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Abstract: The coarse scale of passive microwave surface soil moisture (SSM) is not suitable for
regional agricultural and hydrological applications such as drought monitoring and irrigation man-
agement. The optical/thermal infrared (OTI) data-based passive microwave SSM downscaling
method can effectively improve its spatial resolution to fine scale for regional applications. However,
the estimation capability of SSM with long time series is limited by OTI data, which are heavily
polluted by clouds. To reduce the dependence of the method on OTI data, an SSM retrieval and
spatio-temporal fusion model (SMRFM) is proposed in the study. Specifically, a model coupling in
situ data, MODerate-resolution Imaging Spectro-radiometer (MODIS) OTI data, and topographic
information is developed to retrieve MODIS SSM (1 km) using the least squares method. Then the
retrieved MODIS SSM and the spatio-temporal fusion model are employed to downscale the passive
microwave SSM from coarse scale to 1 km. The proposed SMRFM is implemented in a grassland dom-
inated area over Naqu, central Tibet Plateau, for Advanced Microwave Scanning Radiometer—Earth
Observing System sensor (AMSR-E) SSM downscaling in unfrozen period. The in situ SSM and Noah
land surface model 0.01◦ SSM are used to validate the estimated MODIS SSM with long time series.
The evaluations show that the estimated MODIS SSM has the same temporal resolution with AMSR-E
and obtains significantly improved detailed spatial information. Moreover, the temporal accuracy
of estimated MODIS SSM against in situ data (r = 0.673, µbRMSE = 0.070 m3/m3) is better than the
AMSR-E (r = 0.661, µbRMSE = 0.111 m3/m3). In addition, the temporal r of estimated MODIS SSM
is obviously higher than that of Noah data. Therefore, this suggests that the SMRFM can be used
to estimate MODIS SSM with long time series by AMSR-E SSM downscaling in the study. Overall,
the study can provide help for the development and application of microwave SSM-related scientific
research at the regional scale.

Keywords: long time series; microwave surface soil moisture downscaling; MODIS scale;
spatio-temporal fusion model

1. Introduction

Surface soil moisture (SSM) of a depth less than 5 cm is an important part of the
Earth’s water resources and is a key factor controlling the energy and water exchange
between the surface and the atmosphere [1,2]. It plays a vital role in the processes of
precipitation, runoff, infiltration, evapotranspiration, and agricultural application [3–5].
How to accurately monitor SSM dynamic change on the Earth’s surface is a hot topic in
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geoscience. Due to its characteristics of large coverage of surface changes, long duration,
relatively low cost, and real-time dynamic monitoring [6,7], satellite remote sensing has
become one of the effective technology approaches for SSM monitoring.

Microwave remote sensing has the advantages of wide range of Earth observation
and all-weather monitoring of the real surface situation. Moreover, it is not disturbed by
clouds and can penetrate the depth of surface soil to about 5 cm (e.g., C band) [8]. Since
the 1970s, a series of active and passive microwave sensors have been utilized to monitor
global SSM [3,8]. Based on the observed data of microwave remote sensing, microwave
SSM products with varied spatial coverage, varied time coverage, and varied accuracy
have been retrieved and released. The widely used global products are as follows: the Soil
Moisture Active Passive (SMAP, 3 km, 9 km and 36 km) [9,10] and the Advanced Microwave
Scanning Radiometer—Earth Observing System sensor (AMSR-E) datasets (25 km) released
by the National Aeronautics and Space Administration (NASA) [11,12], the Soil Moisture
and Ocean Salinity (SMOS, 25 km) [13,14] and the Climate Change Initiative (CCI, 0.25◦)
datasets released by the European Space Agency [3,15], the Advanced Microwave Scanning
Radiometer 2 (AMSR2, 0.25◦) dataset released by the Japan Aerospace Exploration Agency
(JAXA) [16], and the FengYun-3 dataset (25 km) released by the China Meteorological
Administration [17,18]. The revisit interval of the above satellites/sensors is 1–3 days. For
the radar failure of SMAP, the C band Sentinel-1 data was to substitute the SMAP radar for
global scale 3 km and 1 km SSM estimation. However, the temporal resolution degrades
from 3 days to 12 days [10]. In addition, the coarse spatial resolution (tens of kilometers in
pixel size) of passive microwave SSM products makes it difficult to meet the applications
(e.g., drought monitoring and irrigation management) at the regional scale. Therefore, it is
urgent to carry out research on passive microwave SSM downscaling, improve its spatial
resolution, and upgrade the applications of passive microwave SSM from global scale to
regional scale.

At present, passive microwave SSM downscaling mainly relies on high spatial reso-
lution auxiliary data including optical/thermal infrared (OTI), radar, terrain, and other
data [19–24]. The empirical and physical models between passive microwave SSM and
auxiliary data are built for downscaling and for spatial resolution improvement. OTI
data are seriously polluted by clouds [25], which means that the traditional downscaling
methods often lack OTI data for spatial resolution improvement in long time series. In
other words, the traditional downscaling method only realizes the downscaling of mi-
crowave soil moisture on some dates and does not make effective use of the long time series
characteristics of microwave data. Therefore, the traditional microwave SSM downscaling
methods struggle to estimate OTI-scale SSM with long time series effectively. In general,
there is a compromise between temporal and spatial in remote-sensing data. To alleviate
the temporal and spatial compromise contradiction faced by remote-sensing data, Gao
et al. [26] proposed a spatio-temporal fusion model (STFM) in 2006. It assumes that the
temporal change is the same at the varied scales. Once proposed and optimized, the model
has been widely used in phenological analysis [27], vegetation monitoring [28], urban heat
island monitoring [29,30], and other research fields, because it can estimate the OTI-scale
data with long time series of many surface parameters, such as vegetation index [31],
surface temperature [32], reflectance [33,34], and evapotranspiration [35,36]. However,
STFM for OTI-scale SSM estimation is rarely reported due to the lack of OTI-scale (no more
than 1 km in pixel size) SSM.

