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Abstract: Lakes are one of the most important parts of the terrestrial hydrosphere. The long-term
series of lake area dynamic data with high spatial-temporal resolution is of great significance to
the study of global change of the water environment. Satellite observations (such as Landsat)
have provided images since the 1970s, but there were challenges for the construction of long-term
sequences of lake area on a monthly temporal scale. We proposed a temporal-spatial interpolation
and rule-based (TSIRB) approach on the Google Earth Engine, which aims to achieve automatic
water extraction and bimonthly sequence construction of lake area. There are three main steps of
this method which include bimonthly image sequence construction, automatic water extraction, and
anomaly rectification. We applied the TSIRB method to five typical lakes (covering salt lakes, river
lagoons, and plateau alpine lakes), and constructed the bimonthly surface water dataset (BSWD) from
1987 to 2020. The accuracy assessment that was based on a confusion matrix and random sampling
showed that the average overall accuracy (OA) of water extraction was 96.6%, and the average Kappa
was 0.90. The BSWD sequence was compared with the lake water level observation data, and the
results show that the BSWD data is closely correlated with the water level observation sequence, with
correlation coefficient greater than 0.87. The BSWD improves the hollows in the global surface water
(GSW) monthly data and has advantages in the temporal continuity of surface water data. The BSWD
can provide a 30-m-scale and bimonthly series of surface water for more than 30 years, which shows
good value for the long-term dynamic monitoring of lakes, especially in areas that are lacking in situ
surveying data.

Keywords: lake; surface water; Landsat; GEE; TSIRB; BSWD; bimonthly; GSW

1. Introduction

As an important part of the terrestrial hydrosphere, lakes not only provide the water
resources that are needed by human activities and the ecological environment, but also play
an indispensable role in the hydrological cycle [1,2]. Lakes have the function of maintaining
the stability of the regional ecological environment, such as agricultural production, fishery
resources, flood prevention, and disaster reduction [3]. At the same time, lakes are very
sensitive to human activities and climate change [4]. In recent decades, with the increase of
human activities and the intensified global climate change, the expansion and shrinkage of
lakes have occurred from time to time around the world [5,6]. This change has produced
a series of ecological and social problems, such as the deterioration of lake water quality,
the degradation of ecosystems, the reduction of biodiversity, and the inundation of arable
land, which have severely affected the livelihoods of local people [7]. Therefore, long-term
lake observation data with high temporal and spatial resolution is of great significance
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for revealing the influence of natural factors and human activities on the sustainable
development, utilization, and protection of lake waters.

Remote sensing technology enables earth observation from space. The development
of remote sensing technology has advanced human understanding of the Earth surface
to a new stage, and at the same time has brought convenience to the study of large-scale
lake water dynamic monitoring and parameter inversion [8]. Periodically-acquired and
remotely sensed imagery enable us to monitor the dynamics of the surface environment
in a timely and rapid manner. Remote sensing and GIS technology are widely used in
water resource monitoring applications, including flood disaster/loss assessment and
management [9,10], surface water dynamic monitoring [11,12], water quality assessment
and monitoring [13], and water-related infection diseases [14] etc.

Surface water dynamic monitoring can utilize sensors with different temporal, spatial,
and spectral resolutions, such as MODIS, AVHRR, Landsat TM\ETM+\OLI, Sentinel-2 MSI,
etc. [15–18]. Among them, Landsat series satellites have become one of the most widely
used optical sensors in surface water and other environmental monitoring research due to
their long continuous monitoring time (greater than 30 years) and relatively high spatial
resolution (30 m).

General methods for extracting water bodies from optical remote sensing images
can be divided into four types: (a) thematic classification methods [19–21], (b) linear
decomposition methods [22], (c) single-band\band index thresholding methods [23,24],
and (d) rule-based methods [25]. The band index threshold methods were widely used in
automatic water extraction applications due to their ease of use and low computational
time and resource consumption. McFeeters [26] was the first to propose the Normalized
Difference Water Index (NDWI) for TM images using the green and near-infrared bands
based on the construction principle of the Normalized Difference Vegetation Index (NDVI).
Xu proposed modified Normalized Difference Water Index (mNDWI) [27], which improved
the separation between water body and built-up area; Feyisa et al. proposed a multi-
band index AWEI to improve the separation among water body, shadows and other dark
targets [24]. Li et al., proposed BDWI to improve mNDWI by bringing local background
information [28]. A combination of different band indexes and thresholding rules were also
proposed to improve accuracies [29].

Remote sensing information processing and analysis requires a lot of computing and
storage resources, but the traditional workstation-based operation mode can only process
a small amount of data. The rise of cloud computing platforms such as the Google Earth
Engine (GEE) makes it possible to process massive remote sensing images rapidly. Many
scholars have carried out automatic extraction of water bodies at global and regional scales
based on the GEE platform [30–34]. One of the most influential is the global surface water
(GSW) dataset that was constructed by Pekel et al. [33]. It is worth noting that most of
existing research has focused on monitoring the multi-year changes of surface water, while
the time series mapping of surface water with high temporal and spatial resolution still
faces challenges. The GSW dataset provides monthly and 30 m resolution surface water
data, but there are a lot of voids in the data, which limit the direct use of this data for time
series analysis.

