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Abstract: Egypt, a country with a harsh natural environment and rapid population growth, is facing
difficulty in ensuring its national food security. A novel model developed for assessing food security
in Egypt, which applies remote sensing techniques, is presented. By extracting the gray-level co-
occurrence matrix (GLCM) mean texture features from Sentinel-1 and Landsat-7 images, the arable
land used to grow grain crops was first classified and extracted using a support vector machine.
In terms of the classified results, meteorological data, and normalized difference vegetation index
(NDVI) data, the Carnegie–Ames–Stanford approach (CASA) model was adopted to compute the
annual net primary production (NPP). Then, the NPP yield conversion formula was used to forecast
the annual grain yield. Finally, a method for evaluating food security, which involves four dimensions,
i.e., quantity security, economic security, quality security, and resource security, was established to
evaluate food security in Egypt in 2010, 2015, and 2020. Based on the proposed model, a classification
accuracy of the crop distribution map, which is above 82%, can be achieved. Moreover, the reliability
of yield estimation is verified compared to the result estimated using statistics data provided by
Food and Agriculture Organization (FAO). Our evaluation results show that food security in Egypt
is declining, the quantity and quality security show large fluctuations, and economic and resource
security are relatively stable. This model can satisfy the requirements for estimating grain yield
at a wide scale and evaluating food security on a national level. It can be used to provide useful
suggestions for governments regarding improving food security.

Keywords: crop classification; grain yield; evaluation model; Sentinel-1; Landsat 7

1. Introduction

Food security is one of the most important factors for social harmony, political stability,
and sustainable economic development. A food security evaluation model, which can be
employed to predict the yield of grain crops and analyze food security problems, is of
great significance for formulating agricultural policies, standardizing food markets, and
adjusting planting structure [1]. Food security has received extensive attention from the
international community since 1974 [2]. However, although international organizations
and governments have been struggling to solve this issue for more than 30 years, the
global food crisis has not been resolved yet, and has even become more severe [3–5]. In
recent years, global climate change, soil desertification, salinization, urbanization, and other
issues have negatively influenced grain production in Egypt. Meanwhile, a high population
growth rate and fluctuating global food prices have further increased the severity of its
food security problems [6,7].

Food security has been an issue of public interest for a long time. Early works mainly
focused on the estimation of grain production, grain circulation control and management,
yield potential prediction, and food security evaluation [8–11]. In recent years, since
remote sensing can monitor the crops in time and provide various observation results
for the agricultural sector with high revisit frequency and high accuracy, many studies
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have assessed food security using optical or radar satellite images. These studies can be
mainly divided into two categories [12]. Some existing works conducted at a wide scale
have mainly focused on using satellite images with wide-area coverage and geographic
information system (GIS) software to analyze variations in land use [13,14], agricultural
irrigation [15], and soil erosion [16,17]. In contrast, some works conducted at a detailed
scale have mainly used high-resolution satellite images and some theoretical models to
forecast crop yields with high accuracy [18,19]. Except for the aforementioned works, other
works also focused on developing food security evaluation models based on statistical data
other than satellite images to ensure accuracy [20].

To date, there have been some studies on food security in Egypt, a country with scarce
fertile arable land and a large growing population [6]. Some studies have recently analyzed
Egypt’s food security problem from a macroscopic view aiming to predict the future food
security risk and provide recommendations for the government [20–22], which include
analyzing the damage to food security caused by the loss of cultivated land [23], climate
change related to temperature and water resources [24–26], and grain production [18]. The
rest used high-resolution and multi-date images to show the distribution of cultivated crop
types in a district located in the northern part of this country [27] and investigated the
potentiality of basin soils which are located in the western part of Egypt and are suitable
for horizontal agricultural expansion and optimum agricultural use [28]. Therefore, it
can be found that a comprehensive evaluation of food security at the national level, in
which the multi-source remote sensing data are adopted to extract arable land used to
grow grain and cash crops, estimate grain yield, and evaluate food security, has rarely been
reported thus far.

As described above, there is an urgent need for improvements in food security to re-
duce hunger and poverty in Egypt. Therefore, taking Egypt as an example, a novel model is
developed in this paper to assess its national food security using remote sensing techniques,
which will provide some suggestions for the Egyptian government. The outline of this
paper is organized as follows. The study area and the datasets used for analysis are first
introduced in Section 2. Next, the methodology is described in Section 3, which includes
crop classification, grain yield estimation, and food security evaluation. Results are pre-
sented in Section 4. Some factors influencing food security in Egypt and the corresponding
suggestions are discussed in Section 5. Finally, conclusions are given in Section 6.

