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Abstract: Adjusting nitrogen fertilization to the nutritional requirements of crops is one of the major 

challenges of modern agriculture. The amount of N needed is mainly determined by crop yield, so 

yield maps can be used to optimize N fertilization. As the adoption of yield monitors is low among 

farmers, implementation of this approach is still low. However, as the Normalized Difference Veg-

etation Index (NDVI) is related to grain yield, the main objective of this work was to identify at 

which wheat growth stage a moderate agreement between NDVI and yield is obtained. For this, 

NDVI images obtained from Sentinel-2 were used, and the evolution of concordance was analyzed 

in 13 classified parcels of wheat employing the Kappa index (KI). In one-third of the plots, a mod-

erate agreement (KI > 0.4) was reached before the stem elongation growth phase (when the last N 

application was made). In another one-third, moderate agreement was reached later, in more ad-

vanced development stages. For the cases in which this agreement did not exist, an attempt was 

made to find the causes. The MANOVA and subsequent descriptive discriminant analysis (DDA) 

showed that the NDVI dates that contribute the most to the differentiation between plots with and 

without agreement between grain yield maps and NDVI images were those corresponding to till-

ering. The sum of the NDVI values of the tillering phase was significantly lower in the group of 

plots that did not show concordance. Sentinel-2 imagery was successful on 66% of plots for deline-

ation of management zones after GS 30, and thus is useful for producing fertilization maps for the 

upcoming season. However, to produce in-season fertilization maps, further studies are needed to 

better understand the mechanisms that regulate the relation between yield and NDVI at early 

growth stages (<GS 30). 
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1. Introduction 

With an area cultivated of nearly 200 million hectares, wheat (Triticum sp.) is the sec-

ond most widely grown crop in the world, [1] and wheat grain consumption accounts for 

19% of the calories in the world’s human diet. In Europe, using more productive varieties 

and N fertilizers, wheat yields have increased annually 1.5–2.5% for many decades, from 

an average of 2 t ha−1 in 1900 to 7.5 t ha−1 in 2000 [2]. During the last decades, N has been 

considered the most important nutrient to increase cereal production [3], in consequence, 

the use of nitrogen as a fertilizer has gradually increased. In 2002–2003, 142 million tons 

of nitrogen fertilizers were applied globally, and this amount increased to 175 million tons 

in 2009–2010. Furthermore, it is estimated to rise to 199 million tons by 2030 [4]. 

However, the excessive use of N fertilizers is related to environmental problems. On 

the one hand, they require a considerable amount of energy for their generation, and the 

N gases emitted after fertilization contribute to the greenhouse effect [5]. On the other 

hand, excessive application of N can provoke nitrate losses, which could pollute 
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groundwater and surface water bodies [6]. Considering the increasing need to supply 

food to a growing population and the potential environmental impact of N fertilizers, the 

optimal adjustment of N dosage is one of the challenges of modern agriculture. The opti-

mum dose would be the quantity of fertilizer needed to obtain the maximum crop yield 

on each plot with the minimum risk for environmental damage. 

Conventional agriculture manages fields homogeneously, without considering their 

spatial variation. However, the nutritional needs of the crop differ according to the area 

[7]. Generally, in more productive areas, wheat has higher N requirements, while nutri-

tional needs are lower in areas where production is lower. Therefore, a good fertilizer 

adjustment strategy would have to consider crop variability and adjust the dose consid-

ering the potential production. Otherwise, productivity decreases finite resources such as 

water and fertilizers are misused, and detrimental impacts on the environment are pro-

duced [8]. 

Precision agriculture (PA) is a management strategy being more and more used [9] 

as it gathers, processes, and analyzes temporal, spatial and individual data, and combines 

them with other information to support management decisions according to estimated 

variability to improve resource use efficiency, productivity, quality, profitability, and sus-

tainability of agricultural production [10]. As the PA takes into consideration the space to 

time variability of the crop, it can help to optimize N fertilization. For this purpose, it 

divides the plot into different site-specific management zones (SSMZ). Within each SSMZ, 

the properties of interest are similar, but different from those of other zones [11]. Once the 

plot is divided into SSMZ, a different fertilizer dose can be applied to each zone using 

variable rate management (VRA) [12]. Different SSMZ can be delineated for each agro-

nomic practice (fertilization, pest management) in the same plot [13]. In this sense, Cor-

doba et al. [14] published a protocol to delineate multivariate homogeneous zones, where 

several levels of auxiliary information are considered. 

Depending on the agricultural objective, different auxiliary information can be used 

to delineate the SSMZ. For example, apparent electrical conductivity [15], visible and near-

infrared reflectance [16], and gamma-ray spectrometry [17] are used to measure soil vari-

ability. Thermal sensors can measure crop water state [18] or detect the stress created by 

pests [19]. Furthermore, sensors that provide information about the vegetative state of the 

crops are one of the most employed. Sensors are also widely used to obtain vegetation 

indices (VI). These indices are related to many crop properties, such as yield (biomass or 

grain yield). VI can be measured by active or passive sensors and can have different spatial 

and temporal resolution. For example, Maresma et al. [20] worked with multispectral im-

agery and VI to improve N management in maize fields. 

In our edaphoclimatic conditions, the relationship between VI obtained from crop 

canopy active reflectance sensors, such as the RapidSCAN CS-45 (Holland Scientific) and 

wheat yield (grain t ha−1) was analyzed by [21]. Being an active sensor and considering the 

short distance between the sensor and the crop, measurements are not affected by light 

conditions or the presence of clouds. Therefore, the most common use of this type of tool 

is the monitoring of experimental trials, in which the effects of different treatments are 

tested. As the measurements from these sensors are related to the information provided 

by satellites, their use makes it possible to project the knowledge gained in trials to com-

mercial plots. However, these sensors are not the most suitable for measuring the varia-

bility of crop vigor over large areas or for adjusting fertilization. 