In the study, a SSM retrieval and fusion model (SMRFM) is proposed to estimate
the OTI-scale SSM with long time series by passive microwave SSM downscaling. The
proposed SMRFM will reduce the limitations of traditional microwave SSM downscaling
method caused by the availability of OTI data. The SMRFM is implemented in two steps:
the first step is to build an empirical equation to retrieve the MODerate-resolution Imaging
Spectro-radiometer (MODIS) scale SSM using MODIS OTI data; the second step is to
construct the SSM STFM using paired AMSR-E and MODIS SSM for the estimation of
MODIS SSM (1 km) with long time series. The proposed SMRFM is implemented over the
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Naqu, central Tibet Plateau. The estimated MODIS SSM by SMRFM is validated by the in
situ data and Noah land surface model 0.01-degree SSM. Moreover, the estimated MODIS
SSM not only can be used to understand the coupling process of land water, energy, and
carbon cycles on a more precise scale [9], but also can be helpful for the practical application
of regional moisture monitoring, crop production status monitoring, and yield estimation.
Therefore, it can be considered that the study will provide convenience for the long time
series and MODIS SSM estimation at the regional scale and will have important theoretical
and practical significance.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area and In Situ Surface Soil Moisture Data

The study area is located in Naqu, central Tibet Plateau (Figure 1a). The in situ SSM
data used are from the Soil Moisture and Temperature Monitoring Network (SMTMN) in
Naqu, which is deployed by Yang et al. [37]. The SMTMN covers 1◦ × 1◦ geographical
space (91.5◦ E–92.5◦ E, 31◦ N–32◦ N), which contains 57 in situ sites. The real time SSM
of 0–5, 10, 20, and 40 cm is measured in volumetric water content using the EC-TM and
5TM monitoring equipment, which is manufactured by Decagon. The sensors measure
SSM according to the sensitivity of soil dielectric permittivity to liquid soil water with
an accuracy of 0.001 m3/m3. The SSM data is recorded every 30 min, and each record
reflects the average of SSM over the past half-hour. A total of 48 SSM records are collected
per day. The in situ data of SMTMN has been shared to the International Soil Moisture
Network (https://ismn.geo.tuwien.ac.at/en/networks/?id=CTP_SMTMN, accessed on
15 September 2021), and the time range is from 2008 to 2016. The first layer (0–5 cm) of
in situ data was selected in this study. Regarding soil texture of SMTMN, silt and sand
are dominant components with a comparable magnitude, while clay content consistently
maintains at a low level (less than 10%). The range of altitudes of in situ sites is 4450–5000 m
and is grassland-dominated. The relatively homogeneous area is convenient for MODIS
SSM retrieval. This area belongs to the sub-frigid climate zone. According to a previous
study [38], the period from October to May is defined as the frozen period, as the land
surface temperature (LST) is below 0 ◦C most of the time. Meanwhile, the other period of
the year (June to September) is the unfrozen period. Soil freezing in frozen period has an
adverse impact on SSM monitoring. To improve the reliability of the study, the proposed
SMRFM is only implemented in unfrozen period.

2.1.2. Aqua AMSR-E Soil Moisture

The multi-frequency dual polarization AMSR-E sensor mounted on the Aqua satellite
is developed by JAXA and can be used to monitor the changes of SSM [39,40]. The ascending
and descending time of AMSR-E are 01:30 PM and 01:30 AM local time, respectively. The
spatial resolution of SSM released by AMSR-E is ~25 km. The expected accuracy of AMSR-E
is 0.06 m3/m3 in low-to-medium vegetation coverage areas [11]. A variety of products
have been retrieved and released based on AMSR-E observations [41], the most notable
of which are released by NASA and JAXA. The root mean square error (RMSE) of JAXA
AMSR-E SSM (<0.12 m3/m3) is lower than NASA data (>0.16 m3/m3) in the study area
shown in previous study [12]. Therefore, JAXA AMSR-E SSM is used for SSM downscaling
in the study. For the sensor failure, AMSR-E could not continuously observe the Earth
and release the SSM product after October 2011 [16]. It was officially retired after nearly
ten years of in-orbit operation. The time range of SSM products released by AMSR-E data
is from May 2002 to October 2011. The Shizuku satellite equipped with AMSR2 sensor
was launched by JAXA for the replacement of AMSR-E in May 2012. It continues to carry
out Earth observation and release global ~25 km SSM products [16]. To match the pixel
size of MODIS data, AMSR-E data were resampled to 1 km using the cubic convolution
interpolation method in ArcGIS software.

https://ismn.geo.tuwien.ac.at/en/networks/?id=CTP_SMTMN
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evaluation. The selected 29 in situ sites (in black triangle) data is used for temporal evaluation. 

  

Figure 1. Location of the study area in southwest China (a) and the 57 in situ soil moisture sites (b).
All in situ sites (in black and blue triangle) data is used for MODIS soil moisture retrieval and daily
evaluation. The selected 29 in situ sites (in black triangle) data is used for temporal evaluation.
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2.1.3. Aqua MODIS Optical and Thermal Infrared Data

MODIS sensors are carried on Terra and Aqua satellites. Aqua MODIS data is selected
to reduce the adverse impact of AMSR-E and MODIS on observation time mismatch. The
MYD11A1 daily 1 km LST data and the MYD13A1 8-day 500 m composited Normalized
Difference Vegetation Index (NDVI) data are used to fit the empirical equation for MODIS
SSM retrieval. Because of the composited product of MODIS NDVI, it assumes that the
NDVI is constant in the 8-day composited date [42]. The LST gradients are normally
reduced at nighttime, which is more beneficial to SSM retrieval [3]. Therefore, the Aqua
MODIS LST at nighttime is used to eliminate the observation time difference between the
two datasets for improved MODIS SSM retrieval. As the visible light cannot be used at
nighttime, the Aqua MODIS NDVI data (visible light data) is used at daytime.