2. Study Area and Datasets
2.1. Study Area

Egypt is located in northeastern Africa and southwestern Asia. It has a total land
area of about one million km2, a total population of almost 100 million, and an annual
population growth rate of about 2% [20]. According to the Koppen climate classification [29],
Egypt has a hot desert climate (BWh) in the southern and central parts and a hot steppe
climate (BSh) along the coast [30]. The annual average temperature is around 18 ◦C and the
average temperature of the coldest month is below 14 ◦C. Furthermore, the annual average
precipitation is around 200 mm [29]. In this country, the importance of agriculture is high,
and almost 11% of the gross domestic product (GDP) is generated from the agricultural
sector. In addition, approximately 58% of Egyptian labor is engaged directly in agricultural
work [31]. However, since the rate of population growth in Egypt has increased at a higher
rate than the increase in crop production, millions of people are suffering from severe
food insecurity [32].

Egypt has about 3.8 million hectares of arable land available for cultivation [7], which
is mainly located in the Nile River Delta and the narrow Nile River Valley, as shown in
Figure 1. There are two agricultural seasons in Egypt, one for winter and another for
summer crops [33]. Major field crops include rice, maize, wheat, cotton, and sugarcane [34].
In general, the cultivated area and food yields are much higher in Lower Egypt, especially
for wheat, rice, maize, clover, cotton, fruits, citrus, potato, sugar beet, and tomato. Upper
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Egypt’s yields of wheat, sugar cane, sorghum, vegetables, tomato, and onion are also
relatively high [35,36].
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Figure 1. Geographic distribution of cropland in Egypt.

2.2. Datasets
2.2.1. Sentinel-1 Data

Since cash crops and food crops are difficult to distinguish from each other from a
single optical image such as the Sentinel-2 satellite image, long time-series of optical images
should be adopted to distinguish them. However, optical images are easily affected by
weather and cloud cover, resulting in poor quality of some data which thus cannot be
used. Compared to optical satellites, synthetic aperture radar (SAR) satellites can produce
high-quality microwave images in all-day and all-weather conditions. Thus, long time-
series SAR images have great potential in classifying cropland and analyzing the area of
cropland change. Sentinel-1 is a C-band SAR equipped with twin polar-orbiting satellites,
with a repeat cycle of 12 days [37]. Its single look complex (SLC) data (downloaded from
https://asf.alaska.edu/, accessed on 12 January 2021) were adopted in this study and their
main characteristics are given in Table 1.

Table 1. Major characteristics of Sentinel-1 data used in our study.

Item Specification

Acquisition date November 2014–May 2015
November 2019–May 2020

Imaging mode Interferometric wide swath (IW)
Polarization Vertical–horizontal

Spatial resolution 2.3 m × 14.1 m
Orbit descending Descending

Quantity 204

2.2.2. Landsat Data

Since Sentinel-1 was launched in 2014, we chose Landsat 7 data to obtain Egypt’s
crop distribution map in 2010, because Landsat 7 can provide a precise assessment of
the presence and amount of different land cover types including croplands, forests, and

https://asf.alaska.edu/
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wetlands. Landsat 7 was launched on 15 April 1999 and overpasses every Earth location
every 16 days [38]. Its Level-1 data (downloaded from https://earthexplorer.usgs.gov/,
accessed on 12 January 2021) were used in this study and their main characteristics are
provided in Table 2.

Table 2. Major characteristics of Landsat 7 data in our research.

Item Specification

Acquisition date March–May 2010
Bands Blue, green, red, NIR, SWIR

Swath size 170 km × 185 km
Spatial resolution 30 m

Quantity 16

As shown in Table 2, the observation date was selected from March to May in 2010,
which can be divided into six periods in terms of the repeat cycle of Landsat 7, and
24 images were acquired. It is worth mentioning here that four Landsat 7 images should be
used to cover the whole arable land of Egypt in one observation period. Cloud cover is
a severe problem in optical images because it also leads to cloud shadow emerging [39].
In our study, the Landsat 7 images with cloud coverage of more than 25% were discarded
first. Then, we assessed the quality of remained images over the area of interest. If cloud
shadow and unclear area in an image covered more than 20% of the area of interest, the
whole image was discarded. Furthermore, if an image in one period was discarded, the
other three images in the same period should also be discarded to ensure the integrity of
the whole study area. The final number of available Landsat 7 images used for classification
is sixteen corresponding to four periods, and the total number of discarded images is eight
corresponding to two periods.

2.2.3. Land Cover Data

To reduce the computational time, the land cover data were adopted to provide
a general distribution map of arable land in Egypt, and then the classification of cash
and grain crops was conducted based on Sentinel-1 and Landsat 7 data. In this study,
both GlobeLand 30 and GlobCover were adopted. Specifically, GlobeLand 30 developed
by China is a 30 m global land cover data product [40], and we used its 2010 and 2020
versions (downloaded from http://www.globallandcover.com/, accessed on 12 January
2021) to obtain the distribution maps of arable land in 2010 and 2020, respectively. Similarly,
Globcover developed by the European Space Agency is a 300 m global land cover data
product and is freely distributed in the Geotiff format [41]. We used its 2015 version
(downloaded from https://www.esa.int/ESA_Multimedia/Images/2018/09/2015_global_
land_cover_map, accessed on 12 January 2021) to obtain the distribution map of arable
land in 2015.