A simple classification of passive sensors can be made according to their spatial res-

olution, starting with UAV-mounted cameras, which have the highest spatial resolution, 

continuing with aircraft-mounted sensors, and ending with satellite-mounted sensors, 

which can measure larger areas. A positive correlation with yield has been found for three 

sensor groups [22–24]. Since UAV images have a high resolution (±1 cm), they are suitable 

for scientific testing or monitoring small areas. However, a drawback is the need of pow-

erful computers to analyze the data. Aerial images have an optimal resolution (25 cm) for 

work with medium-sized commercial areas. One disadvantage of these aerial images is 
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the need to contract commercial flights and their consequent economic cost that is not 

affordable for small farmers [25]. In addition, for satellite imagery to be usable in precision 

agriculture, Clevers et al. [26] suggested that the temporal resolution should not exceed 

two weeks while the spatial resolution should not exceed 20 × 20 m. Sentinel-2 is consid-

ered optimal for precision agriculture as the spatial resolution is 10 × 10 m and has a revisit 

period of 5 days [27]. However, the presence of clouds can be a disadvantage at certain 

latitudes, as constant coverage can interfere with crop monitoring [28]. 

The vegetation index time series are good indicators of vegetation growth and can-

opy behavior [29]. Time series derived from satellite images have been used for different 

purposes. For example, Potgieter et al. [30] used them to estimate crop area in Australia. 

On the other hand, Huang et al. [29] used long time series to estimate crop phenology. 

After analyzing different crops and VI in their work, the conclusion reported was that 

estimates made with NDVI showed the smallest differences concerning the control points. 

NDVI is an indicator of biomass greenness, is correlated with wheat biomass and grain 

yield [31], and is the most widely used and well-known VI [32]. Vallentin et al. [33] used 

a 13-year time series to study the relationship between some crop yields with different 

vegetative indices. The conclusion obtained from the analysis of several satellites was that 

higher-resolution satellites, such as Rapid Eye or Sentinel-2 performed better than lower 

resolution satellites. After studying different vegetative indices, they concluded that 

NDVI was one of the best for estimating wheat yield. However, deciding which VI is ap-

propriate is not straightforward because several can be calculated by combining different 

spectral bands [34]. 

The main problem in using the NDVI is its tendency to saturate when the leaf area 

index (LAI) of the crop exceeds the value of 3 [35]. Theoretically, for more developed 

crops, which have accumulated high chlorophyll concentrations, the normalized red-edge 

difference (NDRE) is a better indicator of vegetation health/vigor than NDVI. The under-

lying reason is that red-edge light is more translucent to leaves than red light and is, there-

fore, less likely to be fully absorbed by a canopy. However, different studies have shown 

that the relationship between grain yield and NDVI is equal to or better than that shown 

with NDRE [21,36,37]. Another problem with NDVI is its sensitivity in the presence of 

bare soil. Therefore, other indices have been proposed to solve this problem, such as the 

soil-adjusted vegetation index (SAVI). However, to use this index, it is necessary to calcu-

late the fraction of soil not covered by vegetation (L), which is not straightforward over 

large areas. Normally, the L value is replaced by the 0.5 value. The modified soil-adjusted 

vegetation index 2 (MSAVI-2) was developed to avoid the necessity of calculating the L 

value. However, recent studies [38,39] have shown that NDVI shows a better relationship 

with grain yield than MSAVI-2. Even knowing its limitations, the selection of NDVI is 

based on its high prevalence in the literature and its good relationship with wheat grain 

yield. 

One of the challenges of modern agriculture is to adapt fertilization to the nutritional 

needs of crops to avoid nutrient losses and improve profitability. In Western Europe, a 

soil test to estimate available mineral N (ammonium plus nitrate) has been widely used 

to contribute to the determination of N to be applied. The optimum N rate is estimated by 

subtracting the available soil N from the N required by the crop [40]. 

Regarding the soil N availability, due to the spatial and temporal variability of Nmin, 

obtaining a representative sample of the plot is complicated, therefore, its application at 

the plot level is not considered very accurate [41]. Authors such as Ilseman et al. [42] did 

not find spatial dependence between Nmin values collected in the same plot. The Associ-

ation of German Agricultural Research Institutes recommends taking 15 soil samples 

every 90 m2 to capture Nmin variability, which supposes an unaffordable sampling inten-

sity. In addition, the soil Nmin value can change rapidly depending on mineralization, 

leaching, crop extraction, and gaseous N losses. In the case of wheat, the soil Nmin should 

be determined before the end of winter, at the time the highest dose of fertilizer is applied, 

when the crop is active and growing rapidly. Therefore, soil sampling and analysis should 
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be made in a short period of time. The logistics required and the high cost of sampling 

and analyzing make this unfeasible, especially for a low value-added crop such as wheat. 

In addition, previous trials conducted in the study area showed that Nmin values at the 

beginning of winter were low [43], always being below 60 kg N ha−1. 

Given the difficulties involved in the soil Nmin sampling as well as the low N supply 

of the soil in the edaphoclimatic zone of the experiment, the main objective is to analyze 

whether the NDVI can be a good option to delineate SSMZ for fertilization since NDVI is 

a good way to predict the yield and subsequently, the N extraction by the plant. The next 

step will be to calculate an accurate fertilization rate for each SSMZ. 

The procedure followed to achieve this goal is to divide the plot into NDVI homoge-

neous management zones and correlate them with zones based on a yield monitoring 

map. However, to be of practical application, the concordance between both site-specific 

management zones must be established before top dressing fertilization, which, in the 

study area, is applied at the beginning of the stem elongation phase. If NDVI’s ability to 

delineate fertilization management zones is established, it could help farmers fertilize 

closer to crop needs. 

