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Abstract: Remote sensing-based crop yield estimation methods rely on vegetation indices, which
depend on the availability of the number of observations during the year, influencing the value
of the derived crop yield. In the present study, a robust yield estimation method was improved
for estimating the yield of corn, winter wheat, sunflower, and rapeseed in Hungary for the period
2000–2020 using 16 vegetation indices. Then, meteorological data were used to reduce the differences
between the estimated and census yield data. In the case of corn, the best result was obtained using
the Green Atmospherically Resistant Vegetation Index, where the correlation between estimated and
census data was R2 = 0.888 before and R2 = 0.968 after the meteorological correction. In the case of
winter wheat, the Difference Vegetation Index produced the best result with R2 = 0.815 and 0.894
before and after the meteorological correction. For sunflower, these correlation values were 0.730
and 0.880, and for rapeseed, 0.765 and 0.922, respectively. Using the meteorological correction, the
average percentage differences between estimated and census data decreased from 7.7% to 3.9%, from
6.7% to 3.9%, from 7.2% to 4.2%, and from 7.8% to 5.1% in the case of corn, winter wheat, sunflower,
and rapeseed, respectively.

Keywords: MODIS; vegetation index; yield forecasting; meteorological data

1. Introduction

The general and economic governance of modern societies requires that the state of key
areas be monitored continuously, objectively, and as accurately as possible. One of the most
important areas to be examined is the combination of natural and social resources within
countries. Food production is highly important, and estimating the yield for the main crops
is an essential element. Timely and reliable agricultural production forecasts are critical for
food policy decisions and to enable rapid responses to emerging food shortfalls [1]. Almost
all countries with significant agriculture established a crop estimation system, which was
based essentially on the sum of terrestrial table-level observations and the reporting of
producers. Since the 1970s, with the rapid spread of Earth observation satellites, it has been
possible to examine the state of vegetation with satellite data, which have been proven to
be a useful tool for agricultural applications. Remote sensing indicators are now widely
used in agriculture for monitoring crop conditions and forecasting yield [2].

The methodology of the yield estimation procedures has a wide range [3]. Crop
estimation models using satellite data can basically be divided into two groups, direct
and indirect methods [4]. The indirect methods incorporate the satellite data into existing
agrometeorological or crop growth models [5–10]. Many of these models require a signifi-
cant amount of input data which limits their usefulness for research [11]. The direct models
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provide explicit mathematical relations between the satellite data and the yield of the given
plant, where some of them also include some basic meteorological or agronomical data
in the relationship [12–16]. The procedures are applied for various species, for example,
for corn [17–20], wheat [21–25], barley [26,27], rice [28,29], millet [30,31], soybean [32–34],
sorghum [35], sugar beet [36], canola [37–39], cotton [40], potato [41,42], sunflower [43,44],
peanut [45], grape [46], or even for opium [47].

Low-resolution remote sensing data have been widely used in crop yield forecasting
and monitoring [48]. High temporal frequency combined with broad spatial coverage
and low cost has made these datasets a preferred choice for national and regional scale
applications [11]. In order to establish sufficiently accurate crop estimation models, it is
also important that satellite data are available over a longer time period. Therefore, in
the past, studies have been based generally on NOAA AVHRR (National Oceanic and
Atmospheric Administration Advanced Very High-Resolution Radiometer) data, while
in recent years, primarily on MODIS (Moderate Resolution Imaging Spectroradiometer)
data. Currently, many research activities on yield estimation are based on data from the
Sentinel-2 satellites [49], but at present, there is still no available long time series in contrast
to the previous two sensors.

The most commonly used vegetation index (VI) in the literature is undoubtedly the
Normalized Difference Vegetation Index [4], but there are many studies that compare other
VIs as well [49–55]. The aim of the present study is (1) to test the robust crop estimation
method developed by [36] for 4 crops (winter wheat, corn, sunflower, rapeseed) in Hungary
using various VIs derived from 21-year-long MODIS data series in different observational
circumstances, and (2) to examine how much the accuracy of the robust crop estimation
method improves by supplementing satellite data with meteorological data. Our hypothesis
was that in this way, the differences between the estimated and the official census yield
data could be significantly reduced.

The effect of different meteorological parameters (temperature, precipitation, soil
moisture, etc.) on crop growth is widely documented [56,57], but the joint application
of meteorological data and remote sensing-based vegetation indices is a relatively new
approach [16]. The statistical models generally perform more accurately by adding me-
teorological variables than the models using vegetation indices only [16,58–60]. In those
studies, a mathematical combination of remotely sensed VIs and meteorological data was
applied. In the present research, a different approach was used. It is well known that
vegetation indices are closely related to meteorological data, as the state of vegetation
is determined, among other factors, by meteorological conditions, which are reflected in
the vegetation indices. Therefore, first, a robust crop estimation procedure was applied
using satellite data only, looking for the vegetation index with the best results. Then, the
correlation between the resulting crop yield errors, i.e., the difference between the estimated
yield data and the census data provided by HCSO (Hungarian Central Statistical Office),
and the meteorological data series were calculated to reveal how the accuracy of the yield
estimation could be increased.