The main objectives of this paper were: (1) proposed a new method of TSIRB (temporal-
spatial interpolation and rule-based approach) for surface water mapping based on the
GEE platform and Landsat data, which aims to realize long-term bimonthly time series
mapping of lake water at the 30-m scale; (2) selected five typical lake cases in different
regions of the world, extracted the bimonthly surface water dataset (BSWD) in the past
34 years, and analyzed the annual and inter-annual variation characteristics of the case
lakes; (3) evaluated the accuracy of the TSIRB method for water extraction, and analyzed the
statistical correlation characteristics of the obtained BSWD data with in situ and remotely
sensed water level data; and (4) discussed the advantages and shortcomings of the TSIRB
method for producing long-term bimonthly lake extent and area sequences.
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2. Materials and Methods
2.1. Case Lakes

A total of five test lakes from around the world, which feature different climates, water
types, and landscapes, were chosen to examine the robustness and general applicability
of the TSIRB method. The five case lakes (Figure 1 and Table 1) include (a) Chiquita Lake,
(b) Urmia Lake, (c) Dongting Lake, (d) Poyang Lake, and (e) Qinghai Lake. These lakes
cover several typical lake types: freshwater lake, saline lake, river lagoon, and plateau lake
(detailed in Table 1).

Figure 1. Locations and typical images of the case lakes for (a) Chiquita Lake, (b) Urmia Lake,
(c) Dongting Lake, (d) Poyang Lake, and (e) Qinghai Lake. RGB channels were synthesized using
‘swir1’, ‘nir’, and ‘red’ bands.

Chiquita Lake (30◦~30◦55′S, 62◦~63◦W) is located about 150 km northeast of Córdoba,
Argentina [35], in the Paraná Basin of South America. The lake is affected by a humid
subtropical climate, and precipitation is mainly concentrated from December to March
(summer in the southern hemisphere) [36]. There is abundant vegetation around the
lake [37].

Urmia Lake (37◦46′N, 45◦20′E) is an endorheic salt lake in Iran. At its greatest extent,
it was the largest lake in the Middle East and the sixth-largest saltwater lake on Earth [38].
The lake is a shallow lake (with an average depth of 1.5 m in 2019) [39], and the lake area
varies greatly among different seasons. The lake is affected by a cold semi-arid climate,
with an average annual precipitation of 341 mm, an average annual temperature of 11.2 ◦C,
and an average annual cumulative evaporation of 1200 mm. The temperature in the lake
area varies greatly between seasons, with the lowest temperature reaching−23 ◦C in winter
and the highest being 39 ◦C in summer [40].

Poyang Lake (28◦22′~29◦45′N, 115◦47′~116◦45′E) and Dongting Lake (28◦30′~30◦20′N,
111◦40′~113◦10′E) are located in the middle and lower reaches of the Yangtze River Basin



Remote Sens. 2022, 14, 2893 4 of 22

in China [41,42], which are the first and second largest freshwater lakes in China. The
lake belongs to Humid subtropical climate [43,44], and the rainfall in the lake area varies
significantly seasonally. The flood season is from July to September, during which the lake
surface area increases rapidly [45,46]. Aquatic vegetation is widely distributed around
the lake.

Table 1. Summary of descriptions and characteristics of the case lakes.

Case Lakes Geo-Locations Area
(km2) * Type Characteristics Climates

(Köppen Key) [47]

Chiquita Lake 30◦~30◦55′S,
62◦~63◦W 4610 Saline lake

Salt lake in South America; vegetation
abundant in the north; precipitation

in December to next March.

Humid subtropical
climate (Cfa)

Urmia Lake 37◦46′ ′N,
45◦20′E 3273 Saline lake High salinity; low water depth; salt

crust around lake shore.
Cold semi-arid
climate (Bsk)

Dongting Lake 28◦30′~30◦20′N,
111◦40′~113◦10′E 1542 Freshwater lake,

river lagoon

The second largest freshwater lake in
China; a lot of vegetation around;
precipitation concentrated in July

to September.

Humid subtropical
climate (Cfa)

Poyang Lake 28◦22′~29◦45′N,
115◦47′~116◦45′E 2879 Freshwater lake,

river lagoon

The largest freshwater lake in China;
a lot of vegetation around;

precipitation concentrated in July
to September.

Humid subtropical
climate (Cfa)

Qinghai Lake 36◦32′~37◦15′N,
99◦36′~100◦16′E 4504 Saline lake,

plateau lake

The largest saline lake in China;
precipitation concentrated in June to
September; freezes from December

to March

Monsoon-influenced
subarctic climate

(Dwc)

* Average area of lakes in 2020.

Qinghai Lake (36◦32′~37◦15′N, 99◦36′~100◦16′E), located in the northeastern part of
the Qinghai-Tibet Plateau, is the largest saline lake in China [48]. The lake belongs to
the monsoon-influenced subarctic climate and is an inner-flow lake that mainly relies on
precipitation to supplement its water volume. The average annual precipitation is 395
mm, and the precipitation is concentrated from June to September [49]. The yearly average
temperature is below 0 ◦C. The freezing period begins around November every year, a
stable ice surface begins to form in December, and begins to thaw in March or April of the
following year [50].