2.1.4. SRTM DEM Data

The SRTM digital elevation model (DEM) data, produced by NASA originally, are a
major breakthrough in the digital mapping of the world. The 90 m SRTM DEM (version 4)
used was downloaded from https://srtm.csi.cgiar.org/srtmdata/ (accessed on 12 October
2021) in this study. For more information about the used SRTM DEM, refer to [43]. After
data mosaicking and clipping, the 90 m STRM DEM were resampled to 1 km pixel size
using the cubic convolution interpolation method in ArcGIS software. As altitude (m) and
slope (◦) extracted from STRM DEM data play an important role in the redistribution of
SSM, they were selected for MODIS SSM retrieval in the study.

2.1.5. Noah Land Surface Model L4 Central Asia Daily Soil Moisture

As OTI data are seriously polluted by clouds, it is difficult for traditional microwave
SSM downscaling methods to effectively estimate MODIS SSM with long time series.
Therefore, it is inappropriate to compare the SMRFM method proposed in the study
with the traditional microwave SSM downscaling methods. Alternatively, the SSM data
simulated by the land surface model were used as comparative data to verify the MODIS
SSM with long time series estimated by SMRFM. The comparative data were acquired from
the FLDAS Noah Land Surface Model L4 Central Asia Daily dataset (version 001) [44],
which is simulated from the Noah 3.6.1 model in the Famine Early Warning Systems
Network Land Data Assimilation System, adapted from Land Information System. This
dataset contains a series of land surface parameters in a 0.01-degree spatial resolution
over the Central Asia region (30–100◦ E, 21–56◦ N) from October 2000 to present. The
four layers SSM data were comprised by the daily dataset and the top layer (0–10 cm)
SSM in volumetric water content was used as the comparative dataset in the study. The
0.01-degree simulated SSM is resampled and then clipped to 1-km size for matching the
pixel of fused MODIS SSM. In November 2020, all FLDAS Noah data were post-processed
with the MOD44 MODIS land mask, so the simulated SSM data were missing over inland
water in the study.

All data used in this study are shown in Table 1. As the temporal coverage of different
data is different, the temporal intersection of AMSR-E and MODIS data in unfrozen period
(1 August–31 September 2010 and 1 June–31 September 2011, six months in total) was used
as the study period.

2.2. Methods

The MODIS SSM with long time series is estimated by downscaling AMSR-E SSM
from coarse scale using proposed SMRFM. A reference MODIS SSM is retrieved from the
coupling of in situ data, MODIS OTI data and topographic information. Then, the long
time series AMSR-E SSM is downscaled to MODIS scale using the reference MODIS SSM
and STFM. Therefore, SMRFM solves the difficulty of MODIS SSM acquisition in STFM
and can be taken as an improvement for STFM in SSM.

https://srtm.csi.cgiar.org/srtmdata/
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Table 1. A general description of data used in the study. OTI is optical/thermal infrared, DEM is dig-
ital elevation model, AMSR-E is the Advanced Microwave Scanning Radiometer—Earth Observing
System sensor, MODIS is the Moderate-resolution Imaging Spectro-radiometer, LST and NDVI is the
land surface temporal and Normalized Difference Vegetation Index, SSM is the surface soil moisture.

Microwave Data OTI Data Noah Data DEM Data In Situ Data

Sensor AMSR-E MODIS / SRTM EC-TM, 5TM
Data Type JAXA SSM LST, NDVI simulated SSM altitude, slope in situ SSM

Temporal coverage May 2002 to
1 October 2011 May, 2002 to now October 2000 to now / August 2010 to

September 2016
Spatial resolution ~25 km 1 km/500 m 0.01◦ 90 m /

Temporal resolution 1–3 days daily daily Static daily
unit m3/m3 / m3/m3 m, ◦ m3/m3

2.2.1. Data Pre-Processing

The average daily in situ SSM is used for further analysis. As the in situ SSM is
0–0.6 m3/m3 in SMTMN [37,39], AMSR-E data higher than 0.6 m3/m3 is excluded in the
study. In addition, the pre-processing manners of in situ data are different for different
application scenarios in the study. For reference MODIS SSM retrieval and daily evaluation,
the daily 57 in situ data (the triangle shown in Figure 1b) is used. For temporal evaluation,
the in situ data is selected according to the following four conditions: (1) the data quality
of in situ data should be marked “G” (Good); (2) the monitored surface soil depth should
be less than 5 cm at first layer; (3) the temporal correlation between in situ SSM and the
corresponding AMSR-E SSM should be positive and pass the hypothesis test (p-value is
less than 0.05). After the selection, 29 in situ sites (the black triangle shown in Figure 1b)
are used for temporal evaluation in the study.

2.2.2. Spatio-Temporal Fusion Model

The SSM STFM (Figure 2) takes the known MODIS SSM and the corresponding AMSR-
E SSM as the paired reference data at t0 date and then again to fuse tk date AMSR-E
SSM for the unknown MODIS SSM estimation at the date. Notably, the date of reference
data is taken as the reference date. The estimation needs to excavate the spatio-temporal
correlation characteristics between AMSR-E and MODIS SSM without the help of other
additional remote sensing auxiliary data. In practice, one or more paired reference datasets
can be used to estimate MODIS SSM at tk date. The more paired reference data that is
used, the more restrictive the conditions of the model. As the main aim of the study is to
verify the feasibility of the proposed SMRFM, only one paired reference dataset is used in
the STFM.

