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Abstract: Earthquake-triggered landslides frequently occur in active mountain areas, which poses
great threats to the safety of human lives and public infrastructures. Fast and accurate mapping
of coseismic landslides is important for earthquake disaster emergency rescue and landslide risk
analysis. Machine learning methods provide automatic solutions for landslide detection, which are
more efficient than manual landslide mapping. Deep learning technologies are attracting increasing
interest in automatic landslide detection. CNN is one of the most widely used deep learning
frameworks for landslide detection. However, in practice, the performance of the existing CNN-
based landslide detection models is still far from practical application. Recently, Transformer has
achieved better performance in many computer vision tasks, which provides a great opportunity
for improving the accuracy of landslide detection. To fill this gap, we explore whether Transformer
can outperform CNNs in the landslide detection task. Specifically, we build a new dataset for
identifying coseismic landslides. The Transformer-based semantic segmentation model SegFormer
is employed to identify coseismic landslides. SegFormer leverages Transformer to obtain a large
receptive field, which is much larger than CNN. SegFormer introduces overlapped patch embedding
to capture the interaction of adjacent image patches. SegFormer also introduces a simple MLP
decoder and sequence reduction to improve its efficiency. The semantic segmentation results of
SegFormer are further improved by leveraging image processing operations to distinguish different
landslide instances and remove invalid holes. Extensive experiments have been conducted to compare
Transformer-based model SegFormer with other popular CNN-based models, including HRNet,
DeepLabV3, Attention-UNet, U2Net and FastSCNN. SegFormer improves the accuracy, mIoU, IoU
and F1 score of landslide detectuin by 2.2%, 5% and 3%, respectively. SegFormer also reduces the
pixel-wise classification error rate by 14%. Both quantitative evaluation and visualization results
show that Transformer is capable of outperforming CNNs in landslide detection.

Keywords: landslide detection; coseismic landslide; Transformer; self-attention; convolutional neural
network; semantic segmentation; deep learning

1. Introduction

In recent years, there have been more and more extreme weather events. Natural
disasters, such as earthquakes and floods, have caused huge casualties and property
losses. Earthquakes in mountain areas usually induce landslides, which are referred to
as coseismic landslides or earthquake-triggered landslides. Landslide is one of the most
dangerous geological disasters. Earth scientists have manually identified over 300 thousand
landslides in China, and even more landslides are discovered every year [1]. However,
earth scientists believe that the number of known landslides is a small portion of all existing
landslides. Many landslides have not been discovered. There are many challenges in
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manual landslide detection. For example, it is difficult to manually identify the landslides
located in uninhabited and vegetation-covered mountainous areas.

