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Abstract: To meet demand for agriculture products, researchers have recently focused on precision 

agriculture to increase crop production with less input. Crop detection based on computer vision 

with unmanned aerial vehicle (UAV)-acquired images plays a vital role in precision agriculture. In 

recent years, machine learning has been successfully applied in image processing for classification, 

detection and segmentation. Accordingly, the aim of this study is to detect rice seedlings in paddy 

fields using transfer learning from two machine learning models, EfficientDet-D0 and Faster R-

CNN, and to compare the results to the legacy approach—histograms of oriented gradients (HOG)-

based support vector machine (SVM) classification. This study relies on a significant UAV image 

dataset to build a model to detect tiny rice seedlings. The HOG-SVM classifier was trained and 

achieved an F1-score of 99% in both training and testing. The performance of HOG-SVM, Effi-

cientDet and Faster R-CNN models, respectively, were measured in mean average precision (mAP), 

with 70.0%, 95.5% and almost 100% in training and 70.2%, 83.2% and 88.8% in testing, and mean 

Intersection-over-Union (mIoU), with 46.5%, 67.6% and 99.6% in training and 46.6%, 57.5% and 

63.7% in testing. The three models were also measured with three additional datasets acquired on 

different dates to evaluate model applicability with various imaging conditions. The results demon-

strate that both CNN-based models outperform HOG-SVM, with a 10% higher mAP and mIoU. 

Further, computation speed is at least 1000 times faster than that of HOG-SVM with sliding win-

dow. Overall, the adoption of transfer learning allows for rapid establishment of object detection 

applications with promising performance. 

Keywords: UAV; machine learning; deep learning; object detection; EfficientDet; Faster R-CNN; 

transfer learning 

 

1. Introduction 

Demand for agricultural products urges agriculture sectors to accommodate technol-

ogy to overcome production challenges [1,2]. Prominently, population growth creates 

constant pressure on the agricultural system to supply more food to fulfil global demand, 

which drives farmers to adopt modern technologies (such as precision agriculture) in 

food-crop production [3–6]. Globally, precision agriculture plays an important role in in-

creasing the quality of crop production, sustaining crop production and making decisions 

based on analyzing large amounts of data and information about crop status obtained 

from farms. Moreover, it is used for effective fertilizer management and irrigation as well 
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as for labor reduction [7–9]. In practice, remote sensing has been widely used to support 

precision agriculture in recent years. Sarvia et al., 2021, analyzed the inconsistency be-

tween airborne and satellite sensors by using K-means clustering on NDVI map-derived 

multispectral remote sensing data and found a high correlation for visible bands. Airborne 

images provide centimeter geometric resolution and 3D measurement potential for preci-

sion agriculture [10]. With the advantages of technology in capturing high-resolution im-

ages, particularly by using unnamed aerial vehicle (UAV), large amount of remote sensing 

data can easily be obtained for analyzing crop yield in precision agriculture. 

Through the development of Internet of Things (IoT) and computer vision, sensors 

and cameras along with machine learning, deep learning and image processing tech-

niques have been getting increasing attention for capturing information and further pro-

cessing for smart farming to help maintain the sustainability of agricultural production 

[11]. Smart farming plays a vital role in the agricultural process based on adjusting various 

agricultural management measures. It provides suggestions and insights for more effi-

cient and effective agriculture production and to solve the challenges in agriculture sys-

tems [12]. Several studies have discussed smart farming techniques that were practically 

implemented to reduce fertilizers, pesticides and herbicides [13] and to estimate optimum 

crop planting dates [14]. Moreover, computer vision plays a key role to extract useful in-

formation from the collected image dataset for management of smart farming tasks 

[11,15]. In recent agricultural operations, machine learning in computer vision has been 

applied for various object detection and classification tasks through extracting infor-

mation from images to significantly promote intelligent agriculture [16–20]. 

As mentioned above, the developments in IoT provide a good platform to collect a 

large amount of image data with many objects to make meaningful image analysis [21]. 