From the reference date t0 to the prediction date tk, temporal variation of SSM can be
fitted by a linear equation. For AMSR-E SSM (SSMM), the linear equation is as follows:

SSMM(tk) = a(x, y, ∆t)× SSMM(t0) + b(x, y, ∆t) (1)

where ∆t = tk − t0, a and b are the regression coefficients of the linear equation that are
calculated by the least-squares method. As the model assumes that SSM has the same
temporal change at different scales [45], the regression coefficients estimated at AMSR-E
scale can be applied to MODIS scale. Thus, the MODIS SSM at date tk can be estimated
using Equation (2).

SSMF(tk) = a(x, y, ∆t)× SSMF(t0) + b(x, y, ∆t) (2)
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Figure 2. Schematic diagram of surface soil moisture spatio-temporal fusion model.

The change of SSM in each pixel may be different with the change of time. The
fixed regression coefficients for the remotely sensed image may have a negative impact on
prediction. To make the prediction result more accurate, the information of similar pixels in
the neighborhood moving sliding window (e.g., 5 × 5) is used in the model. The prediction
expression is as follows,

SSMF(xw/2, yw/2, tk) =
l

∑
i=1

W(xi, yi, t0)× [a(x, y, ∆t)× SSMF(t0) + b(x, y, ∆t)] (3)

where w and w/2 are the size and center of moving window, respectively, (xi, yi) indicates
similar pixels, and l is the number of similar pixels. Thus, the regression coefficients of
each pixel may be different for MODIS SSM estimation. For the selection of similar pixels
and the calculation of linear regression coefficients in the fusion model, please refer to [33]
for details.

From the above equations, it can be seen that the paired AMSR-E and MODIS SSM
at reference date t0 and the AMSR-E SSM at tk are used to predict the MODIS SSM at tk.
In this process, there is no need to rely on other remote-sensing auxiliary data. However,
the MODIS SSM at reference date t0 is also unknown in most cases. Therefore, the Aqua
MODIS LST and NDVI data are used for SSM retrieval in the study and then again to
estimate the MODIS SSM at reference date t0.

2.2.3. Aqua MODIS Surface Soil Moisture Retrieval

OTI data cannot penetrate clouds, vegetation, and soil surface layers, and do not
meet the conditions of the remote-sensing radiation transfer equation for SSM retrieval.
Therefore, the SSM retrieval from OTI data lacks physical basis. In many cases, the use
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of OTI data to monitor SSM is mainly based on the correlation between SSM and remote-
sensing surface parameters such as vegetation index, surface temperature [46], thermal
inertia [47], surface reflectance [48], drought index [49,50]. Then, empirical equations
between SSM and the remotely sensed surface parameters are established to retrieve
regional SSM. The study develops a MODIS SSM retrieval model using in situ data, OTI
data (LST and NDVI), altitude, and surface slope data which are calculated by the DEM
data (Equation (4)).

SSMF = a1 × LST + a2 × NDVI + a3 × altitude + a4 × Slope + a5 (4)

where ai (i = 1, 2, 3, 4, 5) are regression coefficients fitted by the least-squares method. To
weaken the uncertainty caused by the spatial matching between the in situ SSM data and
the remotely sensed pixel data, a 3 × 3 neighborhood average of the pixel corresponding to
the in situ site location is taken as the matching value. Moreover, neighborhood average can
weaken the information distortion that may exist in the single pixel value corresponding to
the in situ site location. This can improve the robustness of MODIS SSM retrieval model
(Equation (4)).

To estimate MODIS SSM using Equation (4), MODIS LST should meet the following
two conditions: cloud-free and temperature higher than 0 ◦C (unfrozen soil). In general,
the more training samples, the higher probability of the accuracy and stability of the fitting
formula. To achieve this goal, the percentage of uncontaminated pixels in daily MODIS LST
during the study period was calculated (Figure 3). This showed that the number of days
for which the percentage of uncontaminated pixels is greater than 80% does not exceed
21 days. This suggests that number of days is relatively small for SSM estimation using
Equation (4) in the study period. After careful screening, it was found that only 5 days of
MODIS LST data were 100% uncontaminated. At the same time, the number of in situ sites
for the days was counted. It was found that the number of effective in situ sites was the
largest on 24 July 2011 among the 5 days, reaching as many as 48. Therefore, the MODIS
SSM on 24 July 2011 is retrieved by Equation (4).
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Figure 3. The histogram of percentage of uncontaminated pixels in daily MODIS LST at unfrozen period.

To avoid over-fitting of SSM retrieval equation (Equation (4)) using least-squares
method, the 48-sample dataset (in situ data and its corresponding remote sensing data) on
24 July 2011 is sorted by in situ SSM in ascending order. Then, the dataset is divided into
five subsets at an interval of five, and the second subset with a sample size of ten is taken
as the validation dataset, and the remaining 38 samples are taken as the training dataset.
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Theoretically, the average value of regional SSM should not change with the varied
scale. AMSR-E SSM has a stronger theoretical basis than that of SSM retrieved from OTI
data. Therefore, the regional SSM retrieved by microwave data should be better than that
of OTI data in theory. To ensure the same regional average SSM between AMSR-E and
MODIS SSM, the AMSR-E SSM is taken as the benchmark and is used to correct retrieved
MODIS SSM using Equation (5).

SSMFC =
SSMF

average(SSMF)
× average(SSMM) (5)

where SSMFC is the corrected MODIS SSM, average () is the average of SSM. The corrected
MODIS SSM is taken as the reference SSM in the STFM.

2.2.4. Evaluation Methods

The correlation coefficient (r), RMSE, bias, and the unbiased RMSE (µbRMSE) are used
as the indicators for accuracy evaluation.

r =

n
∑

i=1
(SSMpixel,i − SSMpixel)× (SSMre f ,i − SSMre f )√

n
∑

i=1
(SSMpixel,i − SSMpixel)

2 ×
n
∑

i=1
(SSMre f ,i − SSMre f )

2
(6)

RMSE =

√√√√√ n
∑

i=1
(SSMpixel,i − SSMre f ,i)

2

n
(7)

bias = SSMpixel − SSMre f (8)

µbRMSE =
√

RMSE2 − bias2 (9)

where SSMpixel,i and SSMpixel are the pixel SSM and the average pixel SSM, and SSMre f ,i

and SSMre f are the reference SSM and the average reference SSM. The direct and indirect
evaluations are implemented to evaluate the accuracy of pixel SSM and to investigate the
feasibility of the proposed SMRFM for MODIS SSM estimation.