Conventionally, landslide identification is performed by experienced earth scien-
tists [2]. Manual landslide identification has good accuracy but poor efficiency [3]. Remote
sensing technologies provide rich data for developing landslide detection models, such
as high-resolution optical remote sensing [4], Interferometric Synthetic Aperture Radar
(InSAR) [5] and Light Detection and Ranging (LiDAR) [6–8]. Based on these data, many
automatic landslide detection methods have been proposed. Automatic landslide detection
methods are mainly based on machine learning, which can be classified into non-deep
learning and deep learning methods. Figure 1 presents a brief history of automatic land-
slide detection. The upper timeline summarizes non-deep learning methods for landslide
detection, such as support vector machine and random forest. The lower timeline shows
the development of deep learning methods for landslide detection. Danneels et al. [9]
used pixel classification to detect landslides in the Gultcha area, which is in the southern
part of Kyrgyzstan. They compared the accuracies of a maximum likelihood ratio and
an artificial neural network classification model. Pradhan et al. [10] used the frequency
ratio, logistic regression and an artificial neural network to identify landslide hazard
areas in Penang Island, Malaysia. Stumpf et al. [11] combined object-oriented method
random forest to detect landslides in Haiti, Wenchuan, Messina and Barcelonnette. They
extracted 20 object-oriented features, such as slope, hillshade and grey level co-occurrence
matrix. Moosavi et al. [12] used an artificial neural network, support vector machine and
object-oriented methods to detect landslides in Kermanshah, Iran. The Taguchi method
was used to perform optimization of the structure of the object-oriented classification
method. Chen et al. [13] used feature selection and random forest to identify landslides
in Three Gorges, China. They extracted the slope, aspect and DTM from LiDAR data.
Gorsevski et al. [14] used LiDAR and an artificial neural network approach to detect land-
slides in Cuyahoga Valley National Park, Ohio. Mezaal et al. [15] used correlation-based
feature selection, random forest and ant colony optimization to identify landslides in the
Cameron Highlands, Malaysian. Hu et al. [16] employed support vector machine, an artifi-
cial neural network and random forest to classify satellite imagery and identify landslides
in Jiuzhaigou, China. Tavakkoli et al. [17] incorporated object-based image analysis with
multilayer perceptron, logistic regression and random forest to detect landslides in the Ra-
suwa District of Nepal. Dou et al. [18] used support vector machine with bagging, boosting
and a stacking ensemble machine learning framework to improve landslide assessment in
a mountainous watershed in Japan. Dias [19] used support vector machine, random forest
and maximum likelihood classifiers to recognize landslides in Itaóca, Southeastern Brazil.
Rajabi et al. [20] used a back-propagation-type artificial neural network to predict the land-
slides triggered by the Manjil-Rudbar earthquake, Iran. Wang et al. [4] combined change
detection with k-nearest neighbor, support vector machine, random forest and rotation
forest for detecting coseismic landslides in Haiti. Ghorbanzadeh et al. [21] compared an
artificial neural network, support vector machine and random forest with a convolutional
neural network (CNN). They claimed that CNN-based landslide detection methods do not
automatically outperform artificial neural networks, support vector machine and random
forest. They also pointed out that deep learning methods could improve landslide mapping
in the future.

Second, deep learning-based methods may be considered. Deep learning-based im-
age classification [22], semantic segmentation [23–25], object detection [26] and instance
segmentation [27] are used for landslide detection. Ding et al. [28] used a convolutional
neural network and texture change detection to recognize landslides in Shenzhen, China.
Yu et al. [29] proposed an algorithm based on a depth convolutional neural network and an
improved region growing algorithm for landslide detection. Ghorbanzadeh et al. [21] intro-
duced a convolutional neural network for landslide detection. Lei et al. [30] proposed FCN-
PP for landslide detection, which is a fully convolutional network with a pyramid pooling
module. Prakash et al. [31] applied U-Net for landslide detection. Yu et al. [32] introduced
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ResNet-101 and pyramid pooling to landslide detection. Qi et al. [33] proposed ResU-Net
for landslide detection, which is a combination of residual block and U-Net. Shi et al. [23]
proposed a CNN-based semantic segmentation model with change detection for landslide
detection. Yi et al. [34] proposed LandsNet for detecting earthquake-triggered landslides.
Wang et al. [35] proposed an integrated machine learning and deep learning method to
identify natural-terrain landslides. Logistic regression, support vector machine, random
forest, boosting methods and a convolutional neural network were utilized and evalu-
ated on a dataset for Lantau and Hong Kong. Ullo et al. [27] used instance segmentation
method mask R-CNN to improve landslide detection. Cheng et al. [36] added an attention
mechanism on top of YOLOv4. The attention mechanism was used to improve the CNN’s
focus on the landslide feature and reduce the background noise. Bragagnolo et al. [37]
applied U-Net to identify landslides in Nepal. Tang et al. [22] proposed a multi-instance
learning model, MILL, for identifying ancient landslides. Ghorbanzadeh [24] conducted a
comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection
from Sentinel-2 data. Li et al. [38] proposed a two-stage method for landslide detection.
They used Fast R-CNN to obtain the bounding box of landslides. Then, the bounding
box is fed into U-Net to obtain the boundary of the landslide. Ghorbanzadeh et al. [39]
combined a ResU-Net model with object-based image analysis (OBIA). OBIA used rule-
based expert knowledge to improve the results of ResU-Net. Meena et al. [40] used fully
convolutional U-Net, support vector machines, k-nearest neighbor and random forest to
detect landslides in the Rasuwa district, Nepal. Ju et al. [26] added YOLOv3 and RetinaNet
models before mask R-CNN. Chen et al. [41] proposed a deep residual shrinkage U-Net to
extract potential active landslides in InSAR imagery. Ghorbanzadeh et al. [42] proposed
an open landslide dataset, referred to as Landslide4Sense. They used Landslide4Sense to
evaluate the landslide detection performance of eleven deep learning-based segmentation
models. In the landslide detection community, there is a lack of benchmark datasets and
methods. They successfully filled this gap, which provides a great opportunity to attract
more scholars in both computer vision and earth science to solve the landslide detection
problem. We can see that the existing deep learning models for landslide detection are
mainly based on convolutional neural networks and multilayer perceptron.
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Figure 1. The development of automatic landslide detection.