For this purpose, 13 data sets (a total of 4517 yield measurements) of wheat collected 

in 2019 were analyzed. In total, 15 cloud-free Sentinel-2 images that cover wheat develop-

ment were downloaded from which NDVI was calculated. Furthermore, geomorpholog-

ical data, such as elevation, slope, and coefficient of variation (CV) of the slope were also 

included in the analysis. In the first step, the agreement between the classified yield maps 

(map formed by categorical variables: high and low production) and the classified NDVI 

(high and low NDVI) maps was compared. Finally, as some variables were not independ-

ent, a MANOVA analysis and the subsequent Descriptive Discriminant Analysis were 

performed to better analyze the data. 

2. Materials and Methods 

2.1. Study Area 

This study was carried out with data from 13 wheat plots from two commercial farms 

located in the province of Araba/Álava (Figure 1a). All plots were sown at a seed rate of 

230 kg ha−1 between 19–25 November 2018 (Table 1). The same fertilization scheme was 

applied for all plots. The basal application of fertilizer was 53 kg N ha−1, 36 kg P ha−1 and 

102 kg K ha−1, and was applied on 30 December 2018. The second and third N top dressing 

fertilizer applications were made on 26 February 2019 and 25 March 2019. Calcium am-

monium nitrate (ANC), which has a nitrogen concentration of 27%, was used for this pur-

pose (Table 1). The ANC fertilizer dose applied was 220 and 210 kg ha−1. The total N rate 

was 169 kg N ha−1. 

Table 1. Sowing and fertilization carried out on the study plots, specifying date, the product/wheat 

variety, and dose applied. 

Labor Date Variety/Product Dose (kg ha−1) 

Sowing 24 November 2018 Filon 230 

Fertilization 30 December 2018 Blending (13, 20, 30) 410 

Fertilization 26 February 2019 ANC 220 

Fertilization 25 March 2019 ANC 210 



Remote Sens. 2022, 14, 2872 5 of 20 
 

 

 

Figure 1. (a) Location of Araba/Álava province in Spain, (b) Geolocation of the 13 study plots in 

both regions, “Valles Occidentales” and “Llanada Alavesa”. 

The size of the plots range from 2.5 ha in Prado to 12.2 ha in Torres with an average 

plot size of 4.4 ha (Table 2). In total, 58.3 ha were analyzed. Table 2 shows some geomor-

phological properties of the plots, such as average elevation that ranges between 501 m of 

Prado to 554 m of Ollavarre, with the average elevation of all plots being 521 m. Moreover, 

the Prado plot is the flattest, with an average slope below 1%. However, Torres plot is the 

most sloping plot at 9%. Likewise, Torres plot is the most irregular, as it has a slope coef-

ficient of variation (CV) of 6.8%, which is higher than the rest of the plots. On the other 

hand, the most regular plot is Foronda, with a CV for the slope of 0.52% (Table 2). 

Table 2. Mean yield, area, number of yield sample points into each plot, and the corresponding soil 

type. Elevation, slope, and slope coefficient of variation have been obtained from Geoeuskadi 

(www.geo.euskadi.eus) spatial data repository (accessed on 9 of June 2022). 

Plot Yield (t ha−1) Area (ha) No. Sample Points Soil Type Elevation (m) Slope (%) CV (%) of Slope 

Alto 8.6 5.1 426 Quaternary 502 1.03 1.3 

Apelarri 7.8 2.6 207 Quaternary 508 1.09 0.6 

Babea 6.7 3.8 323 Quaternary 521 6.44 2.94 

Baratua 5.6 2.7 217 Quaternary 511 1.24 0.87 

Foronda 6.4 3.2 254 Quaternary 513 0.95 0.52 

Iruleku 7.4 4.1 346 Cretaceous 534 2.45 2.39 

Kukura  6.3 5.0 417 Quaternary 508 1.53 0.82 

Menor 5.2 4.6 358 Cretaceous 538 4.12 1.43 

Ollavarre 4.6 4.3 353 Cretaceous 554 6.12 2.67 

Otatza 6.3 3.0 246 Cretaceous 541 4.46 1.66 

Parque 4.7 5.2 246 Cretaceous 531 5.83 2.67 

Prado  7.1 2.5 208 Quaternary 501 0.91 0.56 

Torres 7.1 12.2 916 Cretaceous 511 9.53 6.83 

Table 2 shows the main soil type where the study plots were established. To facilitate 

their interpretation, they will be referred to as Cretaceous and Quaternary soils. The soil 

formation in the area was strongly influenced by lithology, and in this case, corresponds 

to materials coming from the cretaceous and quaternary geological eras. In general, plots 

located over Cretaceous soils were steeper and more irregular, and the mean elevation 

was higher. Cretaceous soils were shallower (70 ± 20 cm), had higher CaCO3 concentration 

(>50%), and their textures were very silty, with silt contents above 40%. The water reten-

tion capacity was lower (<100 mm) than in quaternary soils. In general, quaternary soils 

were characterized by being deeper (+120 cm), with a higher water retention capacity (165 

± 39 mm) and a lower (<25%) concentration of calcium carbonates (CaCO3). The soil tex-

ture is loamier than in Cretaceous soils and have a higher stone content [44].  
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Twelve fields are located in the “Llanada Alavesa” region, near Vitoria, the capital of 

the province, while the other field is located in the west of the province, in the region 

known as “Valles Occidentales” (Figure 1b). The average elevation of study plots ranked 

between 502 and 554 m above sea level. Precipitation averages about 750 mm, with July 

and August being the driest months, both with a monthly rainfall of less than 50 mm (Fig-

ure 2). Summers are mild (20 °C) due to cold ocean currents, while winters are milder (6 

°C) than in other climates of similar latitudes. According to Köppen [45], the climate of 

both regions is a “temperate oceanic” (Cfb). The average rainfall during the wheat-grow-

ing period was 474 mm, with January and May being the wettest months (Figure 2, blue 

line). Some of the study parcels are located over the Quaternary Aquifer of Vitoria (Figure 

1b). 