2.2. Platform and Data
2.2.1. GEE Platform

The open Google Earth Engine (GEE) platform was used as the computing environ-
ment in this study. GEE is a cloud-based planetary-level geospatial analysis platform. It
provides massive remote sensing image resources and programming interfaces, which
greatly facilitates remote sensing method research and application at global and regional
scales. GEE relies on Google’s powerful cloud computing capabilities to accelerate the
processing of remote sensing data [51], which is beneficial for large-scale mapping and long-
term sequence analysis based on multisource and high dimensional imagery [33,52–54].

2.2.2. Landsat Imagery

We used the multispectral imagery of Landsat5 TM, Landsat7 ETM+, and Landsat8
OLI in this study. The Landsat5 satellite was launched in 1984, but there were no Landsat5
images before 1987 in many parts of the world; we chose 1987 as the starting year for
lake monitoring around the world. In addition, due to the contamination of clouds and
shadows, the proportion of effective pixels is low in images with large cloud cover, then
images with cloud cover greater than 50% were filtered out in this study.
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The Landsat Surface Reflectance (SR) data [55] was used for water extraction. Landsat
Surface Reflectance products include Quality Assessment (QA) bands which identify pixels
that exhibit adverse instrument, atmospheric, or surficial conditions. In this study, the
QA bands were used to screen out pixels that might be affected by instrument artifacts or
subject to cloud and cloud shadow contamination.

2.2.3. The Lake Water Max-Extent Mask

The max-extent refers to the largest extent of surface water bodies in the lake area over
the past 30 years. In this study, the max-extent data was used to define the outer boundary
of the lake water body, which could reduce the amount of data processing in non-lake areas.
In addition, the use of max-extent data can reduce the confusion of water body extraction
that is caused by shadows and urban dark targets and improve the accuracy of water body
extraction during non-flood seasons.

In this study, we used the maximum water extent product (max_extent) from the
Global Surface Water (GSW) dataset that was provided by the European Commission’s
Joint Research Centre (JRC).

2.2.4. Lake Water Level Data

Lake water level series data were used to validate the results of lake area sequences
because of the strong correlations between the lake water level and the lake area. In the five
case lakes, the water level data came from two different sources. The water level data of
Poyang Lake, Dongting Lake, and Qinghai Lake were obtained through site measurements.
The data were extracted from the “Hydrology Yearbook of People’s Republic of China”,
the time series was 2006–2018, and the time resolution was days. Among them, the water
level data for Poyang Lake, Dongting Lake, and Qinghai Lake were measured in Duchang
Station, Chenglingji Station, and Xiashe Station, respectively [56,57].

Water level data of the other two lakes were obtained from the Global Lake and Reser-
voir Monitoring website (G-REALM) (https://ipad.fas.usda.gov/cropexplorer/global_
reservoir, last accessed on 30 August 2021), ranging from 1992 to 2020 with monthly
temporal resolution.

2.3. Methods

This paper proposes a temporal-spatial interpolation and rule-based (TSIRB) method
for automatic water extraction, based on the GEE platform and utilizing Landsat image
data. The method consists of three main steps (Figure 2): bimonthly image sequence
construction (BISC), automatic water extraction (AWE), and time series anomaly detection
and reconstruction (TSADR). Using this method, the problem of void holes in Landsat’s
monthly surface water data (such as GSW) can be alleviated, and the automatic construction
of bimonthly surface water dataset (BSWD) can be realized.

2.3.1. Bimonthly Image Sequence Construction (BISC)

Optical remote sensing images are always contaminated by clouds, which leads to a
large number of void holes in water extraction products. The problem of void holes must
be solved in order to obtain the time series of surface water which is continuous in space
and time. First, this paper sets the time granularity of the time series to be bimonthly, which
can reduce the proportion of void pixels compared with the monthly series. Through cloud
and shadow masking, we combined all the valid pixels within two months into one image.

https://ipad.fas.usda.gov/cropexplorer/global_reservoir
https://ipad.fas.usda.gov/cropexplorer/global_reservoir
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Figure 2. Flow chart for the construction of lake bimonthly surface water time series based on GEE
and Landsat.

However, in some areas, the heavy cloud coverage in the rainy months makes most of
the pixels invalid, which leaves a large number of void holes in the bimonthly composite
image (Figure 3b). In this study, we assumed that at the same pixel location and the land
cover types are similar for the same month in adjacent years. Then, the current void
holes can be replaced by valid pixels of the same month in adjacent years, so as to realize
the construction of a bimonthly-scale valid image sequence that is continuous in time
and space.
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Figure 3. Illustration of bimonthly image construction, (a) original image with least clouds and
shadows in September 2016; (b) clear image after cloud and shadow masking; (c) composite bimonthly
image after void filling. RGB channels were synthesized using ‘swir1’, ‘nir’, and ‘red’ bands.

Applying this idea, this paper proposes a method to construct a spatiotemporally
continuous bimonthly image sequence. The pixels in each bimonthly composite image are
cloud- and shadow-free. The method mainly consists of two main steps.

The first step is the construction of preliminary bimonthly synthetic sequence imagery.
This includes cloud and shadow masking, and a bi-monthly composite of valid data. Cloud
and cloud shadow masks use QA indicators from Landsat’s surface reflectance data, and
areas that are masked by clouds and shadows are defined as invalid. All the masked
images of the corresponding months were combined into an image set, and then the
median synthesis algorithm was used to obtain the initial bimonthly image imP_year_month.
The imP_year_month is a representative of all the valid observations within the two-month
timeframe. It should be noted that, at a pixel, if all the original images before compositing
are invalid values, the composite result will still be invalid values. Due to the limitation
of the relatively low observation frequency of Landsat and the influence of clouds and
shadows, there are still many void values in the preliminary bimonthly composite images.