Recently, Transformer-based deep learning models have achieved superior perfor-
mance in many computer vision tasks. Transformer is a type of attention mechanism, which
was originally proposed for natural language processing tasks [43]. Whether Transformer
is suitable for computer vision tasks is a long-standing problem. In 2020, Dosovitskiy [44]
proposed vision Transformer (ViT), which is the first successful application of Transformer
in image classification tasks. ViT is a great breakthrough. After ViT, many computer
vision tasks have been improved by Transformer. A comprehensive review can be found
in [45]. In the following, we survey some typical Transformer-based models in computer
vision. Liu et al. [46] proposed Swin Transformer for image classification. Carion et al. [47]
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proposed DETR for object detection. Xie et al. [48] proposed SegFormer for semantic
segmentation. Chen et al. [49] studied the performance of applying vision Transformer
to self-supervised learning. Bazi et al. [50] applied ViT to remote sensing image classi-
fication. The performance of applying Transformer for landslide detection remains an
unsolved problem.

To fill this gap, this article applies Transformer to landslide detection. Our contri-
butions are summarized as follows: (1) we compare a Transformer-based semantic seg-
mentation model with CNN-based models; the Transformer-based model SegFormer is
applied to identify coseismic landslides; (2) a new dataset for landslide detection is con-
structed; (3) we conduct extensive experiments to compare SegFormer with other popular
CNN-based models.

The rest of this article is organized as follows. Section 2 shows the materials and
methods for identifying coseismic landslides in 2017 Jiuzhaigou earthquake-triggered
landslides; Section 3 presents the experimental results and analysis; Section 4 presents the
discussion and conclusions.

2. Materials and Methods

The pipeline of landslide detection can be divided into three parts, i.e., preprocessing,
processing and postprocessing, which are shown in Figure 2. (1) Preprocessing. In the
preprocessing stage, we prepare data for model training and testing, i.e., image collection,
landslide annotation, train/test partition and image cropping. (2) Processing. In the pro-
cessing stage, we build the Transformer-based landslide detection model, i.e., developing,
training and testing of the SegFormer model. (3) Postprocessing. In the postprocessing
stage, the semantic segmentation results are improved by morphological operation and
instance-wise bounding boxes.

Pre-processing

Processing

Post-processing

Collect remote sensing 

images

Annotate landslides

Select training and test 

area

Crop original images 

into small patches

Construct the encoder and 

decoder of SegFormer

Construct the loss 

function of SegFormer

Predict landslides in 

test images

Fill holes in the 

predicted area

Distinguish landslide 

instances

Train SegFormer using 

train images

Figure 2. The pipeline of coseismic landslide detection using SegFormer.

2.1. Study Area

On 8 August 2017, an earthquake with a magnitude of 7.0 hit Jiuzhaigou County,
Sichuan Province, China. The epicenter of the earthquake was located at 33.20◦ N, 103.82◦ E.
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The earthquake triggered thousands of landslides, which brought enormous losses to the
scenic area of the Jiuzhaigou World Natural Heritage site. Fast mapping of earthquake-
triggered landslides is important for earthquake emergency search and rescue. In this paper,
we study the automatic detection of coseismic landslides with remote sensing imagery. The
study area is shown in Figure 3.

Aba

Jiuzhaigou

Figure 3. The study area is the Jiuzhaigou scenic spot, which was heavily damaged by the 2017
Jiuzhaigou earthquake.

2.2. A New Dataset for Landslide Detection

We propose a new dataset for landslide detection. The whole process can be divided
into the following four stages.

2.2.1. Landslide Image Collection

We used an unmanned aerial vehicle to collect airborne remote sensing images of the
Jiuzhaigou earthquake area on August 2017. The size of the remote sensing images was
132 K × 189 K pixels. The resolution was 0.2 m.