2. Study Area and Database Used
2.1. Study Area and Crop Information

The study area was the agricultural area of Hungary. Hungary is located in Central
Europe (Figure 1), consisting of 19 counties (corresponding to the NUTS-3 level). The study
was carried out on two levels: first for the whole country and then for the 19 counties.
About 54% of Hungary’s land is agricultural land, 82% of which is used as arable land and
15% as grassland (https://www.ksh.hu/stadat_files/mez/en/mez0008.html (accessed on
5 May 2022)). The role of cereals and oilseeds in the crop structure is decisive. Our study
covered the 4 crops with the largest acreage in Hungary in 2020: corn (ca. 981,000 ha),
winter wheat (ca. 937,000 ha), sunflower (ca. 613,000 ha), and rapeseed (ca. 310,000 ha). The
yield data needed to validate the yield estimation method were derived from the official
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HCSO reports (https://www.ksh.hu/stadat_files/mez/en/mez0018.html (accessed on 5
May 2022)).
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Figure 1. Location of Hungary in Europe. The counties (NUTS-3 level) are also shown within
the country.

2.2. Remote Sensing and Land Cover Database

The C006 MCD43A4 daily dataset derived from MODIS measurements was used
in the present study to calculate area mean reflectances in MODIS Bands 1–7 for the
period 2000–2020. The datasets were downloaded from LP DAAC [61]. The MCD43 Nadir
Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) is a
daily dataset with 500 m spatial resolution, free from the view angle effects, resulting in a
stable and consistent daily NBAR product. Country and county averaged mean reflectances
of the agricultural areas were derived from cloud-free measurements.

To distinguish between agricultural and other land cover types at a yearly level,
the MCD12Q1 MODIS Land Cover dataset of 2001–2019 was used on the same grid.
For the years 2000 and 2020, the land cover information of the next and previous years
was used, respectively. In addition, we used the CORINE 2012 (https://land.copernicus.
eu/pan-european/corine-land-cover/clc-2012 (accessed on 24 February 2016)) dataset
as well to take into account only those pixels which had at least a 90% share of “arable
lands” categories.

To increase the accuracy of the yield forecasting, it would be ideal to have a vegetation
index time series consisting of data that fully represent all agricultural areas in the inves-
tigated area (country or county) during the vegetation period. This kind of data can be
obtained only for days when negligible cloud cover is present during the satellite overpass.
Such days are few; therefore, the resulting vegetation index dataset might be insufficient
for some periods. In addition, a higher cloud cover means that the average vegetation
index value of the clear areas does not accurately represent the average vegetation index of
the whole country (or county). In our previous studies [23,36], the threshold of 50% cloud
cover value was applied, while in the present study, several cloud cover criteria (from
10% up to 90%) were also tested. The average annual data number as a function of cloud
coverage is shown in Figure 2.

https://www.ksh.hu/stadat_files/mez/en/mez0018.html
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2.3. Vegetation Indices

Vegetation indices have been used since the beginning in the study of Earth’s surface
and vegetation. VIs are mathematical transformations, usually ratios or linear combinations
of reflectance measurements in different spectral bands, especially in the visible and near-
infrared parts of the spectra [52]. Since the first VI (Ratio Vegetation Index, introduced
by [62] in 1969, innumerable vegetation indices have been developed. From those, we
selected 16 VIs to test the robust crop estimation method. In the formula of these indices, RB,
RG, RR, RNIR (0.8–1.1 µm), and RMIR2 (2–2.4 µm) are the reflectance values of MODIS band 3
(“blue”), 4 (“green”), 1 (“red”), 2 (“near-infrared”), and 7 (“middle-infrared”), respectively.

The vegetation indices used in the study are as follows:
(a) DVI—Difference Vegetation [63]

DVI = RNIR − RR (1)

DVI is one of the simplest VI, which is very sensitive to changes in soil background,
and it can be applied to monitor the ecological vegetation environment [54]. The DVI was
used to develop our robust yield forecasting method [36].

(b) NDVI—Normalized Difference Vegetation Index [64]

NDVI =
RNIR − RR

RNIR + RR
(2)

NDVI is the most common index for studying the condition of the surface and vegeta-
tion, which is a useful indicator of canopy structure, chlorophyll content, nitrogen content,
fractional intercepted or absorbed PAR (Photosynthetically Active Radiation), and potential
photosynthetic activity across a wide range of vegetation types [65].

(c) RVI—Ratio Vegetation Index [62]

RVI =
RNIR

RR
(3)

RVI is the earliest VI, which is widely used for green biomass estimations and moni-
toring, specifically at high-density vegetation coverage, since this index is very sensitive to
vegetation and has a strong correlation with plant biomass [54].
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(d) WDVI—Weighted Difference Vegetation Index [66]

WDVI = RNIR − a ∗ RR, (4)

where a is the slope of the soil line. WDVI can be used for estimating the leaf area index
(LAI) of green vegetation. This WDVI offers a good correction for soil background in
estimating the LAI of green vegetation, e.g., cereals at the vegetative stage [67]. The
parameters of the soil line can be obtained by quantile regression [68,69].

(e) PVI—Perpendicular Vegetation Index (Richardson and Wiegand [63]

PVI =
RNIR − a ∗ RR − b√

1 + a2
, (5)

where a and b are the slope and intercept of the soil line, respectively. PVI filters out the
effects of soil background in an efficient way and also has less sensitivity to atmospheric
effects. It is mainly used for the inversion of surface vegetation parameters (grass yield,
chlorophyll content), the calculation of LAI, and vegetation identification and classifica-
tion [54].