The in situ data are taken as the reference SSM and then again to directly compare
the difference between the in situ SSM and the pixel SSM neglecting the spatial matching
difference. This method is often used for accuracy evaluation of the satellite based SSM
in previous studies [23,51,52]. The in situ sites for temporal evaluation (the black triangle
shown in Figure 1b) are evenly distributed throughout the study area, and their average
value can be considered as the SSM at SMTMN scale. Therefore, the fused MODIS SSM,
AMSR-E SSM, and Noah SSM are evaluated against in situ SSM at SMTMN scale. It
can be used to evaluate the overall temporal accuracy of pixel SSM. To demonstrate the
individual difference of pixel SSM at each in situ site, the temporal accuracy of pixel SSM
against in situ data is calculated at MODIS scale. Like the evaluation at SMTMN scale,
the temporal variation of pixel SSM is used to directly compare in situ data. Instead of
using overall average of all selected in situ data, the observed temporal SSM is used at
each site. In addition, the daily evaluation of pixel SSM against in situ data is also explored
at MODIS scale in the study, so as to display all daily accuracies in pixel SSM. In general,
the focus of temporal variation accuracy evaluation and daily accuracy evaluation are
different. The former focuses on depicting temporal variation of SSM, and the temporal
characteristics are emphasized. Therefore, the evaluation index pays more attention to
temporal r and µbRMSE. Meanwhile, the latter focuses on describing spatial variation of
SSM, and the characteristics of absolute value change are emphasized. The evaluation
index pays more attention to RMSE and bias. Therefore, it is more convincing to carry out
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the evaluations in view of temporal variation and absolute value of pixel SSM at SMTMN
scale and MODIS scale.

In fact, there is a spatial matching error between in situ data and pixel SSM, although
evaluations based on in situ data are widely used. To eliminate the uncertainty of spatial
matching, the triple collocation (TC) method is used for further evaluation. The TC method
was proposed by Stoffelen [53] and was used to evaluate wind and wave height obser-
vations in oceanography. It was later introduced into remote-sensing SSM observation
error estimation. For example, TC method is used to evaluate the global errors for ASCAT,
AMSR-E, and ERA reanalysis SSM [54], which has shown that TC method is robust and can
generate objective error estimates. There are four assumptions of TC method for temporal r
estimation in the case of unknown truth values [55]: (1) there is a linear correlation between
the three kinds of SSM and the unknown truth SSM; (2) the error is stable and does not
change with temporal variation; (3) the errors of the three kinds of SSM are independent
of each other; (4) the errors of the three kinds of SSM are independent of unknown truth
values. As fused MODIS SSM and AMSR-E SSM are related to each other, a triplet pattern
of in situ, Noah, and remote sensing SSM is built for the TC evaluation in the study. Two
kinds of TC triplets are constructed: in situ Noah-fused MODIS SSM (TC1) and in situ
Noah-AMSR-E SSM (TC2), so as to compare the temporal accuracy difference of the three
kinds of pixel SSM at MODIS scale.

3. Results
3.1. Accuracy Analysis of MODIS Surface Soil Moisture Retrieval

The training and validation accuracy of the equation fitting for the retrieval of MODIS
SSM is shown in Table 2.

Table 2. Fitting accuracy of MODIS surface soil moisture retrieval equation.

RMSE (m3/m3) r

Training accuracy 0.073 0.656
Validation accuracy 0.088 0.669

Table 2 shows that the fitted equation (Equation (4)) has a good robustness for the
comparable accuracy of training and validation datasets. The RMSE is less than 0.09 m3/m3

and the r is higher than 0.65. This indicates that the fitted equation can estimate MODIS
SSM well. Then, the fitted equation is applied to retrieve MODIS SSM on 24 July 2011
(Figure 4) in the study.

The spatial distribution of the AMSR-E and MODIS SSM is consistent as a whole, but
there are still certain spatial and numerical differences between them (Figure 4). The range
of AMSR-E is 0.132–0.548 m3/m3, with an average of 0.323 m3/m3. The range of retrieved
MODIS SSM is 0.036–0.690 m3/m3, with an average of 0.365 m3/m3. The coefficient of
variation for AMSR-E is 0.259, and for retrieved MODIS SSM is 0.189. This suggests that
the AMSR-E is more discrete than the retrieved MODIS SSM.

The average values of the AMSR-E and MODIS SSM are different, which is consistent
with our expectation. Thus, the corrected SSM is calculated using Equation (5). The spatial
distribution of the corrected MODIS SSM (Figure 4c) has not changed obviously when
compared to Figure 4b in visual representation. However, the spatial fitness between
AMSR-E and MODIS SSM is slightly improved. RMSE between them has decreased
from 0.112 m3/m3 to 0.099 m3/m3 after correction. Therefore, the corrected MODIS SSM
(Figure 4c) and AMSR-E SSM (Figure 4a) are used to construct the paired reference datasets
of STFM in the study.
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3.2. Fused MODIS Surface Soil Moisture

The long time series MODIS SSM is fused by SMRFM using one fixed paired reference
dataset and the corresponding AMSR-E SSM at the unfrozen period. To validate the spatial
downscaling ability of SMRFM, the spatial distribution of fused MODIS SSM at different
dates is shown in Figure 5.

