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Abstract: Aiming at the application of close-up space measurement based on time-of-flight (TOF)
cameras, according to the analysis of the characteristics of the space background environment and
the imaging characteristics of the TOF camera, a physics-based amplitude modulated continuous
wave (AMCW) TOF camera imaging simulation method for space targets based on the improved
path tracing is proposed. Firstly, the microfacet bidirectional reflection distribution function (BRDF)
model of several typical space target surface materials is fitted according to the measured BRDF data
in the TOF camera response band to make it physics-based. Secondly, an improved path tracing
algorithm is developed to adapt to the TOF camera by introducing a cosine component to characterize
the modulated light in the TOF camera. Then, the imaging link simulation model considering
the coupling effects of the BRDF of materials, the suppression of background illumination (SBI),
optical system, detector, electronic equipment, platform vibration, and noise is established, and the
simulation images of the TOF camera are obtained. Finally, ground tests are carried out, and the
test shows that the relative error of the grey mean, grey variance, depth mean, and depth variance
is 2.59%, 3.80%, 18.29%, and 14.58%, respectively; the MSE, SSIM, and PSNR results of our method
are also better than those of the reference method. The ground test results verify the correctness of
the proposed simulation model, which can provide image data support for the ground test of TOF
camera algorithms for space targets.

Keywords: TOF imaging simulation; space target; improved path tracing; BRDF; SBI

1. Introduction

In recent years, time-of-flight (TOF) imaging technology has been widely used in
ground robot positioning and navigation, pose estimation, 3D reconstruction, indoor
games, and other fields due to its advantages in structure and performance. Significantly,
researchers are promoting TOF imaging technology in spatial tasks such as spatial pose
estimation and relative navigation [1–6]. However, due to the particularity of the space
environment, it is difficult to obtain the imaging results of the actual TOF camera before
formulating the space mission scheme, planning mission content, and designing the related
algorithms, so it is impossible to evaluate the algorithm capability and ensure the smooth
implementation of the mission [7]. The imaging simulation method can provide data
input for the back-end algorithm test of the space-based TOF camera. Nevertheless, it is
different from the imaging simulation methods of the visible light camera [8–12], infrared
camera [13–15], and radar [16,17], there are few imaging simulation methods of TOF
cameras because the imaging principle is essentially different. Therefore, it is of great
significance to develop the imaging simulation method of the TOF camera for space targets.

For the imaging simulation method of the TOF camera, the research status is as follows.
References [18,19] proposed a real-time TOF simulation framework for simple geometry
based on standard graphics rasterization techniques. This method only considers the
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influence of errors such as dynamic motion blur and flying pixels and does not consider
the influence of the background environment, so it is only suitable for indoor scenes.
Reference [20] presented an amplitude modulated continuous wave (AMCW) TOF simu-
lation method using global illumination based on the bidirectional path tracing method
for indoor scenes such as kitchens. References [21,22] established physics-based TOF cam-
era simulation methods, respectively. In order to evaluate two alternative approaches in
continuous-wave TOF sensor design, reference [21] focused on realistic and practical sensor
parameterization. Based on the reflective shadow map (RSM) algorithm, reference [22]
introduced the bidirectional reflection distribution function (BRDF) data of materials, which
has the physical imaging characteristics of actual materials, but this method also does not
consider the influence of background illumination. Reference [23] proposed a pulsed TOF
simulation method based on Vulkan shader and NVIDIA VKRAY ray tracing for indoor
scenes. It can be seen that most of these existing TOF imaging simulation methods are
only for indoor scenes, without considering the influence of background illumination, and
there is no research on the imaging simulation method of TOF cameras specifically for
space targets.

The main difference between the space environment and the indoor environment is the
influence of sunlight. The sunlight will affect the signal-to-noise ratio and even cause the de-
tector’s supersaturation. Therefore, the camera’s hardware must consider the suppression
of background illumination (SBI). Many TOF detectors considering the SBI function have
been developed [24–28]. At the same time, for the TOF camera simulation, SBI must also
be considered, and the corresponding simulation model must be developed. Reference [29]
constructed a theoretical model of SBI for PMD detectors, which can effectively characterize
the detector’s ability to suppress background illumination.

To sum up, this paper proposes a physics-based imaging simulation method of TOF
cameras for space targets based on improved path tracing, aiming at the space application
of TOF cameras. The main contributions of this method are as follows:

(1) An improved path tracing algorithm is developed to adapt to the TOF camera by
introducing a cosine component to characterize the modulated light in the TOF camera.