2.2.2. Landslide Image Annotation

We leverage supervised semantic segmentation to detect the boundaries of landslides
in remote sensing images. Semantic segmentation performs pixel-wise classification, i.e., to
decide whether each pixel belongs to a landslide or not. Supervised semantic segmentation
requires ground-truth labels for training and testing. Errors in labels bring noise to models
and lead to inaccurate evaluation results. Therefore, we need to map accurate boundaries
of landslides.

Due to different degrees of vegetation cover and deviation in the shapefile, the existing
landslide mapping results are inaccurate for the newly collected image. We manually
mapped all the coseismic landslides of the airborne remote sensing image. The num-
ber of annotated landslides was 1898. The manual landslide mapping was conducted
in Arcgis 10.7. The mapping results were the boundaries of landslides, which were
stored in a shapefile.

2.2.3. Train/Test Partition

In practice, the generalization ability of many landslide models is poor. One reason
is that the training set and test set are not independent. The random division strategy is
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widely used to prepare training and test datasets, in which samples are randomly divided.
Before this, remote sensing data are divided into small cells. Grid clipping and sliding
window are two common image cropping strategies. By grid clipping, remote sensing data
are divided into grid cells. By sliding window, remote sensing data are divided into cells,
which allows a portion of overlap. Due to geographical correlation and overlap, adjacent
grid cells are not independent. If grid cells are randomly divided into a training set and test
set, there are strong correlations between them. The correlation in the training and test set
will lead to overfitting, which results in a model with high prediction accuracy on training
and test datasets but poor generalization performance in practical application.

To address the overfitting issue, we divided the study area into two disjoint parts, i.e.,
the training area and test area (see Figure 3). The image patches in the training area were
used to develop the landslide segmentation model. The image patches in the test area were
used to test the performance of the model.

2.2.4. Landslide Image Cropping

Deep learning-based landslide detection models require large GPU memory and
extensive computation. The size of the original remote sensing image is too large to directly
feed into CNN- or Transformer-based landslide detection models. It should be divided
into small patches with appropriate size. With the improvement of image resolution,
higher-resolution remote sensing images provide more accurate details about landslides.
Meanwhile, an image patch with a fixed size covers a small geographical area. In this case,
a small patch size cannot cover large-scale landslides, while a large patch size leads to GPU
memory overflow. There is a need to balance these factors. By experimental comparison,
the patch size of 2048 × 2048 pixels achieves a good balance among landslide coverage,
GPU usage, and landslide detection accuracy.

During the image cropping process, a landslide may be divided into several parts, and
scattered in adjacent image patches. A partial landslide is even harder to detect, which
leads to a decline in prediction accuracy. To address this issue, we adopt different cropping
strategies for the training and test images. On the one hand, the training image is cropped
by a center clip. That is, for each landslide, we crop an image patch centered on the
landslide. The center clip strategy ensures that each landslide lies in at least one image
patch, which makes full use of all the landslides of the training area. In deep learning,
center clip is a widely used data augmentation operation. Thus, the overlaps among the
training image patches usually have positive effects for training deep learning models. On
the other hand, we adopt grid clip to avoid overlaps in test image patches, and to achieve a
fair comparison of different landslide detection models. Finally, we obtain a new landslide
detection dataset with 1295 and 387 samples in the training set and test set, respectively.
The train/test ratio is 77% to 23%.

2.3. SegFormer

SegFormer [48] is a Transformer-based semantic segmentation model. The framework
of SegFormer is shown in Figure 4, which consists of an encoder and a decoder.

2.3.1. SegFormer Encoder

The encoder of SegFormer has four Transformer blocks, which learn hierarchical
feature maps. Similar to Vision Transformer (ViT) [44], each Transformer block can be
divided into three main parts, i.e., patch embedding layer→attention layer→position
embedding layer. The structure and improvements of each part are shown as follows.

(1) Patch embedding layer. The functionality of patch embedding layer is to divide the
image into small patches and convert them into embedding vectors. Conventional
Vision Transformer divides the input image into non-overlapping patches, which
destroys the local continuity around those patches. For example, in Figure 5a, a
landslide may be cut into several pieces and scattered in adjacent image patches.
SegFormer introduces overlapped patch embedding and merging to address this issue.
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In this study, landslide detection prefers overlapping patch embedding, since a remote
sensing image captures the optical information of a whole area.