2.2.4. Meteorological Data

Crop yield is significantly influenced by weather conditions; therefore, the mete-
orological data provided by a special software named “WheatA” were used to obtain
meteorological data on parameters such as monthly temperature, precipitation, and solar
radiation intensity. This software (downloaded from http://www.wheata.cn/, accessed on
1 May 2021) collects observation data from the International Meteorological Data Center of
NOAA Satellite and Information Services, as well as from weather stations in each country,
and can provide daily/monthly/yearly global meteorological data for the agricultural
industry. Since this software only provides meteorological data from 18 weather stations in
Egypt, the Kriging interpolation method provided by the ArcGIS software was adopted to
obtain the required meteorological data over the study area. This is due to the fact that there
are few meteorological stations in Egypt and we have collected meteorological data from
weather stations near the cultivated land as much as possible. On the other hand, Egypt’s

https://earthexplorer.usgs.gov/
http://www.globallandcover.com/
https://www.esa.int/ESA_Multimedia/Images/2018/09/2015_global_land_cover_map
https://www.esa.int/ESA_Multimedia/Images/2018/09/2015_global_land_cover_map
http://www.wheata.cn/
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cultivated land is distributed on both sides of the Delta and the Nile, with a small latitude
span and limited climate change. Therefore, these meteorological data collected from
18 weather stations can generally reflect the climatic conditions of Egypt’s cultivated land.

2.2.5. Normalized Difference Vegetation Index Data

Besides weather conditions, crop yield is also influenced by the growth status of crops.
Global MOD13A3 data are provided every month at a 1 km spatial resolution as a gridded
Level-3 product in the Sinusoidal projection. Here, the NDVI layer imagery produced from
global MOD13A3 data (downloaded from https://earthdata.nasa.gov/search?q=mod17a3,
accessed on 1 May 2021) was used to monitor vegetation and crop condition.

2.2.6. Statistics Data

In this study, various statistical data were used to determine the following indicators
in the evaluation of food security: Egyptian per capita food consumption, the malnutrition
rate, per capita daily protein and fat weight, per unit area water consumption, per unit
area nitrogen fertilizer, and the percentage of Egyptians suffering from food insecurity. In
addition, statistical data were adopted to assess the estimation accuracy of grain crop yield
by the proposed model. All statistical data used were downloaded from the official website
of the Food and Agriculture Organization (FAO), i.e., https://www.fao.org/home/en/
(accessed on 1 June 2021). It is worth mentioning here that several indicators could not be
obtained in 2020 because of a lack of related statistical data, i.e., per capita food consumption
and per capita daily protein and fat weight. To overcome this, we instead used statistical
data acquired in 2019 to determine these indicators in 2020, because these data have not
changed much over adjacent years.

3. Methodology
3.1. Crop Classification

As mentioned earlier, to reduce computational time, the land cover data were adopted
to provide a general distribution map of arable land in Egypt. Based on this map, texture
features were first calculated and extracted from the Sentinel-1 or Landsat 7 data using
the gray-level co-occurrence matrix (GLCM), similar to that described in [42,43] where
Landsat and Sentinel-1 satellite data were used to classify crops in a small-scale farm in
Zimbabwe and the overall classification accuracy higher than 80% was achieved using the
GLCM texture features. Then, arable land was further classified into two kinds of regions
used to grow grain and cash crops, respectively, by using support vector machine (SVM).
Note that we only need to extract arable land used to grow grain to further predict grain
yield. Although the crop classification accuracy achieved with SVM is worse than other
methods such as the convolution neural network (CNN), SVM was selected in this study.
The reasons are two-fold. Firstly, the crop classification accuracy achieved with SVM can
up to 0.8375 [44], which can meet the requirements of this study. Secondly, only about
800 samples were obtained in this study. This means that the number of samples is very
small at the national level. If CNN is adopted in this case, not only will overfitting occur,
but also the space and time complexities will be much larger compared with the case of
SVM. A flowchart of crop classification based on the GLCM texture feature is shown in
Figure 2, and each step is described below.

https://earthdata.nasa.gov/search?q=mod17a3
https://www.fao.org/home/en/
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3.1.1. Preprocessing of Sentinel-1 and Landsat 7 Data

Before use, Sentinel-1 SLC data were preprocessed which includes radiometric calibra-
tion carried out by calculating the normalized radar cross-section coefficient, thermal noise
removal, and geometric terrain correction using the Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model (DEM) [45]. Note that, the preprocessing of Sentinel-1 SLC
data did not include the speckle noise filtering, because the speckle noise filtering can lower
the classification accuracy [42]. As for Landsat 7 data, its preprocessing mainly includes
radiometric calibration and atmospheric correction. Here, the atmospheric correction is
composed of two major steps, i.e., parameter estimation and surface reflectance retrieval.

