMP(i, j)
(19)

wP(i, j) =
MlCMP(i, j)

MlCMI(i, j) + MlCMP(i, j)
(20)

where m and n are the decomposition order and direction number, respectively. HF
m,n(i, j)

represents the high-frequency coefficient value of the fused image at the position (i, j),
H I

m,n(i, j) represents the high-frequency coefficient value at the position (i, j) in I, HP
m,n(i, j)

represents the high-frequency coefficient value at the position (i, j) in the PAN image,
MLCMI(i, j) represents the WLCM value at the position (i, j) in I, and MLCMP(i, j) repre-
sents the WLCM value at the position (i, j) in the PAN image.

3.3. Low-Frequency Component Fusion Algorithm

NMF is used to decompose the non-negative matrix X ∈ RM×N
+ into two smaller

non-negative matrices, W ∈ RM×k
+ and H ∈ Rk×N

+ multiplying by each other. Then, we
can obtain X = WH + ε, where ε is the background noise. In addition, k is much smaller
than M and N, that is, k < min {M, N}. The original image can usually be regarded as a real
image imaged in different types of sensors, which is obtained by adding a certain amount
of background noise. When the NMF method is applied to the pan-sharpening process, the
NMF method can maintain the overall features of the images involved in the fusion. Thus,
the NMF method can obtain superior spatial details from the PAN image, while obtaining
more spectral information from the MS image.

In the fusion process of the low-frequency components, we set k = 1. Firstly, an
ADMM-based β-divergence NMF is used for iteration. The iterative solution is actually
an optimization process. By iterating to minimize the reconstruction error between X and
WH, the background noise can be effectively suppressed. After the iteration is completed,
a unique feature base W can be obtained. W contains the overall features of the original
images involved in the fusion and is regarded as an approximate reproduction of the source
image. It can effectively converge and suppress the background noise. Finally, the fused
image can be obtained by resetting the feature base W and restoring it to the size of the
source image.

The low-frequency component LA of I and the low frequency component LB of the
PAN image are fused by an ADMM-based β-divergence NMF method. The detailed
implementation steps are as follows:

(1) The low-frequency components LA and LB are sorted into column vectors according
to the priority of the rows. Then, the column vectors XA and XB are obtained. If the
sizes of LA and LB are both M × N, the sizes of XA and XB are MN × l. The details are
as follows:

XA =


xa1
xa2
xa3
. . .

xaMN

, XB =


xb1
xb2
xb3
. . .

xbMN

 (21)
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(2) According to the column vectors XA and XB, the following original matrix X is
constructed, and its size is MN × 2.

X = [XA, XB] =


xa1 xb1
xa2 xb2
xa3 xb3
. . . . . .

xaMN xbMN

 (22)

(3) We set k = 1. NMF is the factorization with error, which means X ≈WH. In order to
obtain an approximate factorization and minimize the reconstruction error between
X and WH, a cost function must be defined. The cost function can measure the
approximation effect of the solution. In the proposed method, we choose Kullback–
Leibler (KL) divergence as the cost function. The maximum number of iterations is
set to 2000. The initial iteration values W0 and H0 are randomly generated with sizes
M × k and k × N, respectively. The details are as follows:

W0 = rand(M, k), H0 = rand(k, N) (23)

(4) After setting the relevant parameters, the original matrix X is decomposed using
an ADMM-based β-divergence NMF method. The detailed iterative process can be
found in Section 2.3. When the iteration is finished, the basis matrix W and the
weight coefficient matrix H can be obtained. W contains the overall features of the
low-frequency components LA and LB, which can be regarded as the approximate
reproduction of the original image.

(5) We reset W to a matrix S of M × N. Finally, S is the fusion result of the low-frequency
components.

4. Experiments and Discussion
4.1. Experimental Images

This paper used a dataset of 38 image pairs containing six bands, which were taken by
LANDSAT 7 ETM+ and can be easily obtained [20]. The spatial resolution of the MS and
PAN images are 30 m and 15 m, respectively. The pixel sizes of the MS and PAN images
are 200 × 200 and 400 × 400, respectively.

Since there is no high-resolution MS image as a reference image in the dataset, we first
up-sampled the original MS image to obtain an MS image with a pixel size of 400 × 400.
Then, the MS images with the pixel size of 400 × 400 and the PAN image were down-
sampled to obtain the MS image and the PAN image with pixel size of 200 × 200 as the
experimental image. Finally, the original MS image was used as the reference image and
compared with the fused image of each method. Figure 4 shows four image pairs of the
MS and PAN image. In Figure 5: (a) and (b) are the first image pair; (c) and (d) are the
second image pair; (e) and (f) are the third image pair; (g) and (h) are the fourth image pair.
The four image pairs of the MS and PAN image were subsequently used for experimental
analysis.