 

Figure 2. Vitoria-Gasteiz climatic station water precipitation regime. The blue line shows the aver-

age precipitation (mm) for the last 30 years (1989–2018). The black dots indicate 2018/2019 monthly 

precipitation (mm). 

2.2. Yield Data 

High-resolution yield data were obtained from a combination of a yield monitor with 

a GPS installed on a John Deere T560 harvester. The GPS receiver works with RX correc-

tions, allowing it to work with a 15 cm precision. During the harvest period of 2019, be-

tween 23 July and 9 August, wheat yield data were acquired. Before it can be used, yield 

data need to be pre-processed to remove inaccurate grain yield measurements. The steps 

followed to pre-process the raw data are described below. In Figure 3, each yield (t ha−1) 

measurement is represented through one point. The points that do not meet the require-

ments established in each pre-processing step are highlighted in red, to be subsequently 

removed. In the first step, measures with wrong latitude/longitude (e.g., outside the study 

plot) were eliminated (Figure 3(1)). In the following steps, some statistical procedures 

were then applied to remove values out of the criteria. 
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Figure 3. Preprocessing of yield monitor data followed in all plots. Example: Ollavarre plot: (1) re-

move points out of the plot, (2) remove points out of the stablished threshold, (3) remove outliers 

and Anselin-Moran local outliers (red/blue), (4) remove points out of the green buffer, (5) interpolate 

yield values. 

The measurements eliminated were those with a moisture concentration below 8%, 

as well as values recorded with inadequate machine speed (i.e., when the distance be-

tween measurements was 0.8–1.6 m). In the next step (Figure 3(3)), outliers were removed. 

For this purpose, the methodology described by Taylor et al. [46] was applied. Addition-

ally, to identify and eliminate spatial outliers, the Local Moran 1 [47] test was performed. 

This test identifies measurements of high values surrounded by low values and vice versa. 

Figure 3(4) shows the limit of the safety buffer set on each plot (represented with a green 

line). To ensure that all Sentinel-2 pixels were completely within the study plot, all pixels 

between the green line and the plot boundary were removed. This procedure ensures that 

the possible distortion caused by the edge effect was minimized. In the final step (Figure 

3(5)), each semivariogram was adjusted to the corresponding plot. Then, the Ordinary 

Kriging method was used to interpolate the yield points into a continuous yield map. New 

yield maps were resampled to 10 × 10 m resolution and adjusted to align with Sentinel-2 

pixels. Finally, to extract the information (NDVI and grain yield values), sample points 

were generated in the center of each interpolated raster cell, producing a sample dataset 

containing 4517 values. Table 2 shows the number of Sentinel-2 pixels corresponding to 

each study plot. With 916 pixels, Torres is the plot with more pixels, while Apelarri has 

the lowest number of pixels at 207. Thus, the average number of pixels of the plots was 

347. Table 2 shows the mean yield values (t ha−1) and the number of sample points after 

finishing the pre-process. 

2.3. Sentinel-2 Vegetation Index Data and Growth Stages 

The Sentinel-2 mission is composed of twin satellites launched by the European 

Space Agency (ESA) in June 2015 and March 2017. They provide thirteen-band multispec-

tral images with a revisit interval of 5 days. The satellite data were freely downloaded 

from the “Copernicus Open Access Hub” platform (https://scihub.copernicus.eu/) (ac-

cessed on 9 June 2022) as an L2A product, so they have been atmospherically corrected 

[48]. As the 30 TWN mosaics covered all the study plots, the whole wheat development 
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cycle was covered by downloading 15 cloud-free images (Table 3). The selected bands 

were NIR (B8: 842 nm, bandwidth: 106 nm) and red (B4: 665 nm, bandwidth: 31 nm), both 

having 10 × 10 m spatial resolution. The NDVI was calculated using the following equa-

tion: 

NDVI =
NIR − RED

RED + NIR
 (1)

Table 3. Sentinel-2 T30TWN tiles used in this work and the captured dates. 

Data Sentinel-2 Tile 

4 February S2B_MSIL2A_20190204T110439_N0211_R094_T30TWN 

8 February S2A_MSIL2A_20190208T110221_N0211_R094_T30TWN 

13 February S2A_MSIL2A_20190213T110149_N0211_R094_T30TWN 

19 February S2A_MSIL2A_20190218T110111_N0211_R094_T30TWN 

23 February S2B_MSIL2A_20190223T110039_N0211_R094_T30TWN 

5 March S2A_MSIL2A_20190228T110001_N0211_R094_T30TWN 

15 March S2B_MSIL2A_20190315T105819_N0211_R094_T30TWN 

20 March S2A_MSIL2A_20190320T105741_N0211_R094_T30TWN 

30 March S2A_MSIL2A_20190330T105631_N0211_R094_T30TWN 

29 April S2A_MSIL2A_20190429T105621_N0211_R094_T30TWN 

14 May S2B_MSIL2A_20190514T105629_N0212_R094_T30TWN 

3 June S2B_MSIL2A_20190603T105629_N0212_R094_T30TWN 

8 June S2A_MSIL2A_20190608T105621_N0212_R094_T30TWN 

18 June S2A_MSIL2A_20190618T105621_N0212_R094_T30TWN 

28 June S2A_MSIL2A_20190628T105621_N0212_R094_T30TWN 

18 July S2A_MSIL2A_20190718T105621_N0213_R094_T30TWN 

Four key growth stages (Zadoks scale [49]) were identified to analyze the evolution 

and facilitate the understanding of the paper: tillering (GS 20), stem elongation (GS 30), 

heading (GS 61), and maturation (GS 87). The onset of the four key growth stages was 

determined using STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) soft-

ware [50], as Zadoks stages could not be measured in the plots. STICS uses the number of 

hours above 0 to estimate the passage from one to the other [50]. 