(2) The background light suppression model is introduced, and the physics-based simu-
lation is realized by considering the BRDF model fitted by the measured data in the
near-infrared band of space materials

(3) A ground test scene is built, and the correctness of the proposed TOF camera imaging
simulation method is verified by quantitative evaluation between the simulated image
and measured image.

2. Materials and Methods
2.1. Imaging Principle of TOF Camera

Based on the homodyne detection principle, the AMCW TOF camera measures the
distance by measuring the cross-correlation between the reflected light and reference signals.
The camera first transmits the near-infrared optical signal modulated by a sine wave. The
optical signal is reflected by the target surface and received by the infrared detector. The
phase delay of the received signal relative to the transmitted signal is calculated to calculate
the target distance information. The specific principle is shown in Figure 1.

It is assumed that the transmitted infrared optical signal is g(t) = a cos(2π f0t), its
amplitude is a, f0 is the signal modulation frequency, and the received optical signal s(t) is

s(t) = ar cos(2π f0t + ϕ) + b (1)

where ar is the amplitude of reflected signal light, ϕ is the phase delay caused by target
distance, and b is the offset caused by ambient light. Then, the cross-correlation between
the transmitted optical signal and the received optical signal is:
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cτ(ϕ) = sFg = lim
T→∞

1
T

T/2∫
−T/2

s(t)g(t + τ)dt (2)

where τ is the time delay and F is the correlation operation symbol.
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Figure 1. Schematic diagram of the continuous wave TOF system. 

It is assumed that the transmitted infrared optical signal is 
0( ) cos(2 )g t a f t= , its 

amplitude is a , 
0f  is the signal modulation frequency, and the received optical signal 

( )s t  is 

0( ) cos(2 )rs t a f t b = + +  (1) 

where 
ra  is the amplitude of reflected signal light,   is the phase delay caused by target 

distance, and b  is the offset caused by ambient light. Then, the cross-correlation between 

the transmitted optical signal and the received optical signal is: 

/2

/2

1
( ) lim ( ) ( )

T

T
T

c s g s t g t dt
T

  
→

−

= = +★  (2) 

where   is the time delay and ★  is the correlation operation symbol. 

In order to recover the amplitude 
ra  and phase   of the reflected light signal, four 

sequence amplitude images are collected generally, which are defined as: 

0

( ), , {01,2,3}
2 2ii iC c i i

f



 


= =  


，

 
(3) 

Then, the phase delay  , reflected signal amplitude 
ra , and offset b  can be ob-

tained as: 

3 1

0 2

arctan
C C

C C


 −
=  

−   

(4) 

( ) ( )
2 2

3 1 0 2

1

2
ra C C C C

a
= − + −

 

(5) 

0 1 2 3

1
( )

4
+b C C C C= + +

 
(6) 

Finally, the distance d  between the TOF camera and the scene is: 

0

1

2 2
lightd c

f




=

 
(7) 

The purpose of imaging simulation is to obtain the distance d  and the intensity of 

the reflected signal, which is related to the characteristics of the target material, back-

ground, the TOF camera, and so on. 

  

Figure 1. Schematic diagram of the continuous wave TOF system.

In order to recover the amplitude ar and phase ϕ of the reflected light signal, four
sequence amplitude images are collected generally, which are defined as:

Ci = cτi (ϕ), τi = i · π
2×2π f0

, i ∈ {0, 1, 2, 3} (3)

Then, the phase delay ϕ, reflected signal amplitude ar, and offset b can be obtained as:

ϕ = arctan
(

C3 − C1

C0 − C2

)
(4)

ar =
1
2a

√
(C3 − C1)

2 + (C0 − C2)
2 (5)

b =
1
4
(C0 + C1 + C2 + C3) (6)

Finally, the distance d between the TOF camera and the scene is:

d =
1
2

clight
ϕ

2π f0
(7)

The purpose of imaging simulation is to obtain the distance d and the intensity of the
reflected signal, which is related to the characteristics of the target material, background,
the TOF camera, and so on.