(f) EVI—Enhanced Vegetation Index [70]

EVI =
2.5 ∗ (RNIR − RR)

RNIR + 6 ∗ RR − 7.5 ∗ RB + 1
(6)

EVI was designed as an improvement of the NDVI under high green biomass con-
ditions where NDVI saturates [71]. It used the blue reflectance band as well and was
proposed to reduce both atmospheric and soil background noise simultaneously [72].

(g) WDRVI—Wide Dynamic Range Vegetation Index [73]

WDRVI =
c ∗ RNIR − RR

c ∗ RNIR + RR
+ 1, (7)

where c is the weighting coefficient, with a value ranging from 0.1 to 0.2. In this work,
the average value, c = 0.15, was used. WDRVI was designed to improve the sensitivity
of NDVI under these conditions. It was demonstrated that the sensitivity of the WDRVI
to moderate-to-high LAI (between 2 and 6) was at least 3 times greater than that of the
NDVI [71].

(h) SAVI—Soil Adjusted Vegetation Index [74]

SAVI =
(1 + L) ∗ (RNIR − RR)

RNIR + RR + L
, (8)

where L is a canopy background adjustment factor. The value of L is 0 when the vegetation
density is very high and L = 1 when the vegetation is scarce and soil reflection is high. In
this study, L = 0.5 was used. SAVI attempts to minimize the influence of soil luminance,
and it is used generally in areas where vegetative cover is low [75].

(i) MSAVI—Modified Soil Adjusted Vegetation Index [76]

MSAVI =
(1 + L1) ∗ (RNIR − RR)

RNIR + RR + L1
, (9)

where L1 = 1− 2 ∗ a ∗ (NDVI) ∗ (WDVI) (10)

As the canopy background adjustment factor (L) should vary inversely with the
amount of vegetation, MSAVI was developed with a variable L factor. The MSAVI is
shown to increase the dynamic range of the vegetation signal while further minimizing
the soil background influences, resulting in greater vegetation sensitivity as defined by a
“vegetation signal” to “soil noise” ratio [76].
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(j) ARVI—Atmospherically Resistant Vegetation Index [77]

ARVI =
RNIR − (RR − y ∗ (RB − RR))

RNIR + (RR − y ∗ (RB − RR))
, (11)

where y is the so-called self-correcting factor. If no atmospheric data is present a priori, the
y = 1 is a good choice for better adjustments [77]. The ARVI is commonly used to eliminate
the effects of atmospheric aerosols.

(k) GEMI—Global Environment Monitoring Index [78]

GEMI = d ∗ (1− 0.25 ∗ d)− RR − 0.125
1− RR

, (12)

where d =
2 ∗
(

RNIR
2 − RR

2)+ 1.5 ∗ RNIR + 0.5 ∗ RR

RNIR + RR + 0.5
(13)

The GEMI vegetation index has been designed specifically to reduce the relative effects
of the undesirable atmospheric perturbations while maintaining the information about the
vegetation cover [78].

(l) MCARI—Modified Chlorophyll Absorption in Reflective Index [79]

MCARI =
1.5 ∗ (2.5 ∗ (RNIR − RR)− 1.3 ∗ (RNIR − RG))√

(2 ∗ RNIR + 1)2 − (6 ∗ RNIR − 5 ∗ RR)− 0.5
(14)

MCARI gives a measure of the depth of chlorophyll absorption and is very sensitive
to variations in chlorophyll concentrations as well as variations in Leaf Area Index (LAI).
MCARI values are not affected by illumination conditions, the background reflectance from
soil, and other non-photosynthetic observed materials [80].

(m) GARI—Green Atmospherically Resistant Vegetation Index [81]

GARI =
RNIR − (RG − y ∗ (RB − RR))

RNIR + (RG − y ∗ (RB − RR))
, (15)

where y is a parameter that controls the atmospheric correction. In this work, similarly
as in the case of ARVI, y = 1 was used. GARI is tailored to the concept of ARVI and is
expected to be as resistant to atmospheric effects as ARVI but more sensitive to a wide
range of chlorophyll concentrations [81].

(n) SLAVI—Specific Leaf Area Vegetation Index [82]

SLAVI =
RNIR

RR + RMIR2
(16)

The middle-infrared band was included to supplement the relationship between red
and NIR that forms the underlying principle of most vegetation indices [82]. Compared
with NDVI, SLAVI is less affected by cloud shadows, which may remain even after cloud
and cloud shadow masking [83].

(o) AFRI—Aerosol-free Vegetation Index [84]

AFRI =
RNIR − 0.5 ∗ RMIR2

RNIR + 0.5 ∗ RMIR2
(17)

AFRI’s main advantage is in penetrating an opaque atmosphere influenced by smoke
due to biomass burning without the need for explicit correction for the aerosol effect [85].

(p) KNDVI—Kernel NDVI [85]

KNDVI = tanh
(
(NDVI)2

)
(18)
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This brand-new index seems better qualified to cope with noise, saturation, and
complex phenology than NDVI [86].

The time series of the 16 vegetation indices in 2020 can be seen in Figure S1, corre-
sponding to the country’s means. Figure S2 shows the cross-plot of individual indices and
NDVI, taking into account the entire period of time (2000–2020).