The second step is void filling of the bimonthly image sequences. Here, we assumed
that if a pixel was water in the May 2010 imagery, then there is a high probability that it was
also water in the May 2009 and May 2011 images. Based on this assumption, for invalid
values in the preliminary image sequence, we used valid observations from adjacent years
to replace the invalid values for the current cell. There are two ways to retrieve bimonthly
valid values: forward current year and backward current year. In order to facilitate the
processing of the start year and the end year, we used 2010 as the time boundary. Images
after 2010 are processed by year-forward retrieval, and images in 2010 and before are
processed by year-backward retrieval to obtain valid values and perform composition.
After the void filling operation in the second step, we obtained a continuous bi-monthly
image sequence that was composed of all valid observation pixels (Figure 3c).

2.3.2. Automatic Water Extraction (AWE)

After preparing the bimonthly composite images, the automatic extraction of water
bodies is carried out using a multi-rule-based classification method. The spectral index
makes the pixel of interest stand out from the image background, and the binary threshold-
ing method is very suitable for large-scale and time-series image analysis due to its ease of
implementation. Different water body indices (NDWI, mNDWI, AWEI) are widely used
in surface water mapping. However, due to the influence of complex interference factors
under different temporal and spatial conditions, the overall accuracy of the band index
thresholding method is not high enough when it is applied to large-area water body extrac-
tion or time series mapping. These disturbance factors mainly include shadow, ice, snow,
vegetation, and so on. In this study, a multi-rule-based classification method was used
to achieve automatic water extraction (Table 2), and a long-term time series of bimonthly
surface water data was obtained.
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Table 2. Spectral indexes and image characteristics that were used for water delineation from
backgrounds using Landsat images.

Features Equations Thresholding Objectives

AWEI_sh blue + 2.5 × green − 1.5 × (nir + swir1) − 0.25 × swir2 Empirical: >−0.005 Water mapping

Brightness (nir + red + swir1)/3 Empirical: varied Ice and snow noise

mNDWI (green − swir1)/(green + swir1)
mNDWI > NDVI
or mNDWI > EVI

Vegetation noiseNDVI (nir − red)/(nir + red)
EVI 2.5 × (nir − red)/(nir + 6 × red − 7.5 × blue + 1)

Max_extent GSW Max_extent Max_extent = 1 Suppress terrestrial noise in
complex environments

(1) First, we apply AWEI_sh [24] for water body extraction and obtain a preliminary
result of surface water extraction. AWEI_sh is an index that is proposed to improve the
accuracy of water extraction in shadowed or other dark surface areas [24]. Studies have
shown that AWEI_sh has good regional adaptability and can realize automatic extraction
of water bodies in large areas [58]. Referring to the studies of others [24,59], combined with
the spectral analysis results of this study, we adopt AWEI_sh > −0.005 as the decision rule
for water bodies. In most cases where the images are clear, using the AWEI_sh decision
rule can achieve good water extraction results (Figure 4).

Figure 4. Illustration of water extraction for Qinghai Lake in July 2010. (a) is the original image; (b) is
the preliminary result of extracting the water body using AWEIsh.

(2) Water extraction in winter images is often disturbed by ice and snow. In this
paper, a brightness index is used to assist in water extraction. The reflectivity of snow in
each waveband is higher than that of water [60], but its spectral curve shape is similar to
that of water, and both snow and water have small calculated AWEI_sh values. In the
case of winter images with snow and ice, using AWEI_sh alone to extract water bodies
will result in a large error in the results. Considering that snow has higher reflectance in
red, near-infrared, and short-wave infrared than water, this study proposes a brightness
index, which is the average of the reflectance values of red, near-infrared (nir), and the
first short-wave infrared band (swir1). Brightness values that are greater than a certain
threshold can be considered non-water bodies. This rule is set according to the time of the
freezing season in the northern and southern hemispheres.

(3) In order to reduce the impact of surrounding vegetation noise on water extraction,
this paper uses water index (mNDWI) and vegetation index (NDVI and EVI) to assist in
the classification. The water index highlights water body information, while the vegetation
index highlights vegetation information. If an image pixel’s water index value is lower
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than the vegetation index value, the pixel should be classified as vegetation rather than
water. Studies by others [61,62] also support this hypothesis. In this study, only image
pixels satisfying the condition ‘(mNDWI > NDVI) or (mNDWI > EVI)’ were classified as
water bodies, and others were classified as non-water bodies.

(4) In order to suppress terrestrial noise in complex environments, this paper uses
the maximum water body range data for masking. In winter, the surface water of lakes in
high latitudes and plateau areas will freeze, and the automatic extraction of water bodies is
greatly affected by ice and snow. In the case of snow cover on the lake surface and around
the lake, the snow cover on the land part with lower brightness is often misclassified as a
water body. To deal with this type of disturbance, in this study, we can reasonably assume
that water bodies are less likely to appear in pixels outside the maximum water body
during the snow-covered months. We selected the max_extent data of GSW as the mask to
refine the results of water extraction in winter (Figure 5). In the flood season, the inundation
range of the water body is wide, and we do not select the max_extent for masking, which
can avoid the omission of water bodies in the flood season.