4.2. Selected Comparison Method

In order to verify the validity and reliability of the method proposed in this paper, the
proposed method is compared with ten existing representative fusion methods.

These ten fusion methods are the: Brovey Transform-based (BT) method [11],
Gram–Schmidt Adaptive-based (GSA) method [4], Guided Filter-based (GF) method [12],
Intensity–Hue–Saturation-based (IHS) method [2], Multi-objective Decision-based (MOD)
method [10], Principal Component Analysis-based (PCA) method [3], Partial Replacement
Adaptive Component Substitution-based (PRACS) method [6], Variational Local Gradi-
ent Constraints-based (VLGC) method [9], Band Dependent Spatial-detail with Physical
Constrains-based (BDSD-PC) method [5], and Wavelet Transform-based (WT) method [7].
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4.3. Objective Evaluation Indices

It is difficult to accurately compare the quality of the fused images by each method
based on subjective evaluation alone. To quantitatively evaluate the fusion quality, this
paper adopts five well-known objective evaluation indices, which are the Correlation
Coefficient (CC), Erreur Relative Global Adimensionnelle de Synthse (ERGAS), Relative
Average Spectral Error (RASE), Spectral Information Divergence (SID), and No Reference
Quality Evaluation (QNR), as detailed below. The performance of an image fusion method
is evaluated scientifically and objectively through quantitative evaluation methods and
indices. It is not influenced by human visual characteristics and psychological states.

(1) The Correlation Coefficient (CC) [21] calculates the correlation between the reference
image and a pan-sharpening result. Its ideal value is 1. It is defined as follows:

CC =

M
∑

m=1
(Rm − R)(Pm − P)√

M
∑

m=1
(Rm − R)2 M

∑
m=1

(Pm − P)2
(24)

where m is the m-th pixel, M is the total number of pixels, R is the reference MS image, P
is the pan-sharpening image, and R and P are the average values of R and P, respectively.
Please refer to the literature [21] for more details.

(2) Erreur Relative Global Adimensionnelle de Synthse (ERGAS) [22] can measure the
fusion quality of a pan-sharpening method, which is defined as follows:

ERGAS = 100
H
L

√√√√ 1
C

C

∑
c=1

(
(RMSEc)2

Rc

)
(25)

where L and H are the spatial resolutions of the MS and PAN images, respectively. Rc is the
mean value of the c-th band in the reference MS image. RMSEc is the root mean square
error (RMSE) [23] value between the c-th band of the reference MS image and the c-th band
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of the pan-sharpening image. Its ideal value is 0. Please refer to the literature [22] for more
details.

(3) Relative Average Spectral Error (RASE) [24] reflects the average performance of a pan-
sharpening method on spectral errors. Smaller values of RASE denote less spectral
distortion. Its ideal value is 0. It is defined as follows:

RASE =
100
M

√√√√ 1
N

N

∑
i=1

RMSE(Ri)
2 (26)

where M is the mean radiance of the N-band original spectral images R, and RMSE(Ri)
is the RMSE value for each spectral band in R. Please refer to the literature [24] for more
details.

(4) Spectral Information Divergence (SID) [25] evaluates the difference between spectra.
Its ideal value is 0. Please refer to the literature [25] for more details.

(5) No Reference Quality Evaluation (QNR) [26] can evaluate the quality of a pan-
sharpening image without a reference image, which consists of three parts: a spectral
distortion index Dλ, a spatial distortion index Ds, and a global QNR value. The
detailed definition is provided in Formula (27). For the global QNR, the higher the
value, the better the fusion effect. Its ideal value is 1. Please refer to the literature [26]
for more details.

QNR = (1− Dλ)(1− DS) (27)

(6) Dλ is a sub-metric of QNR, which can measure the spectral distortion of a pan-
sharpening image. The smaller the value, the better the fusion effect. Its ideal value is
0. It is defined as follows:

Dλ =

√√√√ 1
C(C− 1)

C

∑
c=1

C

∑
d=1,d 6=c

|Q(Lc, Ld)−Q(Pc, Pd)| (28)

where Q is the universal image quality index (UIQI) [27] value; L is the low-resolution
MS image; c and d are the c-th and d-th bands of the MS image; C is the total bands
number of the MS image; and X and Y are low resolution and high-resolution PAN images,
respectively. Please refer to the literature [26] for more details.