More detailed spatial information is presented in the fused MODIS SSM. It suggests
that the SMRFM can improve the spatial resolution of AMSR-E SSM from microwave
scale to MODIS scale well. The enhanced spatial information of fused MODIS SSM will
be beneficial for applications at the regional scale. Meanwhile, the AMSR-E and fused
MODIS SSM have relatively good consistency in the spatial distribution, indicating that the
STFM can downscale AMSR-E SSM to fine scale from coarse scale well under large spatial
resolution differences. For the large difference in spatial resolution of the two kinds of SSM
(the paired reference data), there may be some inconsistencies in the fused results. It is
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mainly that the spatial variation of MODIS SSM in special areas cannot be well represented
in AMSR-E SSM.
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There are many spatial void data for Noah SSM, as they are masked by the land
surface data, and the other two kinds of SSM are not masked. However, this does not
affect the presentation of the results. In addition, the spatial distributions of AMSR-E and
fused MODIS SSM are quite different when compared to Noah SSM. Nevertheless, the
variation characteristics in temporal are still captured by the three kinds of SSM, but each
SSM has some deviation in its depiction. This suggests the three kinds of SSM all have
certain uncertainty, consistent with previous studies on satellite-based SSM [10,15,16].

3.3. Evaluations against In Situ Data at SMTMN Scale

The fused MODIS SSM, AMSR-E SSM, Noah SSM, and in situ SSM are aggregated
to the SMTMN scale. Then the in situ site-based temporal variation differences between
the three kinds of pixel SSM are compared (Figure 6). It shows that the pixel SSM can
well monitor the temporal variations of regional SSM and display a good consistency in
unfrozen period compared to in situ data. Nevertheless, the temporal variation of the
four kinds of SSM differs greatly. The range of in situ data is 0.182–0.403 m3/m3, AMSR-E
SSM is 0.106–0.601 m3/m3, fused MODIS SSM is 0.152–0.557 m3/m3 and Noah SSM is
0.238–0.455 m3/m3 at SMTMN scale. The ability of the fused MODIS SSM to capture in
situ data is between AMSR-E and Noah SSM. As the fused MODIS SSM is downscaled by
AMSR-E, there is high consistency in temporal variation curves.
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Figure 6. Comparison of the in situ, AMSR-E, Noah, and the fused MODIS SSM at SMTMN scale in
unfrozen period. The gap between the two solid black lines is the frozen period. The in situ data are
represented by line symbol and the pixel SSM is represented by point symbol.

The quantitative evaluation results (Table 3) show that the fused MODIS SSM is slightly
higher than AMSR-E SSM and obviously higher than Noah SSM in terms of temporal r
(0.673). Meanwhile, it presents lower temporal µbRMSE (0.070 m3/m3) than AMSR-E SSM
against in situ data. Noah data present the lowest µbRMSE, however, it also gets the lowest
temporal r. As the highest temporal r and the moderate temporal µbRMSE of fused SSM, it
shows that the fused data have more advantages than the other pixel data against in situ
data. Compared to improving the temporal r of AMSR-E, the fused MODIS SSM has more
advantages in decreasing the temporal RMSE of AMSR-E. This suggests that the fused SSM
has higher accuracy than AMSR-E SSM in overall temporal variation at SMTMN scale.
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Table 3. Temporal accuracy evaluations of the AMSR-E, Noah, and the fused MODIS SSM against in
situ data at SMTMN scale in unfrozen period.

r RMSE (m3/m3) bias (m3/m3) µbRMSE (m3/m3)

AMSR-E 0.661 ** 0.112 0.017 0.111
Fused 0.673 ** 0.078 0.034 0.070
Noah 0.438 ** 0.062 0.030 0.054

Note: ** indicates the temporal r passed the p-value < 0.01.

3.4. Evaluations against In Situ Soil Moisture at MODIS Scale

In terms of overall temporal accuracy at SMTMN scale, it can be considered that the
fused MODIS SSM outperforms AMSR-E in describing temporal variation of in situ data.
However, the accuracy difference between the pixel SSM is still unclear at the MODIS scale
and needs to be further explored.

3.4.1. Daily Accuracy Evaluation

To calculate the daily evaluation of pixel SSM against in situ data effectively, all the
available daily pixel SSM and in situ SSM are collected at MODIS scale during unfrozen
period. The scatter plots between them are shown in Figure 7. It shows that the fitting
line of the scatter between in situ and fused MODIS SSM is closest to the 1:1 line. Noah
and in situ SSM present the lowest slope of fitting line. Among quantitative indexes, fused
MODIS SSM presents the highest r (0.714) and the lowest RMSE (0.117 m3/m3) compared
to AMSR-E and Noah SSM. It reveals that the fused MODIS SSM gets the best evaluation
indexes at the MODIS scale indicating the advantages of SMRFM.
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Figure 7. Scatter plots between in situ soil moisture and AMSR-E (a), fused MODIS (b), and Noah
surface soil moisture (c).

3.4.2. Temporal Accuracy Evaluation

To further demonstrate the difference between the three kinds of pixel SSM, the
temporal accuracy is investigated at MODIS scale. The fused MODIS SSM, AMSR-E SSM,
and Noah SSM are extracted based on the selected 29 in situ sites. Then they are directly
temporal evaluated against the in situ data. The evaluation results at the 29 in situ sites
were obtained in the study (Figure 8), and the average values are shown in Table 4.
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Table 4. Average of temporal variation evaluations against in situ data at MODIS scale.

r (No. of
p-Value > 0.05) RMSE (m3/m3) bias (m3/m3) µbRMSE (m3/m3)

AMSR-E 0.547 (0) 0.167 0.017 0.126
Fusion 0.557 (0) 0.119 0.035 0.087
Noah 0.348 (5) 0.131 0.031 0.071