2.4. Meteorological and Soil Water Content Data

Hungary has a moderate climate with a mean annual temperature of about 10 ◦C
and a mean annual precipitation of 500–700 mm. Daily meteorological data for 2000–2020
were obtained from the FORESEE v3.2 dataset [87], which contains daily minimum and
maximum temperatures (Tmin and Tmax, respectively, [◦C]) and precipitation sums (Prec
[mm]) for the Carpathian basin with 1/6◦ × 1/6◦ spatial resolution. Daylight mean
global radiation (Rad [W m−2]) was also calculated on the FORESEE grid using the MT-
Clim model [88]. The 3 hourly ERA5-Land soil water content (SWC) data [m3 m−3] with
0.1◦ × 0.1◦ spatial resolution was downloaded for 3 soil layers (SWC1 from 0–0.07 m,
SWC2 from 0.07–0.28 m, and SWC3 from 0.28–1 m depth) from the Copernicus site (https:
//cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview (ac-
cessed on 16 March 2021)) for 2000–2020. From the daily data stored at the original grid,
country and county mean values were calculated.

Several averaged datasets were generated from the meteorological data, where the
difference between the starting (Db) and the final day (De) of the averaging varied from
20 days to 200 days. Thus, a total of 7 × 91 M(x, Db, De) datasets were produced (Table S1),
where M represents the averaged meteorological data between Db and De and x is one
of the above 7 parameters (Tmin, Tmax, Prec, Rad, SWC1, SWC2, SWC3). Each of these M
datasets consisted of 21 data, corresponding to the averaged values of the 21 years studied.
For example, M (Prec, 120, 150) contains an annual time series of precipitation values
averaged between DOYs (Day Of Year) 120 and 150.

3. Methodology

This study is based on the robust crop estimation method developed earlier, providing
yield estimation of a larger area (such as a country or county). This procedure was first
developed for NOAA AVHRR recordings using the DVI vegetation index [36] and later
applied to MODIS NDVI data [23,25]. The fundamental point of this method is that there
is no need for a detailed classification to identify the acreage of different crops since the
general conditions of the vegetation-covered surfaces also represent the individual crop
conditions in the case of the species with similar vegetation cycles [19,36,89].

In our current study, the method was applied to 4 plants (winter wheat, corn, sun-
flower, and rapeseed). In each case, the method was applied first to the whole country, then
to the 19 counties. The first step is to fit a mathematically simple function on the spatially
averaged VI values V(doy) between a beginning and ending day (db, de) to eliminate the
stochastic fluctuation of the individual vegetation index data (Bognár et al., 2017). The
value of db and de depends on the vegetation cycle of the given plants. In this work, 5
different curve fitting procedures were applied:

(a) Double Gauss curves
The function to describe the V(doy) function with two Gaussian curves looks like:

VGauss(d) = VFixedSoil + G1(d) + G2(d), (19)

where Gi(d) = Ai·e
−(d−di)

σ2
i

2

, (20)

and VFixedSoil is a pre-selected constant. To get the best least square deviation curve, there
are six parameters to be fitted here (Ai, di, σi).

(b) Lagrange interpolation

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
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Since the raw data often contains errors, like unexplainable jumps on the index curves,
the data is smoothed with an averaging method. For exact interpolation methods, using
only the raw data often resulted in obviously false curves, so we decided they must be
applied on averaged or smoothed curves, which we call here the “averaged dataset”. This
averaged dataset is created with an interval length parameter typically around 10 days.
A simple algorithm coalesces adjacent data points within this length into subsets of data,
making the averages of this subset constitute the points in the “averaged dataset”.

Then, on this “averaged dataset”, a simple low degree (usually 2–4) Lagrange interpo-
lation gives the resulting approximation function VLagrange(d).

(c) Cubic spline function
The cubic spline function is built on the same “averaged dataset” as the Lagrange

function. The approximation VCubicSpline(d) function is got by cubic spline calculation on
these averaged points.

(d) Smoothed function
Its main parameter is a “smoothing width” (Ds) given in days. Smoothing is achieved

by a Gaussian weight function. The function approximation is the following:

VSmoothed(d) =
1

W

de

∑
db

w(−d)·(d), (21)

where w(−d) = e−(
−d
Ds )

2

, and (22)

W =
de

∑
db

w(−d) (23)

The summation from db to de goes through only on the existing days in the data.
(e) Raw function
Raw function is basically a step function, having constant values (V(di)) around the

existing points in the [(di−1 + di)/2, (di + di+1)/2)] intervals.
The different fitted curves to the NDVI time series in 2020 can be seen in Figure 3.
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As a next step, the matched vegetation index values were integrated between a
properly chosen starting and end day. The general form of the General Yield Unification
Robust Reference Index (GYURRI) (Ferencz et al., 2004 [36]) obtained in this way is:

GYURRI =
∫ d2

d1

Vk(t)dt, (24)

where t is measured in day units, Vk(t) is the value of fitted curve, d1 and d2 are the first and
last days of the integral, and k is the applied fitting method (Gauss, Lagrange, etc.). The
procedure was applied to the 16 vegetation indices for the series obtained with the separate
cloud coverage criterion, in each case using the 5 fitting methods, testing their different
input parameters. Then, the Pearson’s R correlation value between the resulting GYURRI
values and HCSO yield data were calculated, assuming a linear relationship between the
two series. Thus, we obtained which vegetation index and which curve matching had the
highest correlation value. Using this vegetation index-curve fitting, the differences between
estimated and actual (HCSO) yield data were calculated and defined as R datasets:

Ri = Yi − Ki , (25)

where Yi and Ki are the estimated and HCSO yield data in the year i (i = 2000–2020). In
the next step, the resulting R series was correlated with the 7 × 91 meteorological data
series (M) mentioned in point 2.4, again assuming a simple linear relationship. For all 7
meteorological parameters, the largest number of positive and negative correlations out
of 91 cases were selected (7 × 2 = 14 datasets). In these meteorological data–residual
data points, the parameters of the fitted line were calculated by linear fitting. With all
possible combinations of these, the estimated yields were corrected, looking for the smallest
deviations from the actual yield. The corrected yield data was calculated as follows:

Ynew = Yold −
h

∑
i=1

(ai ∗Mi + bi), (26)

where Ynew and Yold are the estimated yield data after and before the correction, Mi is the
corresponding meteorological data, ai and bi are the above-mentioned slope and intercept
of the fitted line, and h is the number of corrections. The correction was calculated first
for h = 1 (14 cases), then h = 2 (14 × 13 cases), then h = 3 (14 × 13 × 12 cases), and so
on until h = 14. With the corrected yield data obtained, the average deviations over the
21 years between the estimated and HCSO yield data were calculated, searching for the
lowest average difference between Ynew and HCSO yield data. The flowchart of the applied
methodology can be seen in Figure 4.
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4. Results
4.1. Corn, Country Level

Corn has the largest acreage in Hungary. In the last 21 years, the national average
yield of corn in Hungary has ranged from 3.73 t/ha (2007) to 8.63 t/ha (2016). The sowing
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of corn usually begins in April, and the harvesting time varies between mid-September to
mid-November. This would suggest that the end date of curve fitting should be around
de = 315, but we would like to provide an accurate yield forecasting as early as possible;
therefore, the starting and ending of curve fitting were selected as db = 100 and de = 270.

The robust yield estimation method was applied for all possible combinations of
the 4 crops, 16 vegetation indices, 9 cloud coverage criteria, and 5 curve fitting methods,
looking for the highest correlation value between the calculated GYURRI and HCSO yield
data. Applying the 16 VIs, it was found that the correlation values were roughly the
same for 13 VIs; the R2 values were between 0.830 and 0.860. In the case of two indices
that use the middle-infrared band (SLAVI, AFRI), the correlation values were much lower
(Figure 5). However, with GARI, a remarkably high correlation value (R2 = 0.888) was
obtained; therefore, in the case of corn, the use of GARI was proven to be the most effective.
Examining the cloud coverage thresholds, it was found that the best result was obtained
at the 30% cloud cover threshold, that is, when we include only the days when the cloud
cover was less than or equal to 30% over the country (Figure S3).
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Figure 5. Results of the yield estimation method for corn (at country level) using different vegetation
indices, third-degree Lagrange curve fitting, and 30% cloud cover threshold.

Applying different curve fitting methods, the best result was obtained when the
Lagrange curve fitting was applied using a third-degree curve with a 50-day averaging
(Table S2). In this case, the start and final days of integration were d1 = 102 and d2 = 244.
The best result for corn was obtained using the 30% cloud cover criterion, GARI vegetation
index, and third-degree Lagrange curve fitting. In this case, the correlation between the
calculated 21 GYURRI values and the actual yield data provided by HCSO was R2 = 0.888
(Figure 6). The average difference between estimated and actual yield was 0.45 t/ha, and
the average percentage difference was 7.65%. In the following calculations, the year-by-year
differences (‘residuals’) between the estimated and the HCSO data (R dataset) were used.
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Figure 6. Result of the robust yield estimating method for corn (at country level), using GARI
vegetation index, third-degree Lagrange curve fitting, and 30% cloud cover threshold.

In the next step, the correlation values between the R datasets and the 91 M data series
were calculated, selecting the M datasets with the highest positive and negative correlations
for each meteorological parameter separately. This way, 7× 2 = 14 M datasets were selected.
These correlation values were low; the highest value (−50.43%, R2 = 0.254) was obtained in
the case of M(Tmax, 250, 270) dataset (Table S3). As an example, Figure 7 shows correlations
between the R dataset and the 20-day averages of different meteorological parameters.
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Figure 7. Correlation values between residuals (differences between estimated and HCSO country-
level corn yield data) and different meteorological datasets (Tmin, Tmax, Precipitation, Radiation, and
Soil Water Content) using 20-day averages.

Next, a line was fitted to the M-R data pairs in the case of each 14 M data series,
calculating the slope and intercept of the fitted lines. For example, in the case of the M(Tmax,
250, 270) dataset, the slope and intercept of the fitted line were aTmax,250,270 = 0.111, and
bTmax,250,270 = 2.502, respectively (Figure S4). The R series was then corrected with all
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possible combinations of the 14 M series (Equation (26)). As our experience has shown that
more than 4 corrections no longer improve results, the correction was calculated first for
h = 1 (14 cases), then h = 2 (14 × 13 cases), then h = 3 (14 × 13 × 12 cases), and finally h = 4
(14 × 13 × 12 × 11 cases). With the corrected yield data obtained, the average deviations
over the 21 years between the estimated and HCSO yield data were calculated. In the
case of corn, more corrections (h > 2) gave no better results. For h = 2, the best result was
obtained by using Tmin− (i.e., M(Tmin, 240, 260)) and Tmax+ (i.e., M(Tmax, 180, 200)) together;
this way, the average difference between the estimated and the HCSO yield was 0.297 t/ha
(Table S4). For corn, the best result was obtained by using 4 meteorological datasets, namely
M(Tmin, 240, 260), M(Tmax, 180, 200), M(Rad, 250, 270), and M(SWC1, 150, 170). Applying
these, the average difference between the adjusted estimated yield data and the HCSO
yield data decreased to 0.228 t/ha and the average percentage difference to 3.9%, while the
correlation increased from R2 = 0.888 to R2 = 0.968 (Figure 8).
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meteorological correction. (Dashed line represents the y = x relation).