2.4. Geomorphological Variables: Elevation, Soil Type, and Orthophoto 

The Digital Elevation Model (DEM), derived from the LiDAR flight of 2016, was used 

to calculate geomorphological variables (Table 2). This information can be found in Ge-

oeuskadi [51], Basque Country’s official repository of spatial information. The main soil 

type was determined using a Basque Country lithological map (1:25,000). 

Finally, the 2009 orthophoto from the Geoeuskadi repository was also used. With a 

pixel resolution of 25 × 25 cm, the orthophoto shows the plots with bare soil. 

2.5. Topographic Wetness Index (TWI) 

The topographic wetness index (TWI) is a popular and widely used index to infer 

information about the spatial distribution of moisture conditions in an area [52]. The local 

morphological analysis allows for identifying zones with a high capacity to accumulate 

water [53]. 

The calculation of TWI is usually based on a gridded DEM (Equation (2)): 

TWI = ln(a/tanβ) (2)

where “a” is the upslope contributing area per unit contour length (or Specific Catchment 

Area, SCA) and tanβ is the local slope gradient for estimating a hydraulic gradient. The 

DEM used to calculate the TWI has a pixel resolution of 5 × 5 m. 
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2.6. Data Analysis 

2.6.1. ISODATA 

Plots were analyzed individually, so values for the high and low zones may vary be-

tween plots. Considering the size of the plot and the fact that the objective of these zones is 

to create site-specific management zones (SSMZ) to adjust the fertilization, it is not possible 

to divide them into more than two zones. Once the different homogeneous zones are cre-

ated, the classified NDVI and grain yield maps can be compared between them. The proce-

dure for defining the SSMZ is based on an iterative algorithm that starts by arbitrarily as-

signing a mean to each class. Pixels are then reallocated to each group based on the mini-

mum Euclidean distance between each pixel value and the mean value of each group. Each 

class is established when the maximum number of iterations is reached, or when the number 

of pixels changing from one class to another does not exceed a preset threshold [54]. 

2.6.2. Kappa Index (KI) 

The Kappa Index (KI) is a statistic used to measure inter-rater reliability for categor-

ical variables [55]. The degree of similarity between maps is quantified using KI, as it is 

considered a more reliable measure of agreement than simple percent agreement, since KI 

takes into account the likelihood of agreement occurring by chance [55]. A minimum con-

cordance of 0.40, (moderate agreement [56]) between yield maps and classified NDVI im-

ages was stablished to use the NDVI as a tool to delineate the fertilization SSMZ. A nega-

tive Kappa Index value represented worse agreement than expected [57]. Low negative 

values (0 to −0.10) may generally be interpreted as “no agreement”. The more negative the 

index, the lower the degree of agreement between the maps [58]. 

2.6.3. MANOVA Test 

Multivariate analysis of variance (MANOVA) was used to detect whether plot mor-

phological properties or differences in development influence the agreement between 

NDVI and yield. Performing multiple ANOVAs for different NDVI dates can lead to mis-

leading and inconsistent results, as the time series data are not independent. Although the 

MANOVA method is slightly more complex than ANOVA, it has given good results when 

used to define management areas [59].  

In addition, the canonical correlation indicates the proportion of the variation in the 

model that is explained by the grouping variable [60], which would be NDVI of different 

data or plot morphological properties. Once the MANOVA shows significant differences, 

the capacity of each variable to differentiate the groups can be analyzed. Thomas, in [61], 

proposed descriptive discriminant analysis (DDA) as a “post hoc” analysis for this pur-

pose. DDA was previously used in precision agriculture with successful results [62]. 

Briefly, the standardized discriminant function coefficient (SDFC) and structure coeffi-

cients (SC) were used to interpret the DDA. The SDFCs measure the contribution of each 

variable to the discriminant function, while the SCs measure the correlation between the 

discriminant function and the variables. Finally, by multiplying the SDFC and the SC, the 

parallel relationship coefficient (parallel RDC) can be obtained, which allows the evalua-

tion of the contribution of each variable to differentiate between the two groups [61]. In 

this study, the two groups would be plots with agreement and plots without agreement 

between grain yield and NDVI. 

In summary, the MANOVA method and subsequent DDA were used to understand 

which properties were most decisive in discriminating between groups. 

An overview of different steps of the data acquisition procedure and analysis is given 

in Figure 4. 
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Figure 4. Flowchart of the steps carried out to analyze the data of the study. Out of the boxes, in 

blue, statistical procedures used are specified. In red are the two critical questions that need to be 

answered. 

3. Results and Discussion 

3.1. NDVI Evolution 

Figure 5 shows the evolution of NDVI in the 13 plots. The NDVI index was selected 

as a tool to delimit early SSMZ because it has interesting properties related to grain yield. 

NDVI is an indicator of the combined effects of chlorophyll concentration, canopy leaf 

area, and yield. In addition to being easy to measure, it does not involve sample destruc-

tion. Plots started being monitored once the crop covered most of the soil, since bare soil 

can alter NDVI values [63]. In all of them, the maximum value was reached during the 

stem elongation phase, on 28 April, just after the second fertilizer application (Figure 5). 

After 18 June, the end of the heading phase, NDVI values dropped rapidly, indicating the 

onset of senescence [64]. On 13 February, a measurement error could have occurred, as 

the NDVI value dropped instead of increasing, and no apparent reason for this behavior 

has been found. Therefore, data from this date were not used in the subsequent analyses. 

Although the NDVI value on 23 February was lower than on 19 February, this measure-

ment was not considered an error because irradiance and temperature were high on the 

previous days. As a consequence, the crop had a strong growth, producing a demand for 

N, stressing the plant, and this was reflected in crop vigor. The farmer made the first fer-

tilizer application on 26 February (Table 1), and from this date, the NDVI value increased 

until reaching a maximum on 28 April. As the NDVI values corresponding to 18 July re-

flect that the wheat had already dried (Figure 5), these values were also excluded from the 

subsequent analysis.  
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Figure 5. Seasonal evolution of NDVI across the 13 studied plots in year 2019. Red dots are the mean 

value of NDVI, calculated using the 13 mean plot NDVI values, and error bars represent the stand-

ard deviation. In the figure, the onset and duration of the four key phenological stages are repre-

sented. The vertical blue lines represent the two dates when ANC fertilizer was applied, 26 February 

and 25 March. 