2.2. Imaging Characteristic Modeling
2.2.1. Target Material Characteristics Modeling

In order to achieve physics-based simulation, it is necessary to introduce the reflection
characteristics of the actual material of the target surface. The BRDF is usually used to
express the reflection characteristics of the material surface. As shown in Figure 2a, on the
surface element dA, the incident light direction is (θi, φi), and the observation direction
is (θr, φr), where θ and φ represent the zenith angle and azimuth angle, respectively, and
∧
Z represents the normal direction of the surface. The BRDF is defined as the ratio of the
radiance dLr(θi, φi, θr, φr) emitted along the direction (θr, φr) to the irradiance dEi(θi, φi) of
the measured surface incident along the direction (θi, φi), and the formula is as follows.

fr(θi, φi, θr, φr) =
dLr(θi ,φi ,θr ,φr)

dEi(θi ,φi)
(sr−1) (8)
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Figure 2. Schematic diagram of the BRDF geometry and the measuring instrument used in this paper.
(a) Schematic diagram of the BRDF geometry; (b) the REFLET-180 BRDF measuring instrument.

Yellow thermal control material and silicon solar cells are two primary surface ma-
terials of space targets. In this paper, their BRDF data are measured by the REFLET-180
BRDF measuring instrument as shown in Figure 2b. The specific material samples and
some corresponding measurement results are shown in Figure 3.

Figure 3. Material samples and some measured BRDF data of yellow thermal control material and
silicon solar cells. The brighter the color, the greater the BRDF value. (a) Sample of thermal control
material; (b) sample of silicon solar cells; (c) measured BRDF of thermal control material when θi is
30◦; (d) measured BRDF of silicon solar cells when θi is 30◦; (e) measured BRDF of thermal control
material when θi is 60◦; (f) measured BRDF of silicon solar cells when θi is 60◦.

At the same time, the above measured BRDF data are theoretically modeled using
the microfacet BRDF model [14,15]. The microfacet BRDF model includes the specular
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reflection term and the diffuse reflection term, and the specular reflection term is the
Torrance–Sparrow BRDF model [30]. The definition of the microfacet BRDF model is
as follows.

fr(θi, φi, θr, φr) =
ks

4 cos θi cos θr
DFG +

kd
π

(9)

where ks is the specular reflection coefficient, kd is the diffuse reflection coefficient, D is
the micro surface distribution factor, F is the Fresnel factor [31], and G is the geometric
attenuation factor. Their specific definition is as follows. D = e− tan2 θh/α2

/
(
πα2 cos4 θh

)
F = F0 + (1− F0)(1− cos γ)n

G = min(1, 2 cos θh cos θr/cos γ, 2 cos θh cos θi/cos γ)

(10)

where α =
√

2σ and σ are the root mean square slope of the microfacet, F0 is the Fresnel
coefficient at vertical incidence, and n is the undetermined coefficient.

Since the wavelength of the TOF camera light source used in this paper is 850 nm, the
parameters of the BRDF model at 850 nm are fitted, and the fitting error is expressed by the
following formula [32,33].

e f it =

∑
θi

∑
θr

[ fr-model · cos(θr)− fr-measured · cos(θr)]
2

∑
θi

∑
θr

[ fr-measured · cos(θr)]
2 (11)

where fr-measured represents the measured BRDF value, fr-model represents the fitted BRDF
value, the parameter fitting results are shown in Table 1, and the visualization of fitting
results is shown in Figure 4.

Table 1. Fitting results of BRDF model parameters at 850 nm.

ks kd n σ F0 e f it

Thermal control material 0.649 0.081 8.51 0.014 0.775 2.6%
Silicon solar cells 0.350 0.053 2.22 0.010 0.021 5.2%
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Figure 4. Measurement and model fitting results of BRDF at 850 nm for yellow thermal control
material and silicon solar cells. (a) Fitting results of the BRDF model of yellow thermal control
material; (b) fitting results of the BRDF model of silicon solar cells.

2.2.2. Background Characteristics Modeling

Space targets run in the Earth’s orbit. The radiation in the imaging band of the TOF
camera is mainly composed of direct solar radiation, solar radiation reflected by the Earth,
solar radiation reflected by the Moon, and stellar radiation. Since the stellar radiation is
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minimal compared to other radiation, the stellar radiation at the target can be ignored. The
surface radiation of the target is shown in Figure 5.
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Figure 5. Physical radiation model of space targets.