4.2. Winter Wheat, Country Level

Winter wheat has the second-largest sowing area in Hungary. In the last 21 years,
the national average yield of winter wheat has ranged from 2.64 t/ha (2003) to 5.43 t/ha
(2017). The harvesting of the winter wheat in Hungary begins around the end of June;
therefore, the starting and final days of curve fitting have been selected as db = 45 and
de = 185. Applying the 16 VIs (Figure 9), the two highest correlation value was obtained in
the case of DVI (R2 = 0.815) and WDVI index (R2 = 0.811). The lowest value—similarly to
the case of corn—was found using the AFRI index (R2 = 0.634), and the correlation using
the NDVI index proved to be exceptionally low (R2 = 0.712).
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Figure 9. Results of the yield estimation method for winter wheat (country level) using different
vegetation indices, third-degree Lagrange curve fitting, and 90% cloud cover threshold.

Using the DVI datasets with different cloud cover criteria, the result was different
from corn. It was found that the best correlation was obtained by applying the dataset with
the highest cloud cover threshold (90%), which means that even data from days where 90%
of the country was covered by cloud were used (Figure S5). One of the possible reasons
for this may be that the curve fitting method is sensible for the data gaps in the rising
part of the curve (Figure S6). It seems that in the case of winter wheat, for accurate yield
estimation, it is more important to have a sufficient amount of measured data, knowing
that the average vegetation index value of the clear areas presumably does not represent
the average vegetation index of the whole country accurately.

Applying the 5 different curve fitting methods, the best result was obtained using
the third-degree Lagrange curve fitting with a 60-day averaging (R2 = 0.815). In the case
of cubic spline, smoothed, and double-Gaussian curve fitting, the correlations were of
almost equal value (R2 =0.773, 0.771, and 0.766, respectively), while the lowest correlation
was obtained using the raw fitting (R2 = 0.745). Using the DVI dataset with a 90% cloud
cover criterion and applying the third-degree Lagrange curve fitting method, the average
difference between estimated and actual yield was 0.27 t/ha, and the average percentage
difference was 6.67%.

In the following, the procedure was the same as it was in the case of corn. The highest
correlation between the R and M datasets was R2 = 0.435 using the M(Tmin+, 140, 180) data
series (Table S5). In the case of Tmax negative, in the case of SWC3 positive correlation
values did not occur. The lowest average difference between corrected and HCSO yield
data were obtained using 2 M series: M(Tmin, 140, 180) and M(Rad, 140, 160). Applying
these, the average difference between the adjusted estimated yield data and the HCSO
yield data decreased to 0.19 t/ha and the average percentage difference to 3.92%, while the
correlation increased from R2 = 0.815 to R2 = 0.894 (Figure 10).
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4.3. Sunflower and Rapeseed, Country Level

Sunflower has the third-largest sowing area in Hungary. In the last 21 years, the
national average yield of sunflowers has ranged from 1.62 t/ha (2000) to 3.03 t/ha (2019).
The vegetation cycle of sunflower is similar to the cycle of corn, but the harvesting begins a
little bit earlier, at the beginning of September; therefore, the final day of curve fitting has
been chosen as de = 240. The acreage of rapeseed has nearly tripled in the last 20 years; now,
it has the fourth-largest sowing area in Hungary. The lowest yield of rapeseed between
2000 and 2020 was 1.49 t/ha in 2003, and the highest was 3.6 t/ha in 2016. The harvesting
time of winter wheat and rapeseed is similar; therefore, the same db and de were used for
the curve fitting. Varying the different VIs, similar results were obtained for sunflower as
in the case of corn, and the best correlation was achieved using the GARI vegetation index.
In the case of rapeseed, the DVI vegetation index produced the best result, as it was in the
case of winter wheat. In both cases, the lowest correlation was obtained by applying AFRI
(Figure S7).