The overlapped patch embedding layer is implemented by a convolution layer,
i.e., “nn.Conv2D” in PyTorch. The overlap ratio is controlled by the stride of the
convolution. To learn hierarchical features of high and low resolution, SegFormer
constructs four Transformer blocks {T1, T2, T3, T4}, whose feature maps are of size

H
2i+1 × H

2i+1 × 2i+5(i ∈ {1, 2, 3, 4}). The kernel sizes and strides of these blocks are
{7, 3, 3, 3} and {4, 2, 2, 2}, respectively.
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Figure 4. The architecture of SegFormer.

(2) Attention layer. The attention layer of ViT is a multi-head self-attention module (MSA).
MSA plays a central role in capturing dependencies among image patches (or em-
bedding vectors), i.e., global dependencies. However, ViT suffers from an extensive
computational burden. To address this issue, SegFormer introduces sequence reduction
to reduce the number of embedding vectors, which is referred to as efficient multi-head
self-attention (EMSA).

EMSA reduces the number of embedding vectors from N to N
r , where N = H ×W,

and r is a hyperparameter called the reduction ratio. EMSA is implemented by a
convolution layer, i.e., “nn.Conv2D” in PyTorch. First, a feature map of size H×W × C
is reshaped to N

r × r · C. The number of embedding vectors is reduced to N
r , while the

length of the embedding vector is increased to r · C. Second, a fully connected layer
is used to reduce each embedding vector back to size C. Third, conventional MSA is
performed on the reduced feature map, which is shown in Equation (1). The size of
Q, K, V is N

r × C.

Attention(Q, K, V) = Softmax(
QKT
√

C
)V. (1)
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(a)Test image (b)Test label (c)Prediction

(d)Test image (e)Test label (f)Prediction

(g)Test image (h)Test label (i)Prediction

(j)Test image (k)Test label (l)Prediction

Figure 5. Visualization results of image patches.

(3) Position embedding layer. In ViT, the positional information of each patch is explicitly
encoded and appended to the patch embedding vector. However, it is difficult to
directly encode positional information to different levels of hierarchical feature maps.
SegFormer introduces a 3 × 3 convolution for implicitly learning patch positional
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information. A skip connection is used to add positional information to the feature
map. The implementation details of positional embedding are shown in Equation (2).

Xp = Linear(X)

Xp = Conv3×3(Xp)

Xp = GELU(Xp)

X = Linear(Xp) + X

(2)

2.3.2. SegFormer Decoder

The decoder of SegFormer consists of multilayer perceptrons (MLP). First, each feature
map bi(i ∈ {1, 2, 3, 4}) goes through a fully connected layer to unify the channel dimension,
and then it is upsampled to H

4 ×
W
4 using bilinear interpolation. Second, the feature maps

are concatenated together. Third, an MLP layer is adopted to fuse the channel dimensions
of the concatenated features. Finally, another fully connected layer (1× 1 Conv) takes the
fused feature to predict the segmentation mask. The size of prediction P is H

4 ×
W
4 × Nc.

Equation (3) shows the implementation details of the SegFormer decoder.

Fi = Linear(Mi), where i ∈ {1, 2, 3, 4}
Fi = Resize H

4 ×
W
4
(Fi)

F = Concat([F1, F2, F3, F4])

F = Linear(F)

P = Conv1×1(F)

(3)

2.3.3. Morphological-Based Fine Tuning

A semantic segmentation model such as SegFormer is a pixel-level classification
model. It usually fails to consider the morphological characteristics of the objects. There
are some invalid holes in the predicted object region. To solve this problem, we employ a
morphological operation to eliminate the holes. The function “findcontours” of OpenCV is
used to find the external contour of each landslide. Then, the holes are removed by filling
the region within the external contour. Finally, we draw a rectangle bounding box for each
contour based on its center, width and height. Thus, the landslide instances are obtained.
In Section 3.6, we will show the visualization results of the morphological operation.

To sum up, the training process of SegFormer is shown in Algorithm 1. The number
of iterations is 8000. The batch size is 2.