(7) Ds is a sub-metric of QNR, which can measure the spatial distortion of the fused
image. The smaller the value, the better the fusion effect. Its ideal value is 0. It is
defined as follows:

Ds =

√√√√ 1
C

C

∑
c=1
|Q(Lc, X)−Q(Pc, Y)| (29)

where Q is the UIQI value; L is the low-resolution MS image; c is the c-th band of the MS
image; C is the total number of bands of the MS image; and X and Y are low resolution and
high-resolution PAN images, respectively. Please refer to the literature [26] for more details.

4.4. Implementation Details

In this section, we provide some implementation details of the proposed method, the
experimental environment, and the development platform. The details are shown in the
following Table 1.
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Table 1. Implementation details.

Projects Implementation Details

The number of band-pass directional
sub-bands in each layer of NSST 32, 32, 16, 16

The level of NSST directional decomposition 4

Experimental environment
Windows 10 System PC

Intel (R) Core (TM) i7-8700 CPU 3.20 GHz 16
GB Memory

Development platform MATLAB R2018a

4.5. Experimental Results and Analysis

To verify the effectiveness and reliability of the method proposed in this paper, we
used four real remote sensing image pairs of the MS and PAN image for the experimental
verification. In addition, the results were analyzed based on subjective visual effects and
objective quantitative evaluations, and the experimental results are presented and discussed
after setting the parameters.

In Figures 6–9, (a)–(k) show the fusion results of four different image pairs obtained
by the BT, GSA, GF, IHS, MOD, PCA, PRACS, VLGC, BDSD-PC, and WT methods, as well
as the proposed method, respectively. In addition, the reference MS image is also included
in the figure, i.e., (l).

In order to show the details more intuitively, the fusion results are locally enlarged. The
locally enlarged details are placed in the lower right corner of the fused image. Tables 2–5
show the results of the objective quality evaluation. The objective quality assessment
indices include spectral and spatial quality evaluations, which are CC, ERGAS, SID, RASE
and QNR. For all quality evaluations, the best results are shown in bold red, the second
best results are shown in bold green, and the third best results are shown in bold blue.

In Figure 6, the BT and IHS methods both suffer from spectral distortion, especially in
the local magnified image; the dark green part becomes blue, and the pink part becomes
brick red. The GSA and PCA methods also suffer from severe spectral distortion; in the
local magnified image, the dark green part becomes pink, and the pink part becomes green.
The GF method has less spectral distortion, but the spatial details are blurred in the local
magnification image and the spatial distortion is more severe. The WT method has less
spectral distortion, but artifacts appear in the local magnification image and the spatial
details are blurred. The MOD, PRACS, VLGC, and BDSD-PC methods have better spectral
preservation characteristics, but their spatial details are less clear than the proposed method
in the local magnification image. The proposed method in this paper maintains the spectral
information with clear spatial details. Thus, it is demonstrated that the proposed method
improves the spatial detail information while maintaining spectral characteristics.

Table 2. Objective evaluation of the experimental results on the first image pair.

CC (1) ERGAS (0) SID (0) RASE (0) QNR (1)

BT 0.320 6.684 0.060 28.735 0.384
GSA 0.113 7.504 0.065 26.255 0.151
GF 0.857 7.612 0.011 20.597 0.868
IHS 0.364 6.130 0.029 26.130 0.397

MOD 0.944 1.605 0.007 5.148 0.904
PCA 0.173 6.241 0.049 26.641 0.258

PRACS 0.944 1.607 0.008 5.175 0.916
VLGC 0.945 1.602 0.009 5.156 0.902

BDSD-PC 0.942 1.613 0.007 5.160 0.884
WT 0.734 3.054 0.021 11.238 0.573

Proposed 0.948 1.486 0.005 4.923 0.925
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Figure 6. The fusion results of ten different methods on the first image pair: (a) BT; (b) GSA; (c) GF;
(d) IHS; (e) MOD; (f) PCA; (g) PRACS; (h) VLGC; (i) BDSD-PC; (j) WT; (k) the proposed method;
(l) the reference MS image.

Table 3. Objective evaluation of the experimental results on the second image pair.