In terms of temporal r, the range of fused MODIS SSM is 0.243–0.722 with an average
of 0.557, the range of AMSR-E SSM is 0.275–0.728 with an average of 0.547, and the range
of Noah SSM is −0.143–0.759 with an average of 0.348. For temporal RMSE, the range of
fused MODIS SSM is 0.073–0.276 m3/m3 with an average of 0.119 m3/m3, the range of
AMSR-E SSM is 0.097–0.314 m3/m3 with an average of 0.167 m3/m3, and the temporal
RMSE range of Noah SSM is 0.067–0.248 m3/m3 with an average of 0.131 m3/m3. For
temporal bias, the range of fused MODIS SSM is −0.243–0.151 m3/m3 with an average
of 0.035 m3/m3, the range of AMSR-E SSM is −0.301–0.204 m3/m3 with an average of
0.017 m3/m3, and the range of Noah SSM is −0.237–0.191 m3/m3 with an average of
0.031 m3/m3. For temporal µbRMSE, the range of fused MODIS SSM is 0.053–0.152 m3/m3

with an average of 0.087 m3/m3, the range of AMSR-E SSM is 0.074–0.176 m3/m3 with an
average of 0.126 m3/m3, and the range of Noah SSM is 0.037 −0.134 with an average of
0.071 m3/m3.

In most cases, the temporal r of Noah SSM is lower than AMSR-E and fused SSM
(Figure 8). The negative correlation of Noah SSM at L35 site indicates that it could not
describe the temporal variation of in situ data well. The temporal r of fused MODIS SSM is
higher than AMSR-E at 17 in situ sites. The temporal bias is positive at most sites, indicating
that the pixel SSM overestimates the in situ data. For temporal RMSE and µbRMSE, the
similar change characteristics are displayed. The higher RMSE and µbRMSE are obtained
by AMSR-E at each site. Meanwhile, the difference between fused MODIS SSM and Noah
SSM is not very large in the temporal RMSE and µbRMSE at each site.

Compared to the temporal evaluation at SMTMN scale, the fused SSM presents bet-
ter evaluation indexes than the AMSR-E in terms of temporal r, RMSE and µbRMSE
(Tables 3 and 4). Meanwhile, Noah SSM presents the lowest average temporal r and tempo-
ral µbRMSE at MODIS scale, which is consistent with the temporal evaluation at SMTMN
scale. Notably, the temporal r of five sites failed the hypothesis test (p-value > 0.05) for
Noah SSM.

3.5. Evaluations Based on Triple Collocation Method

Referring to previous studies [45,55], the valid number of data points should be greater
than 100 for each pixel SSM in the TC triplet. Like the temporal evaluation against in situ
data, the TC evaluations are still carried out at the selected 29 in situ sites (the black triangle
shown in Figure 1b). The boxplot of TC1 (in situ Noah-Fusion TC triplet) and TC2 (in situ
Noah-AMSR-E TC triplet) evaluations is shown in Figure 9.

The average temporal r of in situ SSM is the best in each TC triplet. The ranges of
temporal r for in situ data, Noah SSM, and fused SSM are 0.526–0.990, 0.361–0.837, and
0.623–0.991, with averages of 0.762, 0.521, and 0.761 in TC1. Meanwhile, the ranges of
temporal r for in situ data, Noah SSM, and AMSR-E SSM are 0.563–0.990, 0.348–0.826, and
0.602–0.991, with averages of 0.766, 0.518, and 0.755 in TC2. The average temporal r of in
situ data is comparable in each TC triplet, as is the Noah SSM. Thus, direct comparison
can be implemented between the TC temporal r of AMSR-E and the fused MODIS SSM.
Therefore, the average temporal r of the four kinds of SSM can be sorted as follows: in
situ SSM > the fused MODIS SSM > AMSR-E SSM > Noah SSM. This suggests that the
proposed SMRFM can be used to estimate fine-scale SSM with long time series and that
the estimated SSM is better than the AMSR-E SSM in temporal variation evaluated by TC
method at MODIS scale in the study.
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4. Discussion

The SMRFM is proposed to downscale AMSR-E SSM to MODIS scale with long time
series in this study. To evaluate the accuracy of estimated MODIS SSM, the r, RMSE, bias,
and µbRMSE are used in the study. A higher r indicates a higher explained variability and
a lower RMSE indicates a higher agreement between the pixel SSM and in situ data in
absolute value. Positive bias indicates that the in situ data are overestimated by pixel SSM.
The lower µbRMSE indicates a higher agreement between the pixel SSM and in situ data
in relative value. Therefore, the high accuracy of pixel SSM indicates the high r, the low
RMSE, and µbRMSE.

For the spatial mismatch between pixel and in situ SSM, the direct comparison between
them has always been controversial [3,7,9]. To evaluate the pixel SSM better using in
situ data, the upscaling methods are developed and used in the previous studies [47,56].
Nevertheless, the direct comparison is still the most basic evaluation for pixel SSM, as the
in situ data are first-hand real data and can more directly express the changes of actual
SSM. Moreover, the effect of spatial mismatch on absolute value comparison of SSM is
higher than that of temporal variation [45]. More importantly, the TC method is used for
SSM evaluation under the unknown true data. There are two TC triples for evaluations
in the study. Both of them show that the in situ data present the highest temporal r
(Figure 9). Therefore, it is reasonable to evaluate the pixel SSM using the in situ data in
temporal variation. As there is only one in situ site in each MODIS pixel, the daily accuracy
evaluations in Section 3.4.1 may be a compromise way to evaluate the absolute SSM in the
case of absent true pixel SSM.