3.2. Comparison of Yield Maps and Temporal NDVI Images 

The average yield ranged from 4.65 t ha−1 in Ollavarre to 8.66 t ha−1 in Alto, with an 

average production of 6.50 t ha−1 (Table 2). Considering that the plots analyzed are con-

ventionally managed and cover different geomorphological zones, the dataset can be con-

sidered representative of the “Llanada-Alavesa” (Figure 1). 

In areas where NDVI is higher, higher wheat yields are expected [65]. Therefore, in 

areas with a high NDVI, the crop demands more N. In the study area, blanket fertilizer is 

applied during the early stem elongation phase (GS 30) [66]. Generally, wheat reaches this 

growth phase in late March or early April. Therefore, for NDVI to be an effective tool for 

delineating fertilizer management zones, it is necessary to confirm that the agreement be-

tween NDVI and grain yield is moderate (KI > 0.40) at this growth stage. 

Table 4 shows that 9 of the 13 plots achieve at least moderate agreement (KI > 0.40) 

between NDVI and yield. Four plots (Babea, Baratua, Iruleko, and Kukura) reached a 

moderate agreement during February or March (tillering, GS 20), while Menor and Otatza 

plots exceeded the threshold during April (stem elongation, GS 30). Finally, Alto, 

Foronda, and Torres parcels reached this threshold during May (flowering initiation, GS 

61). However, Apelarri, Ollavarre, Parque, and Prado did not achieve the required agree-

ment during any growth phase. Figure 6 shows the differences between a plot (Babea) 

with high KI (KI = 0.7) and one with low KI (KI = 0.34). To facilitate the comprehension, 

the group formed by Babea and eight other plots that show an agreement will be referred 

to as “related” while the rest will be referred to as “unrelated”. 
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Figure 6. NDVI and yield classified maps, and agreement between them according to Kappa Index 

(KI). Plot without concordance (top) and plot with concordance (bottom). 

Table 4. Values of Kappa Index between yield map and NDVI images of different dates in 2019 for 

13 wheat plots. In bold is the first date when a moderate agreement is achieved. 

Data Alto Apelarri Babea Baratua Iruleku Kukura Menor Ollavarre Otatza Parque Prado Torres Foronda 

4 February - - - 0.26 0.32 - −0.1 0 0 0 −0.16 −0.04 −0.26 

8 February −0.24 - 0.2 0.17 - 0.32 - −0.27 0.16 0.18 −0.13 −0.09 0.19 

19 February −0.31 −0.23 0.39 0.29 - - - −0.27 0 0.19 −0.17 −0.01 - 

23 February −0.26 - 0.3 0.29 0.24 0.27 - −0.29 0.14 - −0.26 −0.06 - 

5 March −0.19 −0.12 0.55 0.4 0.62 0.46 - −0.25 - - −0.16 0.07 - 

15 March - - 0.55 0.44 - 0.52 - −0.22 - - −0.12 0.07 0.28 

20 March - −0.12 - - - - - - - - - - - 

30 March 0.15 - 0.41 0.56 - 0.45 - - 0.35 0.3 −0.11 0.15 - 

28 April 0.21 - 0.66 0.52 0.17 0.44 0.6 0.17 0.42 0.21 0.08 0.12 - 

14 May 0.27 - 0.55 0.51 - 0.44 0.55 0.2 - 0.13 0.17 0.16 0.35 

3 June 0.35 0.34 0.54 0.48 0.24 0.55 0.55 0.16 0.52 0.21 015 0.32 0.55 

8 June 0.33 0.32 0.7 0.45 0.25 0.5 0.63 0.16 0.5 0.31 0.10 0.39 0.61 

18 June 0.39 0.31 0.7 0.5 0.25 0.58 0.7 0.19 0.49 0.32 0.11 0.56 0.62 

28 June 0.33 0.32 0.65 0.43 - 0.63 - 0.15 0.45 0.26 0.05 0.34 0.62 

In almost all plots, the agreement between NDVI and grain yield increased until the 

end of the heading phase (GS 86) (Table 4). The maximum values of the agreement were 

reached during the third week of June, which shows that the results are similar to those 

published by Hunt et al. [66] in the United Kingdom and Martí et al. [67] in Spain. Similar 

results were obtained in the study by Aranguren et al. [21], where the relationship be-

tween wheat yield fertilized with different doses and NDVI was analyzed. Finally, Royo 

et al. [68] and Babar et al. [69] observed that the highest relationship between NDVI and 

grain yield was established during anthesis or the milky grain stage, and reported that it 

was maintained until the ripening stage (GS 80). 

However, the Iruleko plot was the exception (Table 4) since it reached the maximum 

KI (0.62) on 5 March, during the tillering phase (GS 30). Other authors [31], who worked 

with two plots and multiple fertilizer doses, reported a small peak correlation between 

NDVI and grain yield during the tillering stage (GS 30) (R2 = 0.25). After that, the 
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correlation decreases until the end of the flag leaf stage (GS 39) (R2 = 0.03). Afterwards, the 

correlation increases until ripening (GS 80) (R2 = 0.55). Naser et al. [70], in their 2020 pub-

lication, supported this information as they reported a similar pattern between grain yield 

and NDVI. 

3.3. Analysing the Lack of Agreement between Yield and NDVI in Some Plots 

3.3.1. Multivariate Analysis of Plot Geomorphology 

Part of the variability in grain yield could be explained by the geomorphological var-

iability of the plots, as these properties can influence plant development and, ultimately, 

grain yield [71,72]. Climate influence has not been considered in this study because all 

plots are near each other. 