CC (1) ERGAS (0) SID (0) RASE (0) QNR (1)

BT 0.317 5.800 0.018 22.405 0.347
GSA 0.052 5.377 0.036 20.560 0.110
GF 0.876 4.145 0.009 24.917 0.802
IHS 0.325 5.717 0.011 18.624 0.386

MOD 0.944 1.618 0.006 5.320 0.904
PCA 0.128 6.241 0.031 18.624 0.199

PRACS 0.945 1.607 0.006 5.515 0.909
VLGC 0.942 1.875 0.008 5.314 0.832

BDSD-PC 0.946 1.613 0.007 5.460 0.918
WT 0.820 1.900 0.007 7.376 0.565

Proposed 0.949 1.324 0.004 3.817 0.930
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Figure 7. The fusion results of ten different methods on the second image pair: (a) BT; (b) GSA; (c) GF;
(d) IHS; (e) MOD; (f) PCA; (g) PRACS; (h) VLGC; (i) BDSD-PC; (j) WT; (k) the proposed method;
(l) the reference MS image.

Table 4. Objective evaluation of the experimental results on the third image pair.

CC (1) ERGAS (0) SID (0) RASE (0) QNR (1)

BT 0.386 4.090 0.019 14.609 0.397
GSA 0.109 4.945 0.034 17.795 0.133
GF 0.862 7.612 0.014 20.597 0.832
IHS 0.336 4.146 0.017 14.140 0.369

MOD 0.943 1.604 0.011 5.148 0.874
PCA 0.135 4.246 0.026 15.258 0.223

PRACS 0.941 1.607 0.011 3.875 0.849
VLGC 0.934 1.613 0.008 5.156 0.870

BDSD-PC 0.942 1.602 0.011 5.160 0.869
WT 0.794 1.986 0.009 7.369 0.572

Proposed 0.946 1.218 0.006 2.952 0.882
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Table 5. Objective evaluation of the experimental results on the fourth image pair.

CC (1) ERGAS (0) SID (0) RASE (0) QNR (1)

BT 0.810 8.302 0.010 21.254 0.617
GSA 0.818 3.260 0.005 12.917 0.610
GF 0.890 8.412 0.006 20.597 0.804
IHS 0.814 3.464 0.009 12.584 0.606

MOD 0.943 1.612 0.003 5.153 0.839
PCA 0.827 3.537 0.005 14.013 0.621

PRACS 0.929 2.056 0.003 8.143 0.743
VLGC 0.945 1.602 0.004 5.156 0.839

BDSD-PC 0.950 1.593 0.003 5.140 0.845
WT 0.905 2.286 0.005 9.098 0.824

Proposed 0.953 1.370 0.002 2.103 0.982
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(d) IHS; (e) MOD; (f) PCA; (g) PRACS; (h) VLGC; (i) BDSD-PC; (j) WT; (k) the proposed method;
(l) the reference MS image.

As shown in Table 2, the proposed method has the best performance on CC, ERGAS,
SID, RASE, and QNR indices, among the five indices, which is superior compared with ten
existing pan-sharpening methods. In addition, the QNR value of the proposed method is
0.925, which is close to the optimal value. Compared with some existing pan-sharpening
methods, the VLGC method performs second best in the CC and ERGAS indices; the MOD
method performs second best in the SID and RASE indices; the BDSD-PC method performs
second best in the SID index; and the PRACS method performs second best in the QNR
index. Although these existing methods perform better in some indices, they still fall short
of the method proposed in this paper.

As shown in Figure 7, the WT method shows some artifacts but with less spectral
distortion, and the GF method has blurred spatial details. The GSA method has clearer
spatial details but severe spectral distortion, as seen in the local magnification image,
where pink turns into green. The BT and IHS methods have clearer spatial details but
severe spectral distortion, as seen in the local magnification images, where pink turns into
brick. The MOD, PRACS, VLGC, and BDSD-PC methods have better spectral preservation
characteristics, but the clarity of their spatial details is less clear than the proposed method.
The proposed method in this paper maintains the spectral information with clear spatial
details. Thus, it has been demonstrated that the proposed method improves the spatial
detail information while maintaining spectral characteristics.
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As shown in Table 3, the proposed method has the best performance on CC, ERGAS,
SID, RASE, and QNR indices, among the five evaluation indices, which is superior com-
pared with ten existing pan-sharpening methods. The QNR value of the proposed method
is 0.930, which is close to the optimal value. Compared with some existing pan-sharpening
methods, the PRACS method performs second best in the ERGAS and SID indices; the
MOD method performs second best in the SID index; the BDSD-PC method performs
second best in the CC and QNR indices; and the VLGC method performs second best in
the RASE index. Although these existing methods perform well in some indices, they still
fall short of the method proposed in this paper.