(1) The irradiance generated by direct solar radiation at the target is:

ES =

λ2∫
λ1

c1
λ5 (ec2/λTS − 1)

−1 · R2
S

R2
S−E

dλ (12)

where λ is the wavelength in µm; c1 is the first blackbody radiation constant; c2 is
the second blackbody radiation constant; TS is the solar radiation temperature, and
TS = 5900 K; RS is the solar radius, and RS = 6.5955× 105 km; RS−E is the distance
between the Sun and the Earth; λ1 ∼ λ2 is the observation band of the TOF camera.

(2) Assuming that the space target is in a high Earth orbit and the Earth is assumed to be
a diffuse sphere, the irradiance generated by solar radiation reflected by the Earth at
the target is approximate as follows.

EE =
ES ·ρE ·R2

E
π(RE+HTE)

2

π
2∫

θE− π
2

π
2∫
− π

2

cos3 B
(
cos θE cos2 l + sin θE sin l cos l

)
dBdl

=
4ES ·ρE ·R2

E
3π(RE+HTE)

2

[
cos θE

(
π
2 −

θE
2 + sin 2θE

4

)
+ sin θE

(
1
4 −

cos 2θE
4

)] (13)

where ρE is the average albedo of the Earth and ρE = 0.35; RE is the radius of the
Earth and RE = 6370 km; HTE is the height of the target from the ground; θE is the
angle between vector

→
v Sun-Earth and vector

→
v Earth-Target, and the value range is [0, π].

(3) Similarly, assuming that the Moon is a diffuse sphere, the irradiance generated by
solar radiation reflected by the Moon at the target is:

EM ≈
ES ·ρM ·R2

M
πR2

TM

π
2∫

θM− π
2

π
2∫
− π

2

cos3 B
(
cos θM cos2 l + sin θM sin l cos l

)
·dBdl

=
4ES ·ρM ·R2

M
3πR2

TM

[
cos θM

(
π
2 −

θM
2 + sin 2θM

4

)
+ sin θM

(
1
4 −

cos 2θM
4

)] (14)

where ρM is the average albedo of the Moon and ρM = 0.12; RM is the radius of the
Moon and RM = 1738 km; RTM is the distance between the target and the center of
mass of the Moon; θM is the angle between vector

→
v Sun-Moon and vector

→
v Moon-Target,

and the value range is [0, π].

2.2.3. SBI Characteristics Modeling

The TOF sensor is commonly the photonic mixer device (PMD). The PMD is a two-tap
sensor, and the structure diagram is shown in Figure 6a [34]. The interference of background
light on the actively modulated light leads to the premature saturation of the quantum
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well of the pixel, so that less reflected active light containing depth information is detected,
which will lead to increased noise and a reduced signal-to-noise ratio (SNR). The schematic
diagram of the influence of background light on PMD is shown in Figure 6b [35]. Therefore,
designing a system that can effectively reduce the impact of background illumination is an
important job.
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The suppression of background illumination (SBI) developed by PMDTec has been
successfully applied to TOF cameras such as CamCube. The SBI is an in-pixel circuitry
that subtracts ambient light, which prevents the pixels from saturating. The manufacturer
did not publish the specific details of the SBI compensation circuit, but reference [36]
summarizes the response relationship of the A and B channels of the PMD pixel to the
exposure time through experiments, as shown in Figure 7. The PMD pixel will produce a
photoelectric response to both the signal light and the background illumination during the
exposure time. In the linear region, the SBI is not activated. When the number of electrons
in the quantum well A or B reaches nSBI,start, the SBI is activated. As the exposure time
continues to increase, it will enter the SBI Limit region, and the data of this pixel is invalid
at this time.
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Reference [29] established the SBI model shown in Figure 8 by analyzing the response
relationship of the TOF camera to illumination intensity or exposure time. This SBI model
is also used in this paper, which can be described as follows. The charge stored in two
quantum wells ∑ is continuously compared with a reference value nSBI,start, and once the
stored charge in one of the quantum wells exceeds this value, that is, the difference n∆
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between the stored charge and the reference value nSBI,start is positive, a compensation
process will be triggered. Two compensation currents are injected into the two quantum
wells during the compensation process, respectively, and the number of charges contained
in the compensation currents is approximately the same as that of n∆. After compensation,
the quantum well containing more electrons is reset to nSBI,start, and the charge of the other
quantum well is set to a value lower than nSBI,start.
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The compensation process does not lose any critical information, as the phase delay
can be estimated by keeping only the difference between the charges in the two quantum
wells. As shown below, each sub-amplitude image in Equation (4) is the difference between
the amplitude images of channels A and B.