3.1.2. Sample Selection

Regarding grain crop in Egypt, wheat is planted in November and harvested in May,
and maize and rice are planted generally in June and harvested in September [46]. In
contrast, regarding cash crops in Egypt, cotton is planted in March and harvested in
September. According to the unique phenology of each crop, corresponding samples were
selected for grain and cash crops. In order to improve the training accuracy, samples are
polygons that contain multiple pixels; the principle of sample establishment is to evenly
distribute samples as far as possible on the premise that the ground object category can
be accurately judged. Each polygon contains only one ground object, and the number of
pixels is between 25 and 100. This ensures that a variety of pixels with small differences are
covered in samples of the same category. In practical operation, more than 800 samples
were first labeled in historical imagery acquired over Egypt in 2010, 2015, and 2020. Note
that, historical imageries were provided by Google Earth Pro Desktop, and the selected
samples contain the polygon of various ground features such as bare soil, water, cash, and
grain crops. According to the principle of sample establishment, the number of polygon
samples of different categories is related to the total area of classes. Then, one-half of the
sample polygons were taken for training and the other half of the feature polygons were
used for testing. Division according to polygons rather than pixels is to avoid over-fitting.
Figure 3 shows some samples selected from the Google Earth images, overlapped on the
GLCM-based texture feature map according to their geographic coordinates. Here, the
GLCM-based texture feature map was derived from Sentinel-1 data.
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3.1.3. Extraction of Texture Features from GLCM

The texture shows the intensity variations in an image and can be a valuable tool in
improving land cover classification accuracy. Texture features extract information from
neighboring grey pixels, which is beneficial to describe the distinctive features of various
crop types in arable fields [47,48]. Several texture features can be computed from the GLCM
matrix. Each element value of the GLCM is calculated as follows:

P(i,j) =
P(i, j, d, θ)

∑i=1 ∑j=1 P(i, j, d, θ)
(1)

where P(i, j, d, θ) is the frequency of the double element point, one of which is the pixel
grayscale value i, another pixel grayscale value of j, and the adjacent distance d to in θ direction.

Moreover, up to seven GLCM textural features can be further derived from GLCM
matrix, i.e., contrast, dissimilarity, homogeneity, angular second moment, entropy, GLCM
mean, and variance. In this study, GLCM mean texture features were used because they can
achieve higher accuracy for SAR image classification than other GLCM textural features, as
described by Chen et al. [42]. GLCM mean can be calculated by:

µi =
N−1

∑
i,j=0

i
(

Pi,j
)

(2)

In addition, as described in [42], bigger window sizes can produce smoother texture
feature images and achieve higher classification accuracy. When performing the calculation
of GLCM, the general distance was set as 1. At the same time, all angles calculated every
45 degrees were tried and averaged, and the window sizes were set as 11 × 11 in this study
after a comparison with other window sizes.

3.1.4. Classification and Post-Classification Processing

According to the unique crop phenology for each crop described in Section 3.1.2,
crops in Egypt can be classified into cash and grain crops based on the GLCM mean
texture features, which were extracted from the Sentinel-1 or Landsat 7 data acquired in
different months.

SVM is an extensively used non-parametric statistical machine learning algorithm. It
has many advantages such as being fast and possessing a satisfactory capability to deal
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with crop classification problems [49–51]. Therefore, the SVM classification method was
implemented for crop discrimination in this study. In practical operation, the texture images
created from the Sentinel-1 or Landsat 7 images along with the selected samples were used
as the input of the SVM algorithm. The kernel function of SVM is radial basis function, and
the gamma in kernel function parameter needs to be set. This value is a floating-point data
greater than zero. By default, it is the reciprocal of the number of bands of the input image.
Other parameters such as c (penalty coefficient of error item) adopt default values.

After classification, we clumped the classes and used sieve classes to solve the problem
of isolated pixels occurring in classification images.

3.2. Estimation of Grain Yield

In this study, the Carnegie–Ames–Stanford approach (CASA) model was first used to
estimate the net primary production (NPP) on a monthly time scale. Then, the grain yield
was calculated according to the relationship between NPP and grain yield.

Before using the CASA model to estimate NPP, the meteorological data described in
Section 2.2.4 were loaded into ArcGIS software to perform Kriging interpolation (parameter
selecting default value), which is the method of interpolation deriving from regionalized
variable theory. It depends on expressing spatial variation of the property in terms of the
variogram, and it minimizes the prediction errors, which are themselves estimated [52].
Then, we obtain continuous raster data from across Egypt. Following data interpolation,
all data input to the CASA model were expressed in the World Geodetic System (WGS-84)
coordinate system using the Universal Transverse Mercator (UTM) projection, and the size
of the pixels in a raster was 1 km × 1 km.