To collect image data in agriculture sectors, UAVs or drones are widely used in precision 

agriculture and many other fields, such as path planning and design, wildlife rescue, 

weed classification, harvesting, livestock counting and crop and aquatic products damage 

assessment [22–27]. UAVs can be used to detect potential issues and then obtain high-

resolution images to inspect and apply treatments correspondingly. The combination of 

UAVs and computer vision helps farmers make correct decision by obtaining information 

from the images [15]. This study focusses on monitoring sowing area via UAVs for iden-

tifying rice seedlings and counting them for decision-making regarding the progress of 

rice seedlings in paddy fields. 

Deep learning, which is one branch of machine learning, in object detection can deal 

with high-density scenes with complex and small objects in images [28,29]. Object detec-

tion in computer vision is widely used for various applications. By training with large 

amounts of image data, object detection can accurately identify the targeted objects and 

their spatial locations in the images, classify objects from the specified varieties, such as 

human, animals, crops, plants, and vehicles, and mask the objects within bounding boxes 

by well-developed algorithms [30–34]. All existing object detection models can generally 

perform better to detect either big objects or small objects in the large part of an image. 

Moreover, the challenging task in computer vision is to detect the small objects in an im-

age that lack appearance information to distinguish them from background and similar 

categories. The precision requirement is higher for accurately locating small objects. A 

recent review reported detailed information about the use of convolutional neural net-

works (CNNs) for small-object detection. Their results, based on popularly existing da-

tasets, showed better performance for detecting small objects in terms of multi-scale fea-

ture learning, data augmentation, training strategy, context-based detection and GAN-

based detection methods [35]. Based on this evidence, this study aims to employ an object-

detection model to monitor a single small object in paddy fields using UAVs. In particular, 

this study focusses on the rice seedlings in paddy fields as very tiny objects that can hardly 

be observed by the human eye to find displacements or missing rice seedlings and count 

and locate rice seedlings.  
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Object detection based on machine learning in computer vision has improved enor-

mously in accuracy and speed compared to traditional detection algorithms with feature 

extraction [36]. It is used for classifying and locating objects in automatic image detection 

processes based on statistical and geometric features. Traditionally, object detection con-

sists of two stages: feature extraction and object detection [33,37]. Feature extraction mod-

els, such as Haar-like feature [38], scale-invariant feature transform (SIFT) [39], histogram 

oriented gradient feature (HOG) [40], principal components analysis (PCA) [41], Viola–

Jones feature [31] and local binary patterns, are used to generate regional proposals. Gen-

erally, static objects are detected in images using background subtraction algorithms, and 

dynamic objects are detected by subtracting two adjacent frames with frame difference 

algorithms. Then, the extracted features are inserted into support vector machine (SVM), 

logistic regression (LR) and/or random forest (RF) to classify the objects. Several research-

ers have proposed various object detection models, for example conjugate building fea-

ture detection using SIFT [42], human face detection and moving vehicle detection using 

Haar–Feature combined with AdaBoost [38,43,44], dangerous animal detection using lo-

cal binary pattern adopting AdaBoost [45], HOG with SVM for human detection with high 

detection accuracy and long detection time [46–48] and a deformable parts model based 

on reducing the dimensions of HOG features with PCA [49]. This study adopts HOG fea-

tures with SVM to build a two-stage model to detect rice seedlings. 

The advantage of directly using images in object detection applications is that it al-

lows CNNs to avoid manual feature extraction. In other words, CNNs are one of the most 

effective algorithms for object detection due to directly extracting features and detecting 

objects from images. In recent years, impressive improvements have been achieved in 

CNNs to address the problem of object detection by proposing many algorithms in which 

the network models are trained by combining local regional perception and feature ex-

traction with a classification process. Tong et al. [35] and Zhang et al. [29] provided de-

tailed reviews about the recent progress of CNN algorithms for objection detection. The 

development stages of CNN-based object detection models are shown in Figure 1 [31]. 