Ci = CiA − CiB (15)

where CiA and CiB are amplitude images output by channels A and B, respectively.
As shown in the figure above, both the background illumination and the SBI process

introduce additional Poisson noise. The Poisson distribution is given by

Pλ =
λk

k!
e−λ (16)

where λ describes the mean of the values, which is here the number of generated electrons.
Pλ is the probability of detecting k electrons for a given λ.

2.3. Imaging Simulation Modeling

In order to obtain the simulated image of the actual target, an AMCW TOF camera
imaging simulation model based on path tracing is proposed in this paper. Firstly, establish
the space three-dimensional target scene, simulate the TOF camera to transmit the modu-
lated light signal to the target scene, and obtain the radiance image of the space target scene
through the path tracing method. Secondly, the radiance image is coupled with the imaging
chain factors such as platform motion, optical system, and detector, and the influence of
background light is suppressed through the SBI module. Then, four frames of amplitude
images are obtained through time sampling. Finally, the final depth and grey image are
obtained through Formula (4) to Formula (7). The specific simulation model is shown in
Figure 9.
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2.3.1. Improved Path Tracing Algorithm of the TOF Camera

The general path tracing algorithm is suitable for the imaging simulation of visible
light and infrared cameras. However, since the light signal in the TOF camera is modulated,
there is a cosine component that varies with the propagation distance. Therefore, to apply
the path tracing algorithm to the TOF camera, an improved path tracing algorithm is
developed by introducing a cosine component to characterize the modulated light in the
TOF camera, and the improved algorithm is shown as follows.

Define T(g(t), d) to represent the propagation distance d [m] of the optical signal
g(t) = b + a cos(2π f0t) = g(t)− + real

(
g(t)cos) without attenuation, and its form is as

follows.
T(g(t), d) = b + a cos

(
2π f0t + 2π f0

d
c

)
= g(t)− + real

(
g(t)cos · eiΨd

) (17)

where g(t)− = b represents the DC component, g(t)cos = aei(2π f0t) represents the cosine
component, and real() represents the real part of the imaginary number and Ψ = 2π f0

c .
The light source L of the TOF camera is assumed to be a uniform point light source,

then the light intensity IL is as follows.

IL(t) =
PL
ΩL

[1 + cos(2π f0t)] (18)

where PL[W] represents the power of the light, ΩL represents the solid angle, and f0
represents the modulation frequency of the optical signal.

The illuminance EL(t, d) at the micro-plane perpendicular to the light propagation
direction at d [m] away from the light source is:

EL(t, d) = T
(

IL(t)/d2, d
)

(19)

For a point P in the scene shown in Figure 10, the illuminance generated by direct
lighting at P is EL→@P(t, dL→P).

EL→@P(t, dL→P) = EL(t, dL→P) · cos θP→L (20)

where dL→P is the distance between the light source L and the point P, and θP→L is the
included angle between the vector

→
v P→L of P pointing to L and the normal vector

→
n P of

the surface at point P.
The direct illumination radiance Ldirect

@P→S(t) generated by the infrared light source along
the direction of P→ S at point P is:

Ldirect
@P→S(t) = EL→@P(t, dL→P) · fL→P→S (21)

where fL→P→S represents the BRDF of the surface. For the irradiance EL′→@P(t, dL′→P)
of ambient light sources L′ such as the Sun, the Earth, and the Moon, as shown in
Formulas (12)–(14), the cosine component of EL′→@P(t, dL′→P) is 0, only the DC component.
Therefore, in the derivation process, this paper only gives the case of the active light of
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the TOF camera. When encountering ambient light, it only needs to change the cosine
component related to ambient light to 0.
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Figure 10. The schematic diagram of direct lighting.

In addition to the direct illumination of light sources, the light signal reflected by other
surfaces will also affect the radiance at point P, as shown in Figure 11. We call this part
indirect illumination radiance denoted by Lindirect

@P→S (t), which is defined as follows.

Lindirect
@P→S (t) =

∫
Ω

fP′→P→SLP′→@P(t) cos(θi)dvi (22)

where LP′→@P(t) represents the radiance generated by P′ at point P, Ω represents the solid
angle of these surfaces that contribute to the radiance at point P, vi represents the micro
solid angle in the

→
ωi direction, and dvi is defined as follows.

dvi =
cos(θo)dA(P′)

d2
P′→P

(23)
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Since the radiation energy of light in the scene is conserved, the radiance at P can be
associated with the radiance at another point P′.