A MANOVA analysis was performed to confirm whether the source of the lack of 

agreement could be soil geomorphology. This analysis was chosen as some of the varia-

bles are correlated (Slope and Slope CV). Plots that show agreement between grain yield 

and NDVI were compared with plots that do not show agreement (Table 5). The 

MANOVA did not show significant differences (p > 0.05). Therefore, it was confirmed that 

plot geomorphology was not the source of the lack of agreement. 

Table 5. Mean values and standard deviation of the geomorphological properties of the 13 plots. 

The values have been grouped considering the agreement with the NDVI. 

Properties Unrelated Group Related Group 

Plot number (n) 4 9 

Elevation (m) 519.88 ± 14.3 523.50 ± 24.3 

Slope (%) 3.55 ± 3.0 3.48 ± 2.8 

Slope CV (%) 2.08 ± 1.9 1.62 ± 1.2 

3.3.2. Analysis of NDVI Value using MANOVA and DDA 

A new MANOVA was used to analyze if there were differences in NDVI between 

related and unrelated plots. For this purpose, NDVI values between 4 February (GS 21) 

and 28 June (GS 87) were used (Table 6). The MANOVA showed significant differences (p 

< 0.001) between the two groups. Therefore, to determine which NDVI dates contributed 

most to differentiate both groups, a DDA was performed (Table 6). The canonical correla-

tion derived from the DDA explains 84% of the variability. Therefore, the model resulting 

from grouping variables is a good representation of reality. 

Table 6. Results of DDA after MANOVA being significative, showing contribution of NDVI values 

from different data to classification of the plots on the group with or without agreement among 

NDVI and yield. 

Phenological 

Stages 
Vegetation Index Date 

Discriminant Analysis (DDA) 

SDFC SC Parallel DRC 

Tillering 

(GS 20–G S30) 

NDVI 4 February 0.32 0.16 0.05 

NDVI 8 February −1.61 0.08 −0.13 * 

NDVI 19 February 2.92 0.34 1.01 * 

NDVI 23 February −0.60 0.23 −0.14 * 

NDVI 5 March −0.65 0.24 −0.15 * 

NDVI 15 March 1.58 0.20 0.32 * 

NDVI 20 March 0.09 0.17 0.02 

Stem Elongation 

(GS 31–GS 60) 

NDVI 30 March −0.68 −0.07 0.05 

NDVI 28 April 0.05 0.10 0.01 

NDVI 14 May −1.81 −0.01 0.01 

Heading 

(GS 61–GS 86) 

NDVI 3 June 1.06 −0.02 −0.02 

NDVI 8 June −1.11 −0.03 0.04 

NDVI 18 June 0.71 −0.03 −0.02 

Ripening NDVI 28 June −0.15 −0.11 0.02 
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(GS 87–GS 92) 

* Indicates the variables that contribute most to differentiate between the two groups, standardized 

discriminant function coefficient (SDFC), and structure coefficients (SC). 

Table 6 shows that the parallel DRC values between 8 February and 15 March are the 

closest to 1 or −1. Therefore, the NDVI values of these dates contributed the most to dif-

ferentiate between the two groups. These dates encompassed the tillering growth phase. 

So, what happens during tillering to cause the dissociation between grain yield and 

NDVI? 

3.3.3. Tillering, Dissociation among Yield Map and NDVI Images 

Wheat grain yield is affected by nutrient uptake, metabolism, photosynthesis, respi-

ration, carbon distribution, leaf senescence, and plant water conditions [73]. Usually, 

plants with larger vegetative development (until GS 60) have a higher yield [74] as they 

ensure a greater supply of carbohydrates for grain filling. Along with kernel number and 

weight, the number of spikes determined wheat grain yield [75]. The duration and inten-

sity, as well as the stage of development at which the stress is applied, determine the ex-

tent of grain yield reduction [75]. At the beginning of the vegetative phase (GS 13–GS 30), 

the environment is the most influential factor for stem development. These early stems 

will later produce spikes with the highest likelihood of viability [76]. Usually, only tillers 

that grow before the wheat develops 4–6 leaves (GS 32) on the main stem develop fruitful 

spikes [77,78] since the rest are aborted before heading [79]. Therefore, tiller survival prob-

ability is affected by the sowing date [80]. Considering the previous information, it can be 

assumed that small changes in the tillering phase length can affect grain yield.  

Figure 7 shows the different evolution of NDVI of the related plots compared to the 

unrelated. Generally, on unrelated plots, values of NDVI were lower until the start of stem 

elongation (GS 31). The Apelarri plot was the exception; although, the NDVI on February 

4 was one of the lowest, it increased immediately and remained at the same values as the 

related parcels. The steeper slope of the NDVI in the unrelated plots during the tillering 

phase (GS 20–30) indicates a rapid increase of NDVI, which represents that the wheat in 

these plots has been less time to develop in this phase. After stem elongation (GS 31), 

NDVI values reached by Apelarri, Ollavarre, and Prado were among the highest. The dif-

ferences in NDVI observed in Figure 7 between the related and unrelated plots were meas-

ured by means of an ANOVA. For this purpose, the more representative NDVI values of 

the DDA (highlighted in Table 6 with *) were summed. These dates coincide with the dates 

when the NDVI of the unrelated plots are lower (Figure 7). The ANOVA showed that the 

sum of the average NDVI values during the tillering phase of unrelated plots was signifi-

catively lower (2.69) than the sum of the average of NDVI of the related plots (3.05). Dur-

ing the tillering, a lower NDVI value was indicative of a lower vegetative growth since 

the presence of bare soil decreases the NDVI value [81]. When the photoperiod increases, 

wheat progresses from tillering (GS 20) to stem elongation (GS 30). Therefore, a delay in 

the onset of tillering shortens the duration of this stage [81]. Then, another ANOVA was 

conducted by summing the NDVI values from 20 March (GS 31) to 28 June (GS 87). The 

sum of NDVI values of unrelated plots was slightly higher (7.63) than the related plots 

(7.59). Therefore, although there were initial differences in NDVI values between the two 

groups, crop vigor (NDVI) was equalized starting from the stem elongation growth stage 

(GS 31). 
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Figure 7. NDVI temporal evolution of the 13 plots. Blue color shows the plots that have reached a 

moderate level of agreement (related plots) between NDVI and yield. Pink color shows the group 

of plots that did not reach a moderate agreement (unrelated plots). The plots belonging to this group 

have been individually identified with different types of lines. 