3.2.1. Estimation of NPP Using the CASA Model

NPP is defined as the overall amount of organic matter accumulated by plants in
the primary production stage per unit time and unit area. It is determined by factors
such as solar energy, temperature, and precipitation, and is positively influenced by living
organisms such as microbial biomass. CASA is a classical parameter model and estimates
NPP by focusing on the driving role of the absorbed photosynthetically active radiation
(APAR) and the light use efficiency absorbed by vegetation [53]. Different from other
prediction models that require fine biochemical parameters, the CASA model only needs to
input land cover type, monthly NDVI value, monthly cumulative precipitation, monthly
average temperature, and solar radiation’s monthly cumulative value. The parameters
that need to be manually input are also introduced in [54], which are more suitable for
estimating NPP in a wider range. A flowchart of estimating NPP using the CASA model is
shown in Figure 4.
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In practical operation, the distribution map for grain crops in Egypt, the monthly
NDVI average value, the monthly average temperature, the monthly precipitation, and
the monthly solar radiation intensity are input to the CASA model to calculate the annual
NPP in Egypt.

3.2.2. Estimation of Grain Yield

Grain yield in Egypt mainly consists of the production of winter wheat, maize, and rice.
After the estimation of NPP by the CASA model, we estimated the grain yield according to
its relationship with NPP [55] and it can be written as:

Y =
α × NPP × p × HI

1 − ω
× 10−2 (3)

where Y denotes the grain yield and its unit is t/ha and α is the carbon-conversion coeffi-
cient. Since the carbon content of cereal is about 45%, the value of α was set as 2.22 [56]. NPP
is the cumulative net primary production of organic matter over the entire growing season
of grain crop and was estimated using the CASA model. p is the distribution coefficient of
aboveground parts, and its value was set as 0.9. ω denotes the water-content coefficient
during the storage period after harvest. Since the water-content coefficient of maize, wheat,
and rice ranges from 13% to 14%, ω was set as 13.5%. HI represents the harvest index, and
its value was set as 0.47 for the study area [57].

3.3. Food Security Evaluation

In terms of the food safety evaluation index released by the global food security
initiative (GFSI) [58], we constructed a food security evaluation model involving four
dimensions, i.e., quantity security, economic security, quality security, and resource security.

3.3.1. Quantity Security

Food quantity security focuses on increasing the quantity of food to ensure food
supply capacity and to solve the problem of people’s “satisfaction”. Quantity security is
the basis of food security and can be evaluated by the following four indices.

(a) Per capita grain land. The area of grain land is the basis of food quantity security
and was calculated in terms of the distribution map for grain crops and the total
population of Egypt.

(b) Per unit area grain yield. The grain yield per unit area indicates the development of
agricultural science and technology and was calculated in terms of the distribution
map for grain crops and the prediction of annual grain yield in Egypt.

(c) Per capita food production. Generally speaking, a higher per capita food production
indicates that food security is more stable, and it was calculated in terms of the
prediction of annual grain yield and the total population of Egypt.

(d) Fluctuation coefficient of grain production. Grain production is mainly influenced by
natural, economic, and social factors such as markets and trade, and hence it usually
exhibits certain fluctuations. The fluctuation coefficient of grain production is one of
the most important factors in measuring the stability of grain production and can be
calculated by [59]:

P = (Yt − Yt3)/Yt3 (4)

where Yt represents the current year’s grain yield and Yt3 denotes the average value
of the grain production of the previous year, the current year, and the next year.

3.3.2. Economic Security

Food economic security pays attention to investigating people’s economic access
to food and the solution is that people can “afford” food. At the same time, it inspects
domestic food production and supply capabilities, which are also food economic security
indicators. Food economic security can be evaluated by the following three indices.
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(a) Grain self-sufficiency rate. The grain self-sufficiency rate represents how dependent a
country is on food imports. A lower value of this index indicates that this country is
more vulnerable to economic security.

(b) The value of agricultural imports. A higher value of agricultural imports indi-
cates that this country is more dependent on the international food market. In
Egypt, large amounts of agricultural products are imported every year to meet the
domestic food demand.

(c) Per capita food consumption. A higher value of per capita food consumption indicates
that the stability of food security is worse.

In this study, the aforementioned three indices were calculated in terms of both
government fiscal expenditures and household consumer expenditures provided by the
FAO to evaluate food economic security in Egypt.

3.3.3. Quality Security

After quantity security is achieved, quality security becomes a higher requirement
for food security. Quality security means that people can obtain rich nutrition to satisfy
their own needs, and people’s requirements for dietary diversity can be met. Food quality
security can be evaluated by the following three indices.

(a) Malnutrition rate. The malnutrition rate reflects the quality safety of a country’s
food supply.

(b) Per capita daily protein consumption weight. Protein is one of the important nutrients
and more daily protein consumption corresponds to a higher food quality security.