LP′→@P(t) = T
(

Lo

(
isect

(
P,
→
ωi

)
,−→ωi, t

)
, dP′→P

)
(24)
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where isect
(

P,
→
ωi

)
calculates the first intersection P′ between the light propagating along

the
→
ωi direction from point P and the scene. dA(P′) represents the microfacet at the

intersection P′.
Substituting Equation (23) into Equation (22), we can get:

Lindirect
@P→S (t) =

∫
A

fP′→P→SLP′→@P(t)
V(P↔ P′)|cos(θi)||cos(θo)|

d2
P′→P

dA
(

P′
)

(25)

where A is all surfaces of the scene, and V(P↔ P′) represents the visibility between
points P′ and P. If the two points are visible to each other, V(P↔ P′) = 1; otherwise,
V(P↔ P′) = 0 Let.

G
(

P↔ P′
)
=

V(P↔ P′)|cos(θi)||cos(θo)|
d2

P′→P
(26)

Then
Lindirect

@P→S (t) =
∫

A
fP′→P→SLP′→@P(t)G

(
P↔ P′

)
dA
(

P′
)

(27)

Combining direct radiance and indirect radiance, the radiance L@P→S(t) at the point
P can be expressed as follows.

L@P→S(t) = Ldirect
@P→S(t) + Lindirect

@P→S (t)
= EL→@P(t, dL→P) · fL→P→S +

∫
A fP′→P→SLP′→@P(t)G(P↔ P′)dA(P′)

(28)

After the radiance L@P→S(t) propagate distance dP→S, the radiance LP→@S(t) at the
camera sensor S is:

LP→@S(t) = T(L@P→S(t), dP→S) (29)

The path tracing algorithm [37,38] based on Monte Carlo is utilized to solve the
Equation (28), which is approximated as follows.

L@P1→S(t) ≈
1
N

N

∑
k=1

NumLight

∑
l

MaxDepth

∑
n=1

Lk
MC(pn) (30)

where MaxDepth represents the maximum bounce times of light, NumLight represents the
number of light sources, N represents the number of samples per pixel, Lk

MC(pn) represents
the Monte Carlo estimation of the kth sample, as shown below.

LMC(pn) = real
{

E¯
L→@Pn (t,dL→Pn )· fL→Pn→S · fPn→Pn−1→Pn−2 G(Pn↔Pn−1)

pA(Pn)

×
(

n−2
∏
i=1

fPi+1→Pi→Pi−1
·V(Pi→Pi+1)·|cos θi |

pω(Pi→Pi+1)

)
+

Ecos
L→@Pn (t,dL→Pn )· fL→Pn→S ·e

iΨdPn→Pn−1 fPn→Pn−1→Pn−2 G(Pn↔Pn−1)

pA(Pn)

×
(

n−2
∏
i=1

e
iΨdPi+1→Pi · fPi+1→Pi→Pi−1

·V(Pi→Pi+1)·|cos θi |
pω(Pi→Pi+1)

)}
(31)

where pA(Pn) is the sampling probability function at Pn point, which is defined as
pA(Pn) = 1

∑n An
, ∑n An is the sum of the surfaces of the scene, and pω(Pi → Pi+1) is

the sampling probability density function in the Pi → Pi+1 direction.
The irradiance Epixel received by the pixel of the TOF sensor is as follows.

Epixel(t) = T
(

L@P1→S(t), dP1→S
)
· τ · π

4
·
(

1
F/#

)2
cos4 α (32)
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where, τ represents the transmittance of the AMCW TOF camera, F/# represents its f-
number, and α represents the angle between the optical axis and the vector

→
v S→P1 .

2.3.2. Imaging Link Impact Modeling

As shown in Figure 9, the target scene radiation forms the conversion process of
“radiation-voltage-grey” after passing through each component module of the TOF camera.
In this process, the signal is affected by the optical system, detector, circuit processing
unit, and platform, which is reflected in the image as the dispersion effect on the radiation
image. These dispersion effects can be described by each module’s modulation transmission
function (MTF), as shown in Figure 12.
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Then, the last output simulation image [39] is:

Imagesim = IFFT(FFT(ImageRad) ·MTFopt ·MTFdet ·MTFe ·MTFmot) + Noise (33)

where FFT represents fast Fourier transform; MTFopt represents the MTF of the optical
system; MTFdet represents the MTF of the detector; MTFe represents the MTF of the signal
processing circuit; MTFmot represents the MTF of the platform motion; Noise represents the
noise of the image. MTF models of different processes can be found in references [8,17,40].