As shown in Figure 8, the GF method loses a lot of spatial details and the texture details
are not clear. The WT method has less spectral distortion, but in the local magnification
image, artifacts appear and the spatial details are blurred. The BT method and IHS methods
have clearer spatial details, but the spectral distortion is severe. As seen in the local
magnification image, the green turns into dark blue and the light green turns into brick red.
The GSA and PCA methods also suffer from severe spectral distortion; in the upper left
part, the dark green part turns into light green. The MOD, PRACS, VLGC, and BDSD-PC
methods have better spectral preservation characteristics, but the texture features are less
clear than the proposed method in the local magnification image. The method proposed in
this paper maintains the spectral information with clear spatial details. Thus, it has been
demonstrated that the proposed method improves the spatial detail information while
maintaining spectral characteristics.

As shown in Table 4, the proposed method has the best performance on the CC,
ERGAS, SID, RASE, and QNR indices, among the five indices, which is superior compared
with ten existing pan-sharpening methods. Compared with some existing pan-sharpening
methods, the PRACS method performs second best in the RASE index; the MOD method
performs second best in the CC and QNR indices; the BDSD-PC method performs second
best in the ERGAS index; the PRACS method performs second best in the RASE index; and
the VLGC method performs second best in the SID index. Although these existing methods
perform well in some indices, they still fall short of the method proposed in this paper.

As shown in Figure 9, the spatial details of the fused images obtained by the BT, GSA,
IHS, and PCA methods are relatively clear, and the spatial detail information of the PAN
image is completely preserved. However, these methods show spectral distortion in the
overall region, which is more pronounced in the locally enlarged region. However, the
fused images obtained by the BT, GSA, IHS, and PCA methods show spectral distortion,
which is more pronounced in locally amplified regions. In the GF method, both the spatial
details and the spectra features of the fused images are severely distorted. Other methods
can keep the spectral features of the MS images entirely, but the spatial details of the local
amplification part are blurred. The proposed method maintains the spectral information
with clear spatial details. Thus, it has been demonstrated that the proposed method
improves the spatial detail information while maintaining spectral characteristics.

As shown in Table 5, the proposed method has the best performance on the CC,
ERGAS, SID, RASE, and QNR indices, among the six evaluation indicators, which is
superior compared with ten existing pan-sharpening methods. In addition, the QNR value
of the proposed method is 0.982, which is close to the optimal value of 1. Compared with
some existing pan-sharpening methods, the BDSD-PC method performs second best in the
CC, ERGAS, SID, RASE, and QNR indices. The MOD and PRACS methods perform second
best in the SID index. Although these existing methods perform well in some indices, they
still fall short of the method proposed in this paper.

In summary, the proposed method can achieve superior results in both visual effects
and objective evaluation compared with some existing pan-sharpening methods. It can
obtain spatial details from the PAN image while preserving more spectral information from
the MS image.
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5. Conclusions

To solve the existing problems in the field of pan-sharpening, including spatial dis-
tortion and spectral distortion, this paper proposed a superior pan-sharpening method
by applying an image matting model, an ADMM-based β-divergence NMF, and NSST.
The proposed method makes full use of the multi-resolution analysis and multi-direction
characteristics of NSST, and uses different fusion rules to realize the fusion of the MS
and PAN images in different frequency domains. For the low-frequency components,
an ADMM-based β-divergence NMF method was used for fusion, which can effectively
suppress the background noise and maintain the spectral characteristics of the MS image.
For the high frequency components, a WLCM-based rule was adopted for fusion, which
can make the spatial detail information, such as edges and textures, more prominent in the
fusion results.

Compared with some existing pan-sharpening methods, the proposed method can
obtain more spatial detail from the PAN image while preserving more spectral information
from the MS image. Thus, the proposed method is an effective pan-sharpening method.
It could be widely used in land use planning, vegetation cover analysis, earth resources
surveys and other fields.

Different applications may have different requirements for remote sensing image
features. For example, some applications require clearer spatial detail, while others may
have higher requirements for spectral fidelity. These factors need to be considered in the
fusion process to improve the application results. In our future work, we will be driven
by specific application requirements to develop more effective fusion strategies that will
further improve the spatial and spectral resolution of the fused images. In addition, we
would like to extend our methods to other multi-sensor fusion fields.
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