Figure 5. Illustration of the effect of the max-extent masking. (a) is the original image of Qinghai
Lake in January 1990, in which the lake is frozen, and the light blue part is the snow-covered area;
(b) is the preliminary extraction result; (c) is the result after max-extent masking.

2.3.3. Accuracy Evaluation of Water Extraction

We used the confusion matrix method to evaluate the accuracy of automatic water
extraction. The data series processed in this study spanned more than 30 years, resulting in
a large amount of processed data. We selected the water body extraction data in 2010 and
2010 as the representative of all water extraction results to carry out accuracy evaluation.
Verification points were obtained by random sampling. A total of 200 verification points
were randomly selected from each bimonthly image for each lake, and a total of 12,000 veri-
fication points were sampled. The reference attributes of verification points were obtained
by visual interpretation to ensure the accuracy of attribute acquisition.

There are several accuracy evaluation indicators for the confusion matrix method.
We selected the most representative Kappa coefficient and overall accuracy (OA) for the
accuracy evaluation. The Kappa coefficient represents the general accuracy of the method,
and the OA represents the percentage of correctly classified pixels [63]. The OA and Kappa
are calculated as the following formulas:

∆ = (TP + FP)× (TP + FN) + (TN + FN)× (TN + FP) (1)

kappa = (N × (TN + TP) )/
(

N2 − ∆
)

(2)

OA = ( TN + TP)/N (3)

In the formulas: TP is the number of the true positive points; TN is the number of the
true negative points; FP is the number of the false positive points; FN is the number of the
false negative points; and N is the total number of verification points.
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2.3.4. Time Series Anomaly Detection and Reconstruction (TSADR)

Using the above AWE method, a bimonthly surface water image sequence can be
obtained for each lake. By vectorizing the binarized water extraction images, the time
series of the lake area data can be obtained. Although the AWE step can handle most of
the disturbances, there may be a small amount of anomalous data in the lake area time
series due to snow on the lake area in winter and bright reflection in the shallow water
area of the salty lakes. This study adopted the time series processing method to detect
and repair sequence anomalies, then the reconstructed bimonthly lake area sequence data
was obtained.

1. Anomaly Detection

For anomaly detection in lake area sequences, the moving average method (MA) was
used. The MA method calculates the moving average by adding or subtracting old and new
data sequentially, so as to eliminate accidental factors and explore the time development
trend of things [64]. The MA method is often used for outlier detection of hydrological
feature sequences [65,66]. In this method, the moving average (yi) at each time point is
calculated as the average of the value at that time point and the k observations on both
sides [67]. Hydrological elements such as surface water will be affected by the values
of the previous and subsequent periods, so we chose one year before and after as the
sliding period (k is set to 6) and calculated yi. The moving average difference ratio (zi)
was calculated at each time point and the standard deviation σ of the zi sequence data
was calculated; with 3σ as the threshold, when zi falls outside the threshold, the sequence
value at this time point is judged to be outlier. Repeat the above steps until no outliers
can be detected. Figure 6a shows the result of anomaly detection in lake area sequence of
Qinghai lake.

yi = (xi−k + . . . + xi + . . . + xi+k)/(2k + 1) (4)

zi = (yi − xi)/(yi) (5)

z =
n

∑
i=1

zi/n (6)

σ =

√
n

∑
i=1

(zi − z)2/n (7)

In the equations: xi is the value of the original sequence at time i; yi is the moving
average at time i; zi is the moving average difference ratio at time i; z is the average value
of the moving average difference ratio sequence; and σ is the standard deviation of the
moving average difference ratio zi series.

2. Time Series Reconstruction

For the reconstruction of the lake area sequences, the weighted moving average
method (WMA) was used. Compared with other series data interpolation methods, the
WMA method is simple and easy to use, and can quickly process non-stationary series
data [68]. The lake water surface area series data generally fluctuates in a 12-month cycle.
The lake area value of the current month is affected by the values of the previous and next
months (intra-periodic influence), and by the value of the same month of the previous
and the next year as well (periodic influence). When carrying out anomaly restoration
of lake sequences, it is necessary to comprehensively consider intra-period and periodic
impacts. For the intra-periodic effect, we choose 3 as the moving average window size and
calculated the intra-periodic moving average (IMA). For periodic effects, we choose 2 as
the window size and calculated the periodic moving average (PMA).

IMAi = avergae(nvi−3 + nvi−2 + nvi−1 + nvi+1 + nvi+2 + nvi+3) (8)

PMAi = avergae(nvi−12 + nvi−6 + nvi+6 + nvi+12) (9)
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Figure 6. Anomaly detection and reconstruction of Qinghai Lake surface area bimonthly sequence.
(a) Outlier detection results. (b) Sequence repair and reconstruction results.

In the formulas: IMAi is the intra-period moving average at time i; PMAi is the
periodic moving average at time i; and nvi is the sequence value after removing outliers at
time i.