These object detection algorithms based on deep learning are divided into one-stage and 

two-stage detection algorithms. In one-stage algorithms, features for bounding box re-

gression and class classification are directly extracted by the convolution operations on 

the output features of backbone networks. Object detection algorithms based on feature 

map convolution include YOLO [50], SSD [51], SqueezeDet [52], RetinaNet [53], Corner-

Net [54] and EfficientDet [55]. In two-stage algorithms, regional proposal modules are 

used to propose targeted object boundary boxes, and features are subsequently extracted 

from them to predict categories and masking objects. Object detection algorithms based 

on reginal proposal, such as R-CNN [56], Fast R-CNN [57], Faster R-CNN [58], Mask R-

CNN [59] and FPN [60], perform better and achieved high mean average precision (mAP). 

Among them, Mask-RCNN could be used to predict an exact mask within the bounding 

box of objects to detect single objects in images. This study adopts two state-of-the-art 

models, EfficientDet as a one-stage algorithm and Faster R-CNN as a two-stage algorithm, 

to detect rice seedlings in paddy fields due to the advantages of high efficiency, high lo-

calization and high precision for object detection. 

https://www.sciencedirect.com/science/article/pii/S0262885620300421#!
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Figure 1. Development stages of deep learning object detection [31]. 

This study overcomes a data scarcity problem with lightweight architecture and 

transfer learning in deep learning for precision agriculture. Besides, this study chooses 

EfficientDet and Faster R-CNN due to their architectures being capable of handling huge 

variations of feature scales for small-object detection. Overall, this study adopts one-stage 

and two-stage object detection architectures to develop tiny-object detection in UAV im-

ages to identify rice seedlings for precision agriculture, which has never been done for 

traditional rice cultivation, and the legacy HOG-SVM approach was applied for compar-

ison. This study aims to achieve the following purposes: 

(1) adopting legacy, one-stage and two-stage machine learning algorithms to precisely 

detect small objects in UAV images, 

(2) rapidly establishing object detection models from prior knowledge as a transfer 

learning approach to overcome a data scarcity problem with lightweight architecture 

and verifying the applicability on the unseen data, and 

(3) evaluating performance and computation cost of rice seedling detection by three ma-

chine learning models to observe rice seedling growth. 

2. Materials and Methods 

2.1. Data Introduction 

UAVs can be used to help farmers broadly monitor rice growth in the early stage. 

The field images of rice seedlings were collected by UAVs equipped with cameras and 

downloaded from an open dataset [61]. The detailed information of camera, UAV and 

calibration settings to take images is given in Tables 1 and 2. The study area is located at 

the Taiwan Agriculture Research Institute, Wu-Feng District, Taichung City, Taiwan, 

where a long-term field investigation and observation, including UAV imaging and field 

survey, has been conducted for rice cultivation management experiments. Counting rice 

seedlings in paddies is one of the keys to calculate density and estimate grain yield. The 

study field is shown in Figure 2, in which the cyan bounding area represents the area for 

the deep learning training–testing dataset, the green and cyan bounding area represent 

the area for the HOG-SVM training–testing dataset, and the red bounding area represents 

the area for additional grass sub-images. To generate orthorectified mosaic images such 

as Figure 2, a commercial image-based-modeling software, Agisoft Metashape, is applied. 
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The sample images of paddy fields are shown in Figure 3. Each of these images contains 

numerous tiny rice seedlings at low resolutions. 

 

Figure 2. An overview of UAV image acquired on 7 August 2018. Reference system is TWD97 TM2 

zone 121, EPSG: 3826. 

 

Figure 3. Sample images of rice seedlings in a paddy field image dataset [61]. 

Table 1. UAV imaging sensor details [61]. 
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Sensor Description DJI Phantom 4 Pro 

Resolution (H pixel × V pixel) 5472 × 3648 

FOV (H° × V°) 73.7° × 53.1° 

Focal Length (mm) 8.8 

Sensor Size (H mm × V mm) 13.2 × 8.8 

Pixel Size (μm) 2.41 × 2.41 

Image Format JPG 

Dynamic Range 8 bit 

Table 2. Details of flight mission [61]. 