(c) Per capita daily fat consumption weight. The per capita daily fat consumption weight
is usually negatively correlated with food quality safety.

In this study, the aforementioned three indices were obtained from the FAO website
(https://www.fao.org/home/en/, accessed on 1 June 2021) and used to evaluate food
quality security in Egypt.

3.3.4. Resource Security

Resource security concerns the consumption of fresh water and chemical fertilizers. A
large area of Egypt is desert and precipitation is scarce. For a long time, food production in
Egypt mainly relied on the excessive utilization of chemical fertilizers and groundwater to
increase grain yield. However, this method can cause soil and water pollution, damage
the environment and ecosystems, and threaten the security of food ecological resources.
Resource security can be evaluated using the following two indices.

(a) Per unit area water resource consumption. Water resources are vital to food produc-
tion, and water consumption per unit area is negatively correlated with food security.

(b) Per unit area nitrogen fertilizer consumption. Nitrogen fertilizer is of significance to
agricultural production because it can contribute to increasing yields and reducing
production costs, and the per unit area nitrogen fertilizer consumption is negatively
correlated with food security.

3.3.5. Food Security Evaluation Model

To improve the comparability between different indices, the values of all indices were
first normalized using the following two equations, and their dimensions and units were
not further considered.

When the value of an index is positive, it was normalized by:

X j(i) =
(
Xj(i)− minj

)
/
(
maxj − minj

)
(5)

When the value of an index is negative, it was normalized by:

X j(i) =
(
maxj − Xj(i)

)
/
(
maxj − minj

)
(6)

https://www.fao.org/home/en/
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where Xj represents the i-th term of the index j and maxj and minj denote the maximum
and minimum of the index j, respectively.

After data normalization, the weight of each index was obtained using the coefficient
of variation. The standard formula for the coefficient of variation is expressed as:

CVj = Sj/Aj (7)

where CVj represents the coefficient of variation in the index j, Sj denotes the standard
deviation of the index j, and Aj represents the average value of the index j.

The weight of each index can be calculated by:

wj = CVj/ ∑
(
CVj

)
(8)

where wj represents the weight of the index j and ∑ is the sum operator.
Following the calculation of the weight of each index, the total score F, which is used

to evaluate the food security, was achieved by:

F = ∑ wj(i)× X j(i) (9)

4. Results
4.1. Crop Classification in Egypt

Because crop classification was carried out at a national level, low-resolution satellite
images were adopted to reduce computational time. Each pixel contains different crop
types and cannot be fully distinguished. Therefore, images are simply divided into grain
and cash crops based on phenological characteristics. Figure 5 shows the crop classification
results from Egypt in 2010, 2015, and 2020. Based on the results, the arable area and its
variation over different years can be identified. Furthermore, the accuracy of the crop
classification results is given in Tables 3–6 show the confusion matrix of crop classification.
From Table 3, it can be seen that the value of overall accuracy (OA) and the Kappa coefficient
were at the level of 0.7580 and 0.6341 in 2010, 0.8761 and 0.8138 in 2015, and 0.8244 and
0.7228 in 2020, respectively. From the experimental results, the classification accuracy of
the radar data was found to be higher than that of the optical images. First, some optical
data cannot be used due to cloud shielding and the spectral ground object reflection curve
is not as complete as in radar. Second, from the perspective of the spectrum, the reflectance
of different types of vegetation is similar, while the polarization characteristics of radar
increase the differences between them (especially for special crops such as rice). This is also
the reason why radar data are becoming increasingly popular in crop classification.
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Table 3. The accuracy of crop classification results in Egypt in 2010, 2015, and 2020.

Class 2010 2015 2020

grain crop 0.7828 0.9074 0.8491
cash crop 0.7075 0.8352 0.7556
bare soil 0.6563 0.7901 0.7851

water 0.9090 0.9609 0.9105
OA 0.7580 0.8761 0.8244

Kappa 0.6341 0.8138 0.7228

Table 4. Confusion matrix of crop classification obtained from SVM using the GLCM parameter
dataset extracted from Landsat 7 time-series dataset in 2010.

Land Use Grain Crop Cash Land Bare Land Water

grain crop 6517 1506 313 123
cash crop 1562 4721 264 50
bare soil 241 426 1107 31

water 6 68 3 2038

Table 5. Confusion matrix of crop classification obtained from SVM using the GLCM parameter
dataset extracted from Sentinel-1 time-series dataset in 2015.

Land Use Grain Crop Cash Land Bare Land Water

grain crop 11,476 1225 515 52
cash crop 1012 7537 36 25
bare soil 154 262 2920 65

water 6 1 221 3337

Table 6. Confusion matrix of crop classification obtained from SVM using the GLCM parameter
dataset extracted from Sentinel-1 time-series dataset in 2020.