The lake surface area sequence generally exhibits obvious periodicity, and there are
always minimum and maximum values in a full cycle. For the restoration of the max area
month, the IMA value often underestimates the area of the current month; while for the
restoration of the minimum value month, the IMA value often overestimates the area of
the current month. In order to improve the accuracy of sequence repair, different formulas
are used for extreme months and non-extreme months in this research. For each lake, we
first calculate the multi-year monthly average of the lake area series to obtain the extreme
month information. Then, for the abnormal point in the extreme month (Em), the repair
value is calculated according to the Formula (7). For the abnormal points in non-extreme
months (NEm), Formula (8) is used to calculate the repair value. Figure 6b shows the results
of outlier repair and sequence reconstruction of the Qinghai Lake area sequence.

RvEm = IMAi/3 + 2 ∗ PMAi/3 (10)

RvNEm = IMAi/2 + PMAi/2 (11)

In the formulas: RvEm represents the repaired value of the extreme month (at time i)
and RvNEm represents the repaired values of the non-extreme month (at time i).

2.3.5. Lake Area Series Trend Analysis

In order to further analyze the variation characteristics of the lake area time series, the
commonly used linear regression model and the Mann–Kendall test were employed in this
research. The trend of lake areas of five case lakes from 1987 to 2020 were determined by
linear regression while the Mann–Kendall test was conducted to detect whether the slope
for the regression line is significant.

3. Results
3.1. Accuracy of Water Extraction

The accuracy evaluation results showed that the average value of the Kappa coef-
ficient and OA were 0.90 and 96.6%, respectively, which indicated that the overall relia-
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bility of TSIRB method on water extraction was good. The specific results are shown in
Tables 3 and 4. The highest value of OA is 100% and the lowest value is 88.3%; the highest
value of Kappa coefficient is 1.00 and the lowest value is 0.65.

Table 3. Results of Kappa coefficients for accuracy evaluation of surface water extractions by TSIRB.

Month
2010 2020 Average

Chiquita Urmia Dongting Poyang Qinghai Chiquita Urmia Dongting Poyang Qinghai

1 0.89 0.89 0.88 0.78 1.00 0.97 0.80 0.79 0.76 0.75 0.85
3 0.96 0.96 0.76 0.89 1.00 0.97 0.77 0.76 0.81 - * 0.87
5 0.93 0.93 0.81 0.92 0.96 1.00 0.93 0.82 0.92 0.93 0.92
7 0.97 0.97 0.96 0.97 0.97 0.93 0.93 0.88 0.84 1.00 0.94
9 0.93 0.93 0.96 0.86 0.93 0.90 1.00 0.92 0.83 1.00 0.93

11 1.00 1.00 0.69 0.88 0.89 0.97 0.86 0.65 1.00 1.00 0.89
Average 0.95 0.95 0.84 0.88 0.96 0.96 0.88 0.80 0.86 0.94 0.90

* Qinghai Lake was covered with a lot of snow in March 2020 and was detected as an abnormal point. The data of
this month were not included in the accuracy evaluation results.

Table 4. Results of overall accuracies (OA) of surface water extractions by TSIRB.

Month
2010 (%) 2020 (%) Average

Chiquita Urmia Dongting Poyang Qinghai Chiquita Urmia Dongting Poyang Qinghai

1 95.0 95.0 99.0 91.7 100.0 98.3 90.0 98.0 90.9 88.3 94.6
3 98.3 98.3 96.0 95.0 100.0 98.3 88.3 96.0 91.7 - * 95.8
5 96.7 96.7 96.0 96.5 98.3 100.0 96.7 98.0 96.7 96.7 97.2
7 98.3 98.3 99.0 98.3 98.3 96.7 96.7 97.0 93.3 100.0 97.6
9 96.7 96.7 99.0 93.3 96.7 95.0 100.0 98.0 91.7 100.0 96.7

11 100.0 100.0 96.0 96.7 95.0 98.3 93.3 96.0 100.0 100.0 97.5
Average 97.5 97.5 97.5 95.3 98.1 97.8 94.2 97.2 94.0 97.0 96.6

* Qinghai Lake was covered with a lot of snow in March 2020 and was detected as an abnormal point. The data of
this month were not included in the accuracy evaluation results.

There are certain differences in the accuracy of water extraction results for different
types of lakes. The average Kappa coefficient of river lagoons (Poyang Lake and Dongting
Lake) is lower; the Kappa coefficient of the salty lake and plateau alpine lake (Chiquita
Lake, Urmia Lake and Qinghai Lake) is higher.

3.2. Variation Characteristics of the Case Lake Area Sequence
3.2.1. Characteristics of Interannual Variation

The Landsat imagery of five case lakes were processed by the TSIRB method, and
34-year bimonthly time series data of lake area were obtained. The sequence visualization
of the five case lakes are shown in Figure 7. The interannual variation trends for the five
case lakes were different. The area series of Lake Chiquita, Lake Urmia, Dongting Lake,
and Poyang Lake all showed significant decreasing trends (p < 0.01), among which Urmia
Lake decreased the fastest, with a change of 20.13 km2/bimonthly, followed by Chiquita
Lake, with a change of 8.39 km2/bimonthly. The area reduction rates of Dongting Lake
and Poyang Lake were relatively close, with changes of 1.55 and 3.91 km2/bimonthly,
respectively. Qinghai Lake showed a different variation trend from the other four case lakes.
Its area experienced significant expanding (p < 0.01) in the past 34 years with a relatively
slow change rate of 0.64 km2/bimonthly.
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Figure 7. Illustration of the bimonthly sequences and change trend of lake area for five case lakes.
(a) Chiquita Lake; (b) Urmia Lake; (c) Dongting Lake; (d) Poyang Lake; and (e) Qinghai Lake.