Parameter Setting 

Sensor DJI Phantom 4 Pro 

Acquisition Date 7 August 2018 14 August 2018 12 August 2019 20 August 2019 

Time 07:19–07:32 07:03–07:13 14:23–14:44 08:16–08:36 

Weather Mostly clear Mostly cloudy 

Mostly cloudy 

with occasional 

rain 

Partly cloudy 

Avg. Temperature (°C) 28.9 26.8 26.6 27.5 

Avg. Press (hPa) 997.7 992.0 994.1 996.4 

Flight Height (m) 21.4 20.8 18.6 19.1 

Spatial Resolution 

(mm/pixel) 
5.24 5.09 4.62 4.78 

Forward Overlap (%) 80 80 85 85 

Side Overlap (%) 75 75 80 80 

Collected Images 349 299 615 596 

The framework for processing the RGB images of rice fields using HOG-SVM and 

two deep learning models to detect and count rice seedlings is shown in Figure 4. The 

framework includes four phases: image pre-processing, sub-image generation, object de-

tection with three approaches, and detection result and evaluation. The first phase is or-

thorectifying and mosaicking images captured by UAVs. The second phase is generating 

sub-images from orthorectified mosaic images due to the GPU’s memory limitation. The 

third phase shows three object detection approaches: the legacy approach—HOG-SVM, 

two-stage object detection architecture—Faster-RCNN, and one-stage architecture—Effi-

cientDet. All three approaches generate detection results with classification and localiza-

tion predictions that are evaluated with ground truth in the fourth phase. Each rice seed-

ling in sub-images is manually annotated by agricultural experts. A training dataset is 

used to obtain the best model weights for rice seedling detection and counting. 

 

Figure 4. The framework of rice seedling detection. 
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2.2. Training and Testing Datasets 

2.2.1. HOG-SVM Model 

This study adopted a labeled dataset (RiceSeedlingClassification.tgz, accessed on 1 

July 2021) from the open dataset [61] and cropped one of 8 full, large images into 54,628 

sub-images with size of 48 × 48 × 3 pixels and includes 26,581 bare land images and 28,047 

rice seedling images, and externally added 18,757 grass sub-images from outside the 

paddy as shown in the red bounding region in Figure 2. From the 73,385 images, 80% were 

used to build the image classification method using feature extraction and classification 

methods, whereas the remaining 20% were used for testing. The example image of the 

three classes is shown in Figure 5. 

 

Figure 5. Examples of annotated images for model training. 

2.2.2. CNN Models 

Dataset collection is the essential part in object detection. This study used a total of 

four UAV images of rice paddy fields to train the model for CNN-based rice seedling 

detection. Each rice seedling in every image was manually labeled using labelImg, an open-

source graphical image annotation tool in a pixel-basis with a single separate category 

(i.e., rice seedlings) from background. In order to have a sufficient dataset with a number 

of rice seedlings in each image, each image was split into several sub-images with each 

side 512 pixels. A total of 297 sub-images were generated from the four field images, and 

a training–test split ratio of 80–20 was applied to generate 273 sub-images for training and 

60 sub-images for testing. In addition, three separate test datasets acquired on 14 August 

2018, 12 August 2019 and 20 August 2019 with 72, 100 and 100 images, respectively, were 

also included to evaluate the model’s applicability to various imaging conditions. Anno-

tating rice seedlings in every sub-image is time-consuming (needing a huge number of 

person-hours), thus a semi-auto preprocess was adopted for rapid annotation. Datasets 

can be used to determine the accuracy of rice seedlings detection and counting. The ex-

pected study results are looking for raw counts and also illustrating the spatial distribu-

tion of rice seedlings. Figure 6 shows annotated images of rice seedlings. 
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Figure 6. Rice seedlings annotated with bounding boxes in green on sub-images. 