Algorithm 1 Landslide recognition using SegFormer.

Input: (1) Training images and their labels S1. (2) Test images S2.
Output: Predicted mask images M for the test images.

1: Initialize SegFormer by pre-trained model
2: #Training
3: for i = 1 to 8000 do
4: Randomly select 2 images
5: Train the encoder of SegFormer
6: Train the decoder of SegFormer
7: Calculate the cross-entropy loss
8: Backpropagation
9: Update the parameters of SegFormer

10: end for
11: #Test
12: Use the trained SegFormer model to predict the test images
13: Use morphological method for fine tuning the predicted mask images
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3. Results and Discussion

Extensive experiments have been conducted to compare different image segmentation
methods for landslide detection. The experimental configurations and results are shown
as follows.

3.1. Experimental Configurations

The experimental environment is a cloud GPU platform, which is called “AI Studio
https://aistudio.baidu.com/aistudio/index?lang=en (accessed on 1 April 2022)”. Seg-
Former and the comparison models are implemented in PaddleSeg https://github.com/
PaddlePaddle/PaddleSeg (accessed on 20 April 2022). The comparison models are well-
known semantic segmentation models, including HRNet [51], DeepLabv3 [52], Attention-
UNet [53], U2Net [54] and FastSCNN [55]. Due to limited GPU memory, the B4 model of
SegFormer is adopted, and the input image is resized to 1024× 1024× 3. The loss function
is the cross-entropy loss. The optimization algorithm is AdamW, whose weight decay
factor is 0.01. The learning rate is initialized to 0.00006. If the loss increases, the leaning
rate will be decreased by a factor of 0.9. The number of iterations is 8000. The training and
test process are shown in Algorithm 1.

3.2. Evaluation Metrics
To make a systematic comparison, we adopt five widely used metrics to measure the

performance of all the semantic segmentation models, i.e., mIoU, precision, recall, F1 score
and accuracy. Equation (4) shows the definitions of these metrics.

IoU =
TP

(FN + FP + TP)

mIoU =
1
2
(IoUlandslides + IoUbackgrounds)

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)

Accuracy =
TP + TN

(TP + TN + FP + FN)

F1_score =
2× Precision× Recall

Precision + Recall

(4)

where TP (True Positive), FP (False Positive), TN (True Negative) and FN (False Negative)
can be computed by the confusion matrices. The overall performance is evaluated by
the average IoU, precision, recall, accuracy and F1 score of the landslide and background
classes. For all the metrics in Equation (4), higher is better.

3.3. Comparison of Landslide Detection Accuracy

Table 1 shows the average accuracies of all the semantic segmentation models. The
highest mIoU of the comparison models is 0.734, which is achieved by HRNet. SegFormer
achieves the highest mIoU of 0.75, which improves the highest mIoU of the comparison
methods by 2.2%. SegFormer also achieves the highest F1 score and precision. Therefore,
SegFormer achieves a good balance between precision and recall. SegFormer also achieves
the highest pixel-wise classification accuracy, i.e., the pixel-wise classification error rate is
reduced by 14%.

We experimentally compare the per-class segmentation accuracies of all the segmen-
tation models for landslide detection. The experimental results are shown in Table 2. In
remote sensing images, the number of pixels of a landslide is much less than the background.
The landslide and background classes are highly imbalanced. The scores of background in
Table 2 are close to each other. SegFormer achieves the highest IoU, recall and F1 score for
the background class. In the following, the focus is on comparing the detection accuracy

https://aistudio.baidu.com/aistudio/index?lang=en
https://github.com/PaddlePaddle/PaddleSeg
https://github.com/PaddlePaddle/PaddleSeg
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of the landslide class. SegFormer achieves the highest IoU for the landslide class, which
improves the second highest IoU of landslides by 5%. SegFormer also achieves the highest
F1 score and precision for the detection of landslides, which improves the second highest
F1 score of landslides by 3%. Although SegFormer achieves the second highest recall, it
achieves the highest F1 score. SegFormer achieves a good balance between precision and
recall for the detection of landslides.

Table 1. Comparison of the average segmentation accuracy.