3.3.4. Why Some Plots Have a Lower NDVI during the Tillering Phase 

A lower NDVI value during tillering is indicative of slower crop development. The 

factors that most influence the onset of tillering are the anaerobic state of the soil and 

temperature [82], both directly related to the rainfall regime. It is estimated that the tiller-

ing phase started at the end of January. January was unusually rainy, raining 165 mm, 

more than double the 30-year average of 82 mm (Figure 2). Although some soil moisture 

is necessary, excessive soil water accumulation can delay tillering initiation by stressing 

the crop. Thus, a saturation of soil air pores causes hypoxia or anoxia due to a total or very 

low absence of plant-available oxygen [83]. Low oxygen availability disturbs plant phys-

iology and metabolism, resulting in reduced growth, retarded development and, finally, 

reduced grain yield [84]. 

The study plots are situated in a flat lowland area with low hydraulic gradients and 

a high groundwater table [85]. In addition, the phreatic level is close to the surface (0–1.5 

m), so it is common for some areas of the plots to periodically become waterlogged [86]. 

Thus, plot topography influences the ability to drain and hold water. Therefore, due to 

the high rainfall produced in early 2019, zones with better drainage may have encouraged 

the onset of tillering. The topographic wetness index (TWI) considers the topography of 

an area to determine the capacity to retain or drain water. The ANOVA results show that 

the TWI values of the unrelated plots (TWI = 4.70) were significantly higher (p < 0.01) than 

related plots (4.42), which indicates that their water holding capacity is higher. Therefore, 

after a rainy January, water may saturate the soil pores.  

The color of the soil affects its temperature directly since dark-colored soils absorb 

more radiant heat than light-colored ones [87]. Therefore, darker soils warm up more rap-

idly than pale soils [88]. The orthophoto of 2009 provides the opportunity to analyze the 

soil color of the study plots, as the soil was bare of vegetation when it was taken. A new 

variable was obtained by summing the values of the three channels (red, green, and blue) 

of the orthophoto. The values of the new variable vary between 0 (black) and 765 (white). 

Another ANOVA was performed to compare the soil color of related and unrelated plots. 

The analysis showed that unrelated plots are significantly (p < 0.001) lighter (mean ∑RGB 

375.6) than related plots (mean ∑RGB 341.9). 

In summary, soils of the unrelated plots are lighter and have a higher water holding 

capacity. The extraordinary rainfall period and the physical characteristics of unrelated 
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parcels (soil color and topography) delayed the onset of tillering, which was reflected in 

the lower NDVI values during the tillering phase. The work of Arguello et al. [89] dis-

cussed how waterlogging changes the importance of yield components of wheat. In the 

control treatment, the number of kernels spikes−1, the number of spikes in each m−1, and 

1000 kernel weight were the components that most influenced the yield. Nonetheless, in 

wheat that had undergone waterlogging, the number of spikes m−1 and kernel weight 

spike−1
 were the two most relevant components. In this study, the onset of tillering was 

delayed due to the waterlogging of some plots due to previous heavy rainfall.  

Wheat suffered water stress from May onwards (GS 60) as it received less water. 

Therefore, it is understandable that the NDVI of the plots with higher water holding ca-

pacity matched with the related plots. This higher NDVI at the waterlogged plots from 

GS 30 on was already reported by [89] in a previous article. This suggests that, despite the 

lower number of tillers, the ears developed from these have developed adequately, and 

as a consequence of being less stressed, the other two yield components (kernel number 

spikes−1 and 1000 kernel weight), which are more difficult to detect by remote sensing, 

have compensated for the lower number of spikes/m2. 

In the early stages of development, the number of tillers is well correlated with bio-

mass, but this relationship decreases during crop development [90]. Considering that 

NDVI reflects changes in biomass better than changes in grain yield [31], it can be assumed 

that the greater the influence of the number of tillers per m2 on yield, the better the rela-

tionship with NDVI [89]. 

4. Conclusions 

In one-third of the plots analyzed, the NDVI showed moderate agreement (KI > 0.4) 

with the classified yield map before the time for the last N fertilizer application. Therefore, 

for these cases, the use of NDVI would be a useful tool to delineate yield site-specific 

management zones within the same season. However, for another third of the plots, a 

moderate agreement (KI > 0.40) was reached between NDVI and grain yield maps only 

after the last N fertilization. For the rest of the plots, a moderate concordance was not 

reached at any time of crop development. Therefore, for two-thirds of the plots, the NDVI 

would be useful to delimit yield-specific homogeneous management zones in the follow-

ing seasons regarding N fertilization. This is feasible, provided that the agreement be-

tween NDVI and yield does not depend on the growing season. 

An attempt has been made to provide an answer for plots that do not show agree-

ment between NDVI classified images and grain yield classified maps. The mismatch may 

be the result of a delay in the onset of tillering, which causes a shortening of the tillering 

phase. As a result, the plant does not develop enough tillers, so it tries to compensate for 

this through other yield components (number of grains per tillers and grain weight) that 

are not well estimated by the NDVI index. 

In summary, NDVI is a promising tool for establishing site-specific yield manage-

ment zones. However, a better understanding of the underlying mechanisms is needed to 

develop a methodology applicable to farmers. Therefore, further studies are needed to 

increase knowledge on this issue. 
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