3.2.2. Characteristics of Intra-Annual Variation

The long-term bimonthly time series of lake water area can also be used to analyze
the seasonal variation characteristics of lakes. Figure 8 plots the peak, median, and valley
values of the lake area for each month of the five case lakes. For Dongting Lake and
Poyang Lake, the water area showed strong seasonal variation. The lake area gradually
expanded from January to July and shrunk from July to November. The area peak in July
was two to three times the area in January. Dongting Lake and Poyang Lake were the
most representative lakes in the Yangtze River Basin in Asia, and their seasonal trends
were similar.

Chiquita Lake, Urmia Lake, and Qinghai Lake also showed seasonal characteristics,
although not as prominent as Dongting and Poyang Lake. The maximum value of the
water area of Chiquita Lake appeared in May, and the annual change curve showed a single
peak shape. The bimonthly variation of the area of Urmia Lake showed a bimodal shape
and the peaks of the lake area appeared in May and November, respectively, and the lowest
value appeared in September. For Qinghai Lake, the intra-annual variation was completely
opposite to that of Urmia Lake, showing a shrinking trend from January to May, expanding
to the largest from July to September, and then starting to shrink.
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Figure 8. Illustration of intra-annual variation characteristics of surface water area for the five
case lakes.

4. Discussion

In order to further discuss the effectiveness of the proposed TSIRB method and the
obtained BSWD data, we compared the results of this study with those of previous studies
and carried out the correlation analysis between the lake area series and the lake water
level series of the case lakes. We also discussed the uncertainties of using the TSIRB method
to produce lake area sequence in this section.

4.1. Comparison with the Results of Other Studies
4.1.1. Comparing Different Results on Single Case Lake

Through literature analysis, we collected the results of other studies [69–75] in four
case lakes (Urmia, Dongting, Poyang, and Qinghai Lake), including eight study cases (see
Table 5 for details). Statistical analysis showed that BSWD had a strong positive correlation
with other research results. The lowest correlation coefficient was 0.93 and the highest
value was 0.99. This proves the reliability of the results of this paper from one side.

Table 5. Summary of studies by other researchers for case lakes.

Lakes Image
Sources Methods Time Span Temporal

Resolution Correlations References

Urmia
Landsat Unsupervised classification 1984–2011 year 0.99 Kabiri et al. [69]
Landsat NDWI 2000–2013 year 0.95 Rokni et al. [70]

Dongting Landsat AWEI 2002–2013 season 0.93 Li et al. [72]
Sentinel-1A thresholding segmentation 2016 month 0.97 Huth et al. [73]

Poyang Landsat AWEI 2002–2013 season 0.99 Li et al. [72]
Sentinel-1A SWI thresholding 2015–2016 month 0.99 Tian et al. [71]

Qinghai Landsat mNDWI and Classification 1987–2016 year 0.94 Tang et al. [74]
Landsat mNDWI 1999–2009 year 0.93 Zhu et al. [75]
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Plotting the BSWD with area data of other studies on a single graph (Figure 9) makes
it easy to compare data from different sources. The BSWD sequence showed similar
fluctuation characteristics and changing trends with other research results. Over the
comparable time period, BSWD lake areas were highly consistent with areas of most of
the other studies. The result of Tang et al. on Qinghai Lake was generally higher than our
results. The reason is that they included the range of Qinghai Lake and the two surrounding
small lakes to calculate the area, but this research and Zhu et al. calculated the area of
Qinghai Lake only.

Figure 9. Comparison of our results with those of others. (a) Urmia Lake [69,70]; (b) Dongting
Lake [72,73]; (c) Poyang Lake [71,72]; and (d) Qinghai Lake [74,75].

In addition, it should be noted that BSWD provides complete bimonthly time series
of lake area for 34 years with 30 m spatial resolution, the spatial and temporal resolution
show good potential for long term lake monitoring applications.

4.1.2. Comparison with GSW MONTHLY Data

GSW is currently the only dataset that provides global long-term monthly surface
water data at 30 m resolution [33]. For the five case lakes, the GSW data and the BSWD
data were jointly plotted in Figure 10. As the GSW dataset did not handle invalid pixels
in the water extraction step, and there were a lot of void values (lake area is 0) in GWS
lake area sequences. Among them, Urmia Lake had the most void values (165), and the
void value rate reached as high as 40.4%. Except for Chiquita Lake, the void rate of GSW
monthly data for the other four case lakes was above 30%. However, the BSWD data was
continuous in time and there was no void value month for each case lake.
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Figure 10. Comparison of BSWD with GSW monthly data. (a) Chiquita Lake; (b) Urmia Lake;
(c) Dongting Lake; (d) Poyang Lake; and (e) Qinghai Lake.

In comparison with other research results [69–75], it was found that the long-term
change trend of BSWD time series was relatively accurate. While the time series of the GSW
monthly data was difficult to be used for trend analysis directly, for example for Qinghai
Lake, the seasonal fluctuation of GSW monthly series is very large and does not match the
observation data [74,75].