Models mIoU Precision Recall Accuracy F1 Score

AttentionUNet 0.665 0.730 0.833 0.920 0.769
DeepLabv3 0.675 0.756 0.808 0.930 0.779
FastSCNN 0.690 0.765 0.825 0.933 0.791
LandsNet 0.690 0.749 0.865 0.933 0.792

U2Net 0.696 0.775 0.823 0.936 0.796
HRNet 0.734 0.819 0.839 0.949 0.828

SegFormer 0.750 0.850 0.833 0.956 0.841

To sum up, SegFormer achieves the best comprehensive detection accuracy. HRNet
comes second in landslide detection, which is also the best model among all the comparison
models. We seek to interpret these results from two perspectives, i.e., long-term dependency
and high resolution. First, SegFormer uses Transformer for automatic feature extraction.
In contrast, all the comparison models use CNN to learn feature maps. Transformer can
learn long-term dependencies [43]. Its receptive field is larger than CNN. Thus, SegFormer
performs better than all the comparison models. Second, HRNet not only makes use
of multi-resolution features, but also maintains high-resolution features. Thus, HRNet
achieves the best performance among all the comparison models. SegFormer also makes
use of multi-resolution hierarchical features, which is better than ViT. Finally, remote
sensing images are logically a whole. There are strong dependencies between patches
of remote sensing images, i.e., long-term dependencies. There is no doubt that a high
resolution is helpful for identifying landslides in remote sensing images. Therefore, in
landslide detection from remote sensing imagery, maintaining a large receptive field and
high-resolution feature maps are key for SegFormer to achieve the best performance.

Table 2. Comparison of segmentation accuracy for each class (landslide and background).

Models Class IoU Precision Recall F1 Score

AttentionUNet background 0.921 0.978 0.941 0.959
landslide 0.408 0.483 0.725 0.580

DeepLabv3 background 0.926 0.971 0.952 0.962
landslide 0.425 0.541 0.663 0.596

FastSCNN background 0.936 0.976 0.941 0.966
landslide 0.445 0.555 0.692 0.616

LandsNet background 0.928 0.983 0.944 0.963
landslide 0.451 0.514 0.786 0.622

U2Net
background 0.939 0.975 0.961 0.968

landslide 0.454 0.574 0.684 0.624

HRNet background 0.946 0.975 0.969 0.972
landslide 0.521 0.662 0.709 0.685

SegFormer background 0.954 0.974 0.978 0.976
landslide 0.545 0.725 0.687 0.705
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3.4. Comparision of Different Image Resolutions

We study the performance of Segformer under different image resolutions and dif-
ferent input shapes. Table 3 shows the experimental results. Notice that the resolution is
0.2 m. The images of 0.5 m and 1 m are obtained by resampling the original remote sensing
image. When the resolution is 0.5 m and the input size is 1024× 1024, SegFormer achieves
the highest mIoU and F1 score. Therefore, we need to balance the image resolution and the
input size of landslide detection models.

Table 3. Comparison of segmentation accuracy for SegFormer under different image resolutions and
input sizes.

Resolution Size mIoU Precision Recall Accuracy F1 Score

0.2 m
2048 × 2048 0.750 0.850 0.833 0.956 0.841
1024 × 1024 0.731 0.833 0.842 0.935 0.827

512 × 512 0.695 0.761 0.850 0.932 0.797

0.5 m
2048 × 2048 0.731 0.858 0.797 0.950 0.824
1024 × 1024 0.753 0.850 0.837 0.935 0.844

512 × 512 0.728 0.808 0.843 0.946 0.824

1 m
2048 × 2048 0.727 0.842 0.801 0.954 0.820
1024 × 1024 0.735 0.835 0.821 0.959 0.828

512 × 512 0.743 0.826 0.846 0.956 0.836

3.5. Visualization Results

Figure 5 shows the visualization results of SegFormer. For each row of Figure 5, the
images from left to right represent the remote sensing image patch, landslide labels and
predicted landslides, respectively. The green areas in the right-hand images represent the
predicted landslides. We can see that most of the landslides have been correctly identified.
The predicted landslide areas match well with the landslide labels. The boundaries of
landslides are clear. Due to image cropping, a few landslide fragments at the image
boundaries are missed. There are a few holes in the predicted landslide area. Some
landslides near to each other are falsely connected.