Looking for the best correlation using datasets with different cloud coverage criteria,
in the case of sunflower, the 20% cloud cover threshold produced a slightly better result
than using the limit of 30% (as it was in the case of corn), while in the case of rapeseed the
best result was obtained using the dataset with cloud cover criterion of 90%, as it was in
the case of winter wheat. Finally, in both cases, the highest correlation was obtained by
applying the third-degree Lagrange curve fitting method; the value of R2 was 0.730 and
0.765 in the case of sunflower and rapeseed, respectively. Correction with meteorological
data was also applied to these two plants. In the case of sunflower, the applied M datasets
were M(Tmin, 200, 260), M(Prec, 180, 200), and M(Rad, 150, 170). In the case of rapeseed
M(Tmax, 75, 125), M(Prec, 110, 130), and M(SWC2, 60, 80) datasets were used. Applying
these, the average difference between the adjusted estimated yield data and the HCSO yield
data decreased from 0.168 t/ha to 0.097 t/ha, the average percentage difference from 7.19%
to 4.19% in the case of sunflower. In the case of rapeseed, the average difference between
the corrected estimated yield data and the HCSO yield data decreased from 0.192 t/ha to
0.125 t/ha, the average percentage difference from 7.82% to 5.14%. The correlation values
increased to R2 = 0.880 and R2 = 0.922 (Figure 11).
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4.4. Data Series of 19 Counties

The robust yield estimation method was applied for the data series of the 19 Hungarian
counties. For each crop, the same variables were applied as for the dataset of Hungary.
For the meteorological correction, the meteorological datasets of the given counties were
applied. The analysis was based on 21-year data from 19 counties (21 × 19 = 399 data
points for each crop). As expected from our previous investigations [19,36], the obtained
average differences between the estimated and HCSO yield data were higher than in the
case of the whole country (Table 1), but in each case, better results were obtained using the
meteorological correction (Figure 12). Except for rapeseed, in the case of the other three
crops, the average differences between the estimated and HCSO yield data were lower than
10% after the meteorological correction.

Table 1. The county-level average differences (Avg. diff.) and correlation values between estimated
and HCSO yield before and after meteorological correction.

Crop
Avg. Diff.

(t/ha)
Avg. Diff.

(%)
Correlation

(R2)

Before After Before After Before After

Corn 0.60 0.48 11.1 9.0 0.825 0.883

Winter wheat 0.38 0.32 9.2 7.6 0.736 0.809

Sunflower 0.22 0.19 9.6 8.3 0.648 0.743

Rapeseed 0.35 0.31 16.7 14.4 0.570 0.672
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5. Discussion

In the present study, the previously developed robust yield estimation method [19]
was applied for the four crops with the largest sowing area in Hungary for the 2000–2020
period. In the procedure, 16 different MODIS-derived vegetation indices and 5 different
curve fitting methods with 9 different cloud coverage criteria were tested. It was found
that the simplest vegetation index, the DVI, provided the best results for autumn-sown
crops (winter wheat and rapeseed), but the results were only slightly worse using the
WDVI, PVI, EVI, SAVI, and MSAVI indices. The weakest correlation between the estimated
and census (HCSO) yield data was obtained applying the ARVI, SLAVI, and AFRI indices,
indicating that the use of the data of medium-infrared channels does not improve the
accuracy of the yield estimation procedure. However, it is somewhat surprising that the
correlation value for the NDVI vegetation index, the one most often used in yield estimation
methods, was much lower than for the DVI index. The obtained correlation for winter
wheat was R2 = 0.815 and 0.712, while for rapeseed, R2 = 0.765 and 0.627 using DVI and
NDVI, respectively. In the case of spring-sown crops (corn and sunflower), the use of the
GARI vegetation index obviously gave the best results. Among the 16 indices examined,
GARI is the only one that uses near-infrared data together with all three visible channels
(blue, green, and red). In these cases, too, the weakest correlation was obtained by applying
the two indices that use the data of medium-infrared channels (SLAVI and AFRI). For both
crops, DVI also gave better results than NDVI. Examining the cloud cover threshold, it was
found that in the case of autumn-sown crops, it was important to have as much data as
possible during the steeply rising section of the vegetation index curves in spring, so the use
of the 90% cloud cover criterion seemed expedient here (Figure S5). For spring-sown crops,
where this ascending part in vegetation index values is not present, datasets representing
larger areas of the country gave better results. Thus, the best results were obtained using the
30% cloud criterion for corn (Figure S3) and 20% for sunflowers. In our previous study [23],
the 50% cloud criterion gave the best results for winter wheat, but in this present work,
the MODIS MCD43 dataset was used instead of MOD09, and the MCD43 dataset is much
more efficiently purified from atmospheric and other effects. This could be the reason
why this time, the Lagrange-type curve fitting produced the best results for all four crops
instead of the previously used double-Gaussian curve fitting. Another aim of this study
was to investigate the extent to which the accuracy of crop estimation can be improved by
including meteorological (temperature, rainfall, radiation) and environmental (soil water
content) data. For this, meteorological data were averaged between a starting and a final
day in all 21 years studied. In the studies using statistical modeling with meteorological
data for yield estimation, the averaging length of the parameters usually covers the growing
season of the given crop [90–92] or monthly averages [46,93]. In this present study, more
averaging lengths were tested; the length of averaging ranged from 20 to 200 days. Thus,
by varying the start and end days, 91 time series were created for each variable (M datasets).
For each crop, an R dataset was generated that contained the difference between the yield
data estimated in the first step and the data provided by HCSO. Correlations between M
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and R datasets were then calculated, and for each meteorological parameter (including
the soil moisture data), the datasets with the highest positive and negative correlations
were selected. For these datasets, the parameters of the line fitted to the M-R data pairs
were determined, and the estimated yield data were corrected using these parameters. The
results have shown that the average difference between estimated and actual yield data
could be significantly reduced by applying two, three, or four corrections together. These
average differences were around 4% for 3 plants, while the difference was 5.1% for rapeseed
(Table 2). For the 4 crops, the differences were reduced by an average of 3% (from 7.3% to
4.3%) using meteorological corrections. The correlation values were R2 = 0.968, 0.894, 0.880,
and 0.922 in the case of corn, winter wheat, sunflower, and rapeseed, respectively.