There are two keys for MODIS SSM estimation using proposed SMRFM. One is the
OTI-data-based fine-scale SSM retrieval, another is the STFM. The training and validation
accuracies of Equation (4) are comparable in the study. The RMSE of retrieved fine-scale
SSM was less than 0.09 m3/m3 on 24 July 2011. Meanwhile, the RMSE of AMSR-E and Noah
were 0.128 m3/m3 and 0.122 m3/m3 against in situ data on that day. The RMSE of AMSR-E
is no less than 0.11 m3/m3 [39] and the downscaled AMSR-E [39] and SMAP SSM [24] is
no less than 0.08 m3/m3 at Naqu, central Tibet Plateau. It can be concluded that the RMSE
of retrieved OTI-based SSM is better than the AMSR-E SSM and is comparable with the
downscaled SSM. The slope and altitude information of topographic attributes are used to
fit the Equation (4). The impact of topographic changes on soil moisture may not be fully
considered in the study. Therefore, the index characterizing the information of topographic
wetness [57] for OTI-data-based SSM retrieval will be explored in future research.
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The fused MODIS SSM significantly improves the spatial detailed information of
AMSR-E SSM. Meanwhile, the evaluation indexes of fused data are better than AMSR-E
SSM at SMTMN and MODIS scale. There may be several reasons for this result. The key
reason may be that the neighborhood information is used by SMRFM for fine-scale SSM
estimation. This is equivalent to denoising remote-sensing images using spatial filtering
methods [33], which weakens the outliers in temporal variation of SSM. Thus, the temporal
variation of estimated data is much smoother than the AMSR-E SSM (Figure 6). The
reference MODIS SSM of SMRFM is estimated by Equation (4), which is fitted by the
MODIS OTI data, in situ SSM, and the topographic information. Then, the SMRFM is used
to estimate MODIS SSM with long time series using the fixed reference data. Therefore,
the estimated MODIS SSM by SMRFM can be considered as coupled with the in situ SSM
information. This may be another reason for the high accuracy of fused MODIS SSM.
According to the basic principles of STFM [26,33], the smaller the difference in temporal
variation, the better that MODIS SSM can be estimated [45]. The dominate land cover
type of the study area is grassland, and the implementation of SMRFM should not exceed
one-and-a-half years. This indicates that the spatial and temporal pattern of SSM will not
change much in a relatively long time under the homogeneous land type. This may be a
possible factor in the high accuracy of fused MODIS SSM.

There is an assumption that the temporal change is scale-invariant in STFM. The
assumption was proposed in 2006 for surface reflectance estimation [26] and was then
applied for other surface parameters estimation [27–32]. It is used as a downscaling
method for long time series MODIS SSM estimation in the study. Similar with STFM, the
scale-invariant assumption also exists in traditional microwave SSM downscaling, but
it refers to scale-invariance of the relation between microwave SSM and other remotely
sensed parameters for traditional methods in most cases [22,24]. It has been shown that
the downscaling capability of STFM is better than that of the traditional downscaling
method [45], although the scale-invariant assumption of temporal change is fitted by a
linear equation. This may reveal that the scale-invariant assumption in temporal change is
more reasonable than scale-invariance in the relation.

To investigate the relation between surface parameters and SSM, the correlations
between LST, NDVI, altitude, and slope are calculated in Table 5. It shows that the corre-
lations between SSM and the first two factors (LST and NDVI) are obviously better than
the last two (altitude and slope). The correlation of the factors can be sorted as follows:
NDVI > LST > Slope > Altitude. This suggests that the topographic factors may be limited
in SSM estimation in this study.

Table 5. The correlations between SSM and LST, NDVI, altitude, and slope.

LST NDVI Altitude Slope

In Situ 0.714 ** 0.725 ** 0.072 ** 0.145 **
AMSR-E 0.647 ** 0.737 ** 0.092 ** −0.014
Fusion 0.586 ** 0.701 ** 0.182 ** 0.250 **
Noah 0.715 ** 0.676 ** 0.007 ** −0.029 *

Note: * and ** indicate the correlation passed p-value < 0.05 and p-value < 0.01, respectively.

Since MODIS SSM is downscaled from AMSR-E data using SMRFM, they have the
same temporal resolution. Nevertheless, the effectiveness of proposed SMRFM in estimat-
ing SSM in highly heterogeneous areas and longer time series needs to be further explored.
Notably, the premise of SMRFM for SSM estimation is to estimate the reference SSM. In
the study, the OTI data are used for reference SSM retrieval. As OTI data cannot penetrate
the surface, the use of Sentinel-1 and OTI data in SMRFM framework may enhance the
accuracy and spatial resolution of estimated SSM. Therefore, the SMRFM has the potential
to estimate long time series finer-scale (less than 1 km) SSM with the finer-scale reference
SSM provides.
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5. Conclusions

Given the difficulty of taking into account the long time series characteristics of current
downscaling method, which integrates microwave SSM data and OTI data to estimate fine
scale SSM, an SSM retrieval-and-fusion model named SMRFM is proposed to downscale
AMSR-E SSM for MODIS SSM with long time series estimation in the study. The method
was applied to the SMTMN over Naqu, central Tibet Plateau to obtain the MODIS SSM
with long time series characteristics of microwave data. To validate the SMRFM, in situ
data and Noah land surface model 0.01-degree SSM were used in the study. The main
conclusions of the study are as follows:

(1) A method that integrates in situ data, remote sensing OTI data, and terrain data was
developed for MODIS SSM retrieval, and the estimated MODIS SSM by this method
obtains an RMSE of less than 0.09 m3/m3.

(2) The MODIS SSM fused by the SMRFM can well maintain the spatial distribution
and temporal variation of AMSR-E data, although there are certain differences in the
special distinction between the two kinds of pixel SSM.

(3) Six months of MODIS SSM in unfrozen period were fused by the proposed SMRFM.
The evaluations show that the fused MODIS SSM has better temporal accuracy than
that of AMSR-E at SMTMN and MODIS scale. Compared to Noah SSM, the fused
SSM presents higher temporal r and slightly lower µbRMSE. In addition, the fused
SSM has better daily accuracy than AMSR-E and Noah SSM. Therefore, it can be
considered that the proposed SMRFM can be used to estimate fine-scale SSM with
long time series and that the estimated SSM is better than AMSR-E SSM in temporal
variation. This will promote the development of research and applications with long
time series SSM at regional scale.
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