To obtain an overview of the predicted landslides, the image patches are combined into
a single image according to their geographical coordinates. Figure 6 shows the landslide
labels, which have been checked by an earth scientist. Figures 7 and 8 show the visualization
results of LandsNet and SegFormer, respectively. We can see that the landslide distribution
of ground-truth and prediction is close. In the lower left of Figures 7 and 8, some bare rocks
are falsely recognized as landslides. Compared with LandsNet, SegFormer successfully
excludes significantly more bare rocks. In the upper right of Figures 7 and 8, some roads
are falsely recognized as landslides. Compared with LandsNet, SegFormer reports less
invalid landslides in this area. The predicted landslide boundaries of SegFormer are more
accurate than LandsNet, e.g., the landslides in the middle of Figures 6 and 8.

3.6. Postprocessing

We employ morphological methods to fine tune the predicted landslide areas. For
each row of Figure 9, the images from left to right represent the remote sensing image patch,
predicted landslides and the fine-tuned prediction of landslides, respectively. It can be
seen that the holes in the predicted landslides are filled. The ResU-Net-OBIA [39] method
uses the normalized difference vegetation index, length-to-width-ratio and rule-based
expert knowledge to fine tune the segmentation results. In contrast, the proposed method
improves the semantic segmentation results without expert knowledge and extra data,
which is more automatic. Furthermore, a common drawback of semantic segmentation
methods is that they cannot identify object instances. In this article, each instance of the
landslide has been automatically detected, i.e., the rectangular bounding boxes in the
postprocessed images in Figure 9.
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Figure 6. Visualization results of the manually annotated landslide labels. Red lines are the boundaries
of landslides.
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Figure 7. Visualization results of the LandsNet model. Green areas represent the predicted landslides.
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Figure 8. Visualization results of the SegFormer model. Green areas represent the predicted landslides.
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(a)Label (b)Prediction (c)Post-processing

(d)Label (e)Prediction (f)Post-processing

Figure 9. Visualization results of postprocessing.

4. Conclusions

We studied the performance of using Transformer to identify coseismic landslides.
The semantic segmentation model SegFormer was applied to detect coseismic landslides,
which is based on Transformer. High-resolution remote sensing images were collected
and used to create a new landslide detection dataset. The training and test datasets were
strictly separated, i.e., they were located in two distinct areas. In contrast, conventional
random division of train/test datasets suffers from overfitting and inflated accuracies, since
there are strong correlations between the remote sensing image patches of the training and
test datasets.

Extensive experiments have been conducted to compare SegFormer with a landslide
detection model, LandsNet, and many popular CNN-based semantic segmentation models,
including HRNet, DeepLabv3, Attention-UNet, U2Net and FastSCNN. SegFormer out-
performs LandsNet, e.g., SegFormer improves the mIoU, precision and F1 score by 8.7%,
13.5% and 6.2%, respectively. Both mean accuracy and per-class accuracy were evaluated.
The evaluation metrics included Iou, mIoU, precision, recall, accuracy and F1 score. The
experimental results demonstrated that SegFormer outperformed all the competing mod-
els. SegFormer improved the mIoU, IoU and F1 score of landslides by 2.2%, 5% and 3%,
respectively. Visualization results also showed that SegFormer successfully identified most
of the landslides. Therefore, SegFormer achieved a good balance between precision and
recall. Moreover, Transformer-based model SegFormer outperformed other CNN-based
models. A possible reason is that Transformer is capable of capturing long-term depen-
dencies within each image patch. The reception field of Transformer is larger than CNN.
A large reception field is the key to developing an accurate landslide detection model.
In addition, semantic segmentation does not distinguish object instances. To distinguish
different landslide instances, we used image processing operations to find the bounding
box of every landslide. Morphological methods could improve the landslide detection
performance by removing holes in the semantic segmentation results.

A landslide is a type of natural phenomenon, which is challenging to identify by
experts and machines. A drawback of SegFormer is that it requires large GPU memory.
We need to balance the image resolution and the input size of image patches. In future
works, it would be worthwhile to develop a lightweight Transformer model for landslide
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detection, which would enable larger input images. In addition, landslides threaten the
property and lives of the people under the slope. We need to understand how landslide
detection models make decisions. The interpretability of landslide detection models is an
important research direction.
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