Land Use Grain Crop Cash Land Bare Land Water

grain crop 11,557 1502 606 220
cash crop 1159 4937 24 8
bare soil 502 12 2367 220

water 394 83 18 2755

From the perspective of spatial distribution characteristics, it can be seen from Figure 5
that Egypt’s arable land in which grain crops grow is mainly concentrated in the Nile Delta
plain. Here, the terrain is flat and densely populated, and there are numerous irrigation
facilities to satisfy water demands for grain crops, especially rice. Figure 5 also shows that
the arable land in which the cash crops grow is mainly located along the banks of the river
Nile. Here, the weather is hot, dry, and suitable for the growth of cash crops such as cotton
and fruits. Therefore, it can be found that the crop distribution maps shown in Figure 5 are
consistent with the geography and climate of Egypt.

After statistical analysis of the spatial distribution map of arable area in Egypt, as
shown in Figure 5, the cultivated land used to grow grain crops and the total arable land
in 2010, 2015, and 2020 can be estimated and are given in Table 7. The statistical data,
which were downloaded from the official website of the FAO, are also given in Table 7 for
comparison. It can be found that the estimated and statistical results are in good agreement.
Moreover, the cultivated area of grain crops in Egypt increased from 2010 to 2020, and its
growth rate was higher than that of the total arable land.
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Table 7. Estimated and statistical results of cultivated area of grain crops and the total arable land in
Egypt in 2010, 2015, and 2020.

Year The Cultivated Area of Grain Crops
/106 Hectares

The Total Arable Land
/106 Hectares

2010 Estimated result: 2.556
Statistical value: 2.657

Estimated result: 4.125
Statistical value: 3.671

2015 Estimated result: 2.811
Statistical value: 2.804

Estimated result: 3.928
Statistical value: 3.798

2020 Estimated result: 2.906
Statistical value: 3.008

Estimated result: 3.827
Statistical value: 3.836

4.2. Estimation of Grain Yield

Using the methods described in Section 3.2, the total grain yields estimated in 2010,
2015, and 2020, respectively, are presented in Figure 6.
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We can see from Figure 6 that although the total arable land increased from 2010
to 2020, the yield per unit area decreased, and the maximum yield per hectare dropped
to 10 t/ha. Table 8 shows the specific values of total grain yield in 2010, 2015, and 2020,
which were calculated in terms of Figure 6. Due to the lack of field measurement data,
the statistical data listed in Table 8, which were downloaded from the official website of
FAO, were used for comparison to evaluate the reliability of the estimated results. The
error between the two results is small, i.e., about 5%. Taking into account the estimation of
grain yield at the national level and some unpredictable factors such as pest insects, this
error is in an acceptable range, and the final estimated results can be used to describe the
trend of grain production in Egypt from 2010 to 2020. As shown in Table 8, the total grain
yield experiences sustained growth from 2010 to 2020. This is mainly due to the increase in
the cultivated area, as well as the increase in the grain yield per unit area. Compared with
Table 7, it can be found that the growth rate of grain yield in 2020 was not as fast as that of
the arable land. This may be due to the adjustments in the planting structure of grain crops,
such as growing less rice to save water resources, as well as the decline in soil fertility and
water quality.
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Table 8. Estimated and statistical results of the total grain yield in Egypt in 2010, 2015, and 2020.

Year Estimated Total Grain Yield Statistical Data Provided by FAO

2010 1.8 × 107 million ton 1.946 × 107 million ton
2015 2.185 × 107 million ton 2.063 × 107 million ton
2020 2.061 × 107 million ton 2.193 × 107 million ton

4.3. Food Security Evaluation in Egypt

Using the method described in Section 3.3.5, both the weights of four dimensions and
the weights of indices in each dimension can be obtained, as listed in Table 9.

Table 9. Weights of four dimensions and weights of indices in each dimension.

Dimensions Weight of Each Dimension Indices in Each Dimension Weight of Each Index

Quantity
security 33.32%

Per capita grain land 7.29%
Per unit area grain yield 7.86%

Per capita food production 8.46%
Fluctuation coefficient of grain production 9.71%

Economic
security 22.23%

Grain self-sufficiency rate 7.37%
Value of agricultural imports 7.60%
Per capita food consumption 7.26%

Quality
security 27.31%

Malnutrition rate 7.26%
Per capita daily protein consumption weight 10.94%

Per capita daily fat consumption weight 9.11%

Resource
security 17.14%

Per unit area water resource consumption 7.45%
Per unit area nitrogen fertilizer consumption 9.69%

Compared with resource security, the weights of quantity, economic, and quality secu-
rities are much higher, indicating that the Egyptian government attaches great importance
to food quantity and economic and quality securities, and neglects resource security to a
certain extent.