3. Results

In order to verify the correctness of the proposed TOF camera imaging simulation
method for space targets, the ground experiment scene shown in Figure 13 is built. Consid-
ering that it is difficult to simulate the radiation of the Earth and the Moon on the ground,
and the influence of these radiations is minimal, the ground experiment only considers the
direct solar radiation. The experimental scene comprises a satellite model, a TOF camera, a
turntable, a black background, and a solar simulator. The surface of the satellite model is
mainly composed of yellow thermal control materials and silicon solar cells, and the TOF
camera is placed horizontally on a tripod. The TOF camera used in this paper is the PMD
CamBoard camera, and its performance indexes are shown in Table 2. The solar simulator
used is the Newport Oriel Sol3A, and its performance indexes are shown in Table 3. The
experimental background is a dark background composed of black light-absorbing flannel,
and the light beam emitted by the solar simulator completely covers the target model.

During the experiment, all light sources in the room were turned off, the solar simulator
was turned on, the output power of the solar simulator was set to the typical power (1 SUN),
and the PMD camera was used to capture the images of the target model. Due to the size
of the satellite model and the limited illumination area of the solar simulator, to make the
beam of the solar simulator cover the target model entirely, the satellite model is inclined at
a certain angle. At the same time, the TOF imaging simulation method proposed in this
paper was used to obtain the corresponding simulation image according to the experimental
conditions. Other simulation parameters used are shown in Table 4. The measured images
and the simulated images are shown in Figure 14. In order to facilitate the comparison with
the simulated image, the background area of the measured image is eliminated manually.
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Figure 13. Ground experiment scene. (a) Schematic diagram of the ground experiment scene;
(b) actual ground experiment scene; (c) the Newport Oriel Sol3A Solar Simulator, Model 94123A.

Table 2. The performance indexes of PMD CamBoard.

Indexes Value

Resolution 224 × 171 pixel
Wavelength of light source 850 nm

Field angle 62◦ × 45◦

Focal length ( f /dx, f /dy) (208.33, 208.33)
Aperture 2 mm

Acquisition time per frame 4.8 ms typical at 45 fps
Average power consumption 300 mW

Table 3. Some performance indexes of the Newport Oriel Sol3A Solar Simulator, Model 94123A.

Indexes Value

Illumination area 305 mm × 305 mm
Maximum angle of incidence (half angle) < ±0.5◦

Typical power output 100 mW/cm2 (1 SUN), ±20% Adjustable
Uniformity <±2%

Spectral match 9.7–16.1% (800–900 nm)
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Table 4. Other simulation parameters used.

Indexes Value

Size of satellite body 20 × 20 × 20 cm
Size of solar panel 63 × 35 cm

dcam-sat 1.5 m
θcam-panel 60◦

θsolarSim-panel 10◦

nSBI,start 36,500

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

proposed in this paper was used to obtain the corresponding simulation image according 

to the experimental conditions. Other simulation parameters used are shown in Table 4. 

The measured images and the simulated images are shown in Figure 14. In order to facil-

itate the comparison with the simulated image, the background area of the measured im-

age is eliminated manually. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 14. The measured images of the ground experiment scene (the background area is elimi-

nated) and the corresponding simulated images. (a) Measured grey image; (b) measured depth im-

age; (c) grey image simulated by the method of Ref. [22]; (d) depth image simulated by the method 

of Ref. [22]; (e) simulated grey image of ours; (f) simulated depth image of ours. (c,d) only consider 

the influence of the active light of the TOF camera and do not consider the ambient solar light. (e,f) 

consider the process of the SBI model suppressing solar ambient illumination. 

Table 4. Other simulation parameters used. 

Indexes Value 

Size of satellite body 20 × 20 × 20 cm 

Size of solar panel 63 × 35 cm 

cam satd −  1.5 m 

cam panel −   60° 

solarSim panel −  10° 

,SBI startn
 36,500 

In Table 4, cam satd −  represents the distance between the PMD TOF camera and satel-

lite body center, cam panel −  represents the angle between the optical axis of the camera and 

the plane of the solar panel, and solarSim panel −  represents the angle between the beam of the 

solar simulator and the plane of the solar panel. According to references [41,42], the value 

of ,SBI startn  is about 36,500. 