Table 2. The country-level average differences and correlation values between estimated and HCSO
yield before and after meteorological correction.

Crop
Avg. Diff.

(t/ha)
Avg. Diff.

(%)
Correlation

(R2)

Before After Before After Before After

Corn 0.45 0.23 7.6 3.9 0.888 0.968

Winter wheat 0.27 0.19 6.7 3.9 0.815 0.894

Sunflower 0.17 0.10 7.2 4.2 0.730 0.880

Rapeseed 0.19 0.13 7.8 5.1 0.765 0.922

For comparison, Gornott and Wechsung [91], using their simple series model for
Germany from 1992 to 2010, obtained a correlation value (R2) of 0.86 for winter wheat.
Schauberger et al. [94] simulated winter wheat and corn yields in Hungary and got the
R2 = 0.86 for corn but only around 0.4 for winter wheat. Kern et al. [16] used meteorological
data and soil water content in monthly resolution together with MODIS NDVI and annual
fertilization amount data in Hungary for the 2000–2016 time period and obtained the R2

values 0.901 for corn, 0.859 for winter wheat, 0.829 for sunflower, and 0.864 for rapeseed.
Zhu et al. [95] combined agrometeorological indexes and remote sensing parameters to
build a corn yield estimation model for two Chinese provinces; the obtained R2 values
were 082 and 0.74. Bojanowski et al. [96] used MODIS and Sentinel-3 data with agrom-
eteorological indicators in Poland, and after leave-one-year-out cross-validation for the
2000–2019 period, the obtained R2 values were 0.84 for winter wheat, 0.47 for rapeseed,
and 0.51 for corn.

In addition to the national datasets, the method was also applied at the county (NUTS-
3) level. The results confirmed our previous experience that the accuracy of the robust
yield estimation procedure decreases when smaller area units are used. However, even
for county datasets, the meteorological correction improved the accuracy of the estimates.
The average percentage differences remained below 10%, except for rapeseed, where this
difference was 14.4%. For the 4 crops as a whole, the average differences decreased to a
lesser extent than the national one, by 1.82% (from 11.65% to 9.83%). It is important to note
that in the case of Hungary, the estimation of county data has only scientific significance.
Economically, the national yield estimation has outstanding importance. In summary, the
robust yield estimation procedure, supplemented by meteorological correction, can be
successfully applied to national yield estimation for the crops with the four largest sown
areas. If the four crops are examined together (Figure 13), the correlation between the
estimated and HCSO data is remarkably high, R2 = 0.988.
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6. Conclusions

This paper has presented a generalized approach to estimating crop yields with remote
sensing and meteorological data. The results confirmed our initial hypothesis that the
accuracy of the yield estimation could be improved by including meteorological data. It
is important to note that the present study did not aim to explain the reasons behind the
combination of the meteorological and environmental parameters which produced the
best result. In the future, it will be worthwhile to carry out further studies to find out why
the GARI index gave better results for spring-sown crops and why this did not occur for
autumn-sown crops. It will also be worth exploring the possibility of combining vegetation
indices with meteorological time profiles to produce a new dataset, which can be used as
an input dataset in the robust yield forecasting method. This way, instead of the two-step
method described in this paper—i.e., the results obtained using the VI data were corrected
with the meteorological datasets—the yield forecasting procedure could be performed in
one step.

The method presented in this study could be easily adapted for other countries and
crop types as well; only the input parameters (e.g., the start and end days of curve-fitting)
need to be adjusted to the given circumstances. In the future, it will be worthwhile to
examine how the method can be applied to Sentinel-2 satellite data and how the accuracy
of yield estimation is affected by less frequent time resolution but better spatial resolution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14122860/s1. Figure S1: Time series of the used 16 vegetation
indices in 2020; Figure S2: Cross-plots of the different vegetation indices and NDVI (2000–2020);
Figure S3: Results of the yield estimation method for corn (at country level) using different cloud
cover thresholds, third-degree Lagrange curve fitting, and GARI vegetation index; Figure S4: Scatter-
plot with fitted line to the yearly meteorological-residual data for 2000–2020; Figure S5: Results of the
yield estimation method for winter wheat (at country level) using different cloud cover thresholds,
third-degree Lagrange curve fitting and DVI vegetation index; Figure S6: Country level time DVI
time series in 2000 using different cloud cover threshold; Figure S7: Results of the country-level
yield estimation method for rapeseed and sunflower; Table S1: Starting and final days of the average
calculation of the 91 meteorological datasets; Table S2: The correlation coefficients (R2) for different

https://www.mdpi.com/article/10.3390/rs14122860/s1
https://www.mdpi.com/article/10.3390/rs14122860/s1
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curve fitting methods for GARI vegetation index for corn at country level; Table S3: The minimum
and maximum correlation coefficients for corn (at country level) between residuals (differences
between estimated and HCSO yield data) and different meteorological parameters; Table S4: The
average differences for corn in 2000–2020 between estimated and HCSO yield data applying 1 or
2 meteorological corrections; Table S5: The minimum and maximum correlation coefficients for
winter wheat (at country level) between residuals (differences between estimated and HCSO yield
data) and different meteorological parameters.
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