Figure 7 shows the Egyptian food security index and the security index of four dimen-
sions from 2010 to 2020. As indicated by the overall food security index, the score was
highest in 2010. After this year, the food security situation in Egypt gradually deteriorated,
and a minimum score was achieved in 2020. However, comparing the score in 2015 with
that in 2020, we found that the downward trend of the score slowed down. In addition,
the statistical data provided by the FAO [60] show that the percentage of Egyptians suf-
fering from food insecurity was approximately 15%, 25%, and 27% in 2010, 2015, and
2020, respectively. Therefore, the same variation in food security in Egypt can be found
between the estimated results and FAO statistical data, which verifies the reliability of the
evaluated results.

As shown in Figure 7, a significant fluctuation in food quantity security in Egypt can
be observed, indicating that the unstableness of food production is the most prominent
problem regarding food security in Egypt. Figure 7 also shows a minimum score of
economic security in 2015, which means that the capacity in domestic food supply declined
in this year, but it recovered in 2020. In contrast to quantity security, we found from Figure 7
that food quality security in Egypt degraded significantly from 2010 to 2020, especially in
2015. This means that Egypt has succeeded in increasing the supply of food at the national
level but has achieved less in terms of addressing quality security. In addition, Figure 7
shows that resource security in Egypt continuously degraded from 2010 to 2020, maybe
due to the lack of significant advances in agricultural science and technology. Therefore,
this implies that large amounts of chemical fertilizer and groundwater have been used to
increase grain yield and to ensure a stable food supply in Egypt.
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5. Discussion
5.1. Factors Influencing Food Security in Egypt

Since our study is based on remote sensing techniques, the following factors, which
influence food security in Egypt and can be derived from remote sensing data, are discussed.

One factor influencing Egypt’s food security is the natural environment, because this
is the foundation of agricultural production [61]. Egypt is located in northeastern Africa
and is largely covered by desert. Its agriculture and population are mainly concentrated at
the narrow Nile River Valley and Delta, only about 4% of Egypt’s total land area. Although
government land-reclamation projects have been performed to increase the amount of
cultivated land in recent years, the insufficient arable land is still a large problem for
Egypt’s grain production. In addition, Egypt mainly has a desert climate, which is hot and
dry all year round. Only on the Mediterranean coast is there a mild Mediterranean climate.
As a result, the average annual rainfall in Egypt is only 200 mm, and most of the country
receives no rainfall all year round, which seriously limits agricultural irrigation [62].

Another factor influencing Egypt’s food security is urbanization. Firstly, with the
development of urbanization, more agricultural land has been occupied for urban uses,
and hence the total arable land is continuously being reduced. In addition, more farmers
have left the countryside because of the superior living environment in cities. The decline
in the rural population has seriously affected grain production in Egypt. In addition,
over-exploitation of groundwater sources for urban uses also imposes a negative influence
on agricultural irrigation in Egypt.

5.2. Several Suggestions to Ensure Food Security in Egypt

Considering the two factors discussed above, the following two suggestions are
provided to improve food security in Egypt.

Urbanization and other uses of cultivated land should be strictly controlled. Cultivated
land is the foundation of agricultural production, and hence protecting and expanding
cultivated land is the first step to ensuring food security. Urbanization and industrialization
are becoming a serious threat to cultivated land in Egypt and the government should pay
attention to this.

Advanced agriculture technology should be adopted to enhance per unit yield and
increase the amount of cultivated land. On the one hand, government land-reclamation
projects should continue to be implemented to reclaim more desert for use as arable land
for special grain crops. On the other hand, new and excellent crop strains can be bred or im-
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ported to improve crop production capacity. Furthermore, the Egyptian government should
increase policy support and subsidies for the improvement of agricultural technology and
the purchase of advanced production equipment. For example, agricultural mechanization
is conducive to improving production efficiency and reducing the population required for
agricultural production.

6. Conclusions

Using remote sensing techniques together with other data sources, this paper pre-
sented a novel model developed to assess food security in Egypt, analyze the factors
influencing food security, and provide some useful suggestions to the government. Com-
pared with the statistical data provided by the FAO, the reliability of this model was
preliminarily verified when applied to assess food security in Egypt in 2010, 2015, and
2020. To the best of our knowledge, this is the first work to comprehensively assess food
security at a national level using multi-source remote sensing techniques. Nevertheless,
some drawbacks can be found in the proposed model. First, due to the lack of field mea-
surement data, sample collection mainly depends on visual interpretation, which greatly
affects the accuracy of the experiment. Second, because the data used in the study are
open-source data and there is a lack of detailed grain-production data and detection data
from densely distributed meteorological stations, we could not carry out high-precision
calculation and verification and could only analyze the overall trends in grain production
on a wider scale. Third, the number of indicators selected by the food security assessment
model is insufficient, especially in terms of economic and resource security. In future work,
we will use multi-temporal and high-resolution remote sensing data to further improve
the developed model. Furthermore, more field sampling data and relevant statistical data
in Egypt will be gathered to further evaluate the performance of the proposed model. In
addition, we will adjust the parameters of the developed model and use it to perform food
security assessments in other countries.
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