In order to quantitatively evaluate the simulation effect, the mean, variance, mean 

square error (MSE), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) of 

Figure 14. The measured images of the ground experiment scene (the background area is eliminated)
and the corresponding simulated images. (a) Measured grey image; (b) measured depth image;
(c) grey image simulated by the method of Ref. [22]; (d) depth image simulated by the method of
Ref. [22]; (e) simulated grey image of ours; (f) simulated depth image of ours. (c,d) only consider
the influence of the active light of the TOF camera and do not consider the ambient solar light. (e,f)
consider the process of the SBI model suppressing solar ambient illumination.

In Table 4, dcam-sat represents the distance between the PMD TOF camera and satellite
body center, θcam-panel represents the angle between the optical axis of the camera and the
plane of the solar panel, and θsolarSim-panel represents the angle between the beam of the
solar simulator and the plane of the solar panel. According to references [41,42], the value
of nSBI,start is about 36,500.

In order to quantitatively evaluate the simulation effect, the mean, variance, mean
square error (MSE), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) of
the grey image and depth image are calculated. The smaller the MSE, the larger the SSIM,
and the larger the PSNR, indicating the more realistic the simulation results are. These
indexes are shown in Table 5, where bold indicates better results. At the same time, the
depth image is converted into a point cloud and denoised. The point cloud before and after
denoising is shown in Figure 15.
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Table 5. Comparison of indexes between measured images and simulated images.

Index Measured
Mage

Ref. [22]’s
Results

Our
Results

Ref. [22]’s
Error

Our
Error

Grey

Mean 17.79 16.73 18.25 5.96% 2.59%
Var 1411.67 1347.53 1358.06 4.54% 3.80%

MSE — 1788.35 1782.60 — —
SSIM — 0.70 0.72 — —
PSNR — 15.60 15.62 — —

Depth

Mean 403.04 750.28 476.75 86.16% 18.29%
Var 2.95 × 105 4.15 × 105 3.38 × 105 40.68% 14.58%

MSE — 5.46 × 105 4.45 × 105 — —
SSIM — 0.80 0.85 — —
PSNR — 38.95 39.85 — —
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clouds; (b) simulation and measured point cloud after denoising.

4. Discussion

As shown in Figure 14, our simulated grey and depth images are very similar to the
measured grey and simulation images in visual effect. The gray image simulated by the
method of reference [22] is also very similar to the measured gray image. However, the
corresponding simulated depth image is quite different from the measured depth. The
specific reason is that this method does not consider the error introduced by background
lighting, resulting in low depth noise. At the same time, as shown in Figure 15, the point
cloud coincidence degree of our method is better than that of reference [22]. In addition,
it can be seen from Table 5 that the relative error of the grey mean, grey variance, depth
mean, and depth variance is 2.59%, 3.80%, 18.29%, and 14.58%, respectively, which is better
than the results of the method in reference [22]. Furthermore, our method’s MSE, SSIM,
and PSNR results are also better than those of the method in reference [22].

5. Conclusions

This paper proposed a physics-based AMCW TOF camera imaging simulation method
based on the improved path tracing for space targets based on the analysis of space
background environment characteristics and the TOF camera imaging mechanism. Firstly,
the BRDF data of the yellow thermal control material and the silicon cell at 850 nm was
measured, the parameters of the microfacet BRDF model were fitted, and the fitting error
was less than 5.2%. Secondly, an improved path tracing algorithm was developed to adapt
to the TOF camera by introducing a cosine component to characterize the modulated light in
the TOF camera. Then, the imaging link simulation model considering the coupling effects
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of the BRDF of materials, SBI, optical system, detector, electronic equipment, platform
vibration, and noise was established. Finally, the ground experiment was carried out, and
the relative error of the grey mean, grey variance, depth mean, and depth variance was
2.59%, 3.80%, 18.29%, and 14.58%, respectively. At the same time, our method’s MSE, SSIM,
and PSNR results were also better than those of the reference method. The experimental
results verify the correctness of the proposed simulation method and can provide image
data support for the ground test of TOF camera algorithms for space targets.
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