4.2. Correlation Analysis between BSWD Lake Area and Water Level Sequence

The lake surface area generally changes with the lake water level, and there is a certain
correlation between them. We collected water level data of some time periods for case lakes
and plotted the lake water level and BSWD area data together in one graph (Figure 11).
The variation trend of the BSWD area of the case lakes are similar to the variation trend
of the water level in the same period. For the five case lakes, the correlation coefficients
between the BSWD area and the water level in the same period are all higher than 0.87, and
the highest value is 0.95. They all passed the significance test at p < 0.01. These also confirm
the reliability of the TSIRB method and the obtained BSWD data from one aspect.
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Figure 11. Comparison and correlation analysis between BSWD lake area with water level series for
(a) Chiquita Lake, (b) Urmia Lake, (c) Dongting Lake, (d) Poyang Lake, and (e) Qinghai Lake.

4.3. Uncertainties and Shortcomings

Using the TSIRB method to extract water bodies, lush aquatic vegetation, bright
shallow water, and surface snow may introduce uncertainties.

4.3.1. Influence of Aquatic Vegetation

Aquatic vegetation may affect the TSIRB method on water extraction. The TRISB
method utilizes the rules of water index (mNDWI) and vegetation index (NDVI and EVI)
to suppress the interference of vegetation on water extraction and can deal with the case
of general sparse vegetation. However, during the peak vegetation season (summer and
autumn), dense aquatic vegetation may appear on the water surface and boundary areas
of some lakes. Analyzing images with strong vegetation interference, the extracted water
body area would be smaller than the actual area.
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4.3.2. Influence of Shallow Water with High Brightness

Shallow water with high brightness may affect the automatic extraction of water
bodies. The TSIRB method extracts water bodies based on the rules of various band
indices which are affected by the reflectivity of the ground objects themselves. In the
boundary area of saline lakes, the water is shallow and clean which makes the spectral
characteristics of the shallow water similar to that of the surrounding salt tidal flats. The
brightness threshold that is constructed in TSIRB can suppress the influence of high-
brightness shallow water to a certain extent, but it is still difficult to accurately distinguish
between high-brightness shallow water and surrounding tidal flats. When applying the
TSIRB method, the brightness threshold we set was relatively small, which generally results
in the omission of high-brightness shallow water areas.

4.3.3. Influence of Lake Icing and Snow Cover

Lake icing and surface snow may introduce uncertainties to the TSIRB method. Al-
though we use a brightness value metric to reduce the effect of ice and snow on water
extraction, the generalized threshold setting is difficult to achieve high accuracy. For the
case where the lake surface is covered with snow, it is difficult to determine the boundary
of the lake water even by visual interpretation [76]. In addition, for time series processing,
it is difficult to set a common threshold to apply to all the images. When applying the
TSIRB method, the brightness threshold we set is relatively small, which may lead to the
possibility of missing the ice surface under the snow cover, making the extraction result
smaller than the actual area.

4.3.4. Uncertainty in Bimonthly Image Sequence Construction

For imagery that is influenced by heavy clouds, we replaced invalid holes with valid
pixels in the same month from adjacent years in the TSIRB method. This is generally
applicable in the central area of the lake. It should be noted that if invalid cells occur in
the boundary area of the lake, it is possible that the land cover status of the pixel location
varies between adjacent years due to climatic (precipitation/evaporation) differences. The
classification of boundary pixels might be mistaken especially under extreme drought or
extreme flood conditions.

4.3.5. Uncertainty in Time Series Anomaly Detection and Reconstruction

The uncertainty of the time series anomaly detection and reconstruction steps of TSIRB
mainly comes from the extreme conditions of hydrological elements, such as extreme floods
or extreme droughts. The bimonthly area data in extreme cases may appear outside the
range of three standard deviations and thus be defined as outliers and removed. In this
case, in the interpolation step based on the periodic rules, the interpolation value of TSIRB
would be larger in the extreme drought cases and smaller in the extreme flood cases than
the original actual value. In practice, however, such extreme situations are rare.

5. Conclusions

Long-term monitoring of lake water is an important part of global change research.
However, obtaining long-term lake observation data with high temporal and spatial res-
olution still face challenges. In this study, we developed a novel surface water mapping
method—TSIRB, to construct long-term and bimonthly surface water dataset (BSWD) at a
30-m scale.

Application tests were carried out on five typical lakes in different parts of the world,
and 34-year BSWD products for the case lakes were obtained. The evaluation results of
water extraction accuracy show that for different types of lakes in different seasons, the
average values of Kappa coefficient and OA were 0.90 and 96.6%, respectively, which shows
a relative high level of accuracy. The BSWD products show strong positive correlations
with the lake water level sequences (correlation coefficient 0.87~0.95) and show good agree-
ment with the results of other independent studies on single lakes (correlation coefficients
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0.93–0.99). Compared with the GSW monthly water body products, the BSWD products
improved the void values in the monthly sequence data, show stronger temporal continuity,
and can obtain complete and valid lake water sequences.

The TSIRB method is implemented on the GEE platform and can be fully automated
for water detection. This method has good potential to be extended to long-term lake
monitoring applications in other regions of the world. BSWD is a long-term continuous lake
water product, which is of great significance to the study of global lake water environments,
especially in areas where ground observation data is lacking.
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