2.3. EfficientDet Model Training 

EfficientDet is a highly scalable one-stage object detection architecture. The network 

inherits the prior-developed model EfficientNet [62] as the backbone for feature extrac-

tion. To comprehend the contextual features, a bi-directional feature pyramid network 

(BiFPN) is introduced as a feature network to aggregate multi-scale features. Compared 

to the prior proposed architectures, such as FPN, PANet and NAS-FPN, BiFPN performs 

with both better efficiency and higher accuracy. Moreover, EfficientDet also inherits the 

compound scaling method from EfficientNet, which allows deeper and wider network 

scaling without significantly changing the network architecture. In this study, the com-

pound coefficient ϕ = 0 (EfficientDet-D0) is chosen as the detection model, and the visual-

ized architecture is shown in Figure 7. 

 

Figure 7. Architecture of EfficientDet-D0. 

In order to rapidly establish a specific application, transfer learning is applied by 

adopting a pretrained weight based on prior knowledge for faster convergence. Thus, 

COCO 17 pretrained weight for EfficientDet-D0 is imported in the model training stage. 

Model training used the officially released scripts by TensorFlow on GitHub. The changes 

of parameters in the configuration are the number of classes, training step, batch size and 

the max number of detection boxes as 1, 30,000, 16 and 200, respectively. 

2.4. Faster R-CNN Model Training 

Faster R-CNN is a two-stage object detection network that inherits the robustness of 

the R-CNN family with a precise detecting capability. To speed up detection, a regional 
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proposal network (RPN) is proposed to replace the selective search algorithm, which has 

poor GPU utilization. RPN is a fully convolutional network that generates both box-re-

gression and box-classification features with a set of predefined anchors as the regression 

target. After the RPN generates proposals, both proposals from RPN and features from 

the backbone are passed into the Fast R-CNN detector. Because the design of the anchors 

already considers multi-scale and multi-ratio patterns, the architecture can feasibly be 

trained on single-scale images. The visualized architecture of Faster R-CNN ResNet-101 

is shown in Figure 8. 

A transfer learning strategy is also employed to rapidly establish the detection appli-

cation. In this study, the ResNet-101 [63] backbone with input image size 640x640 pre-

trained weight is chosen for training the Faster R-CNN model. The changes of parameters 

in the configuration are the number of classes, training step, batch size and the max num-

ber of detection box, which are 1, 25,000, 8 and 200 respectively. 

 

Figure 8. Architecture of Faster R-CNN ResNet-101. 

2.5. HOG-SVM Model Training 

SVMs are mainly used to separate data into two or more classes by hyperplane. The 

support vectors are located on the margin of the optimal hyperplane obtained with cost 

and kernel functions [64]. Instead of original image features, HOG features can be used in 

training models to achieve better performance with a large amount of UAV images. A 

HOG presents an object by estimating the magnitudes and gradient orientations from a 

specific set of pixel blocks. In this study, the HOG descriptor from OpenCV library is 

adopted, and the parameter settings are listed in Table 3. With an input image of 48 × 48 

pixels, the HOG descriptor generates a vector comprised of 1296 elements. The SVM clas-

sifier is adopted from the NVIDIA GPU supported library ThunderSVM, which was 

claimed to be 10 to 100 times faster than the LibSVM library. To find an optimal hyper-

plane, a grid search with cross-validation approach is applied. The parameters of the grid 

search for SVM training are listed in Table 4. For SVM classification, the complexity can 

be expressed as Equation (1), 

Complexity = 𝑛 ∙ 𝑆 (1) 

where n depicts the sample size and S depicts the number of support vectors. However, 

the computation cost of solving SVM problem has both a quadratic and cubic component; 

this leads the complexity to grow to at least n2 to n3 [65]. 
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Table 3. Parameter settings of HOG descriptor. 

Parameter HOG Descriptor 

orientation bins 9 

cell size 8 × 8 pixel 

block size 3 × 3 cell 

block stride 8 × 8 pixel 

window size 48 × 48 pixel 

Table 4. Parameters of grid search for SVM training. 

Parameter SVM Classifier 

kernel linear 

C 1, 2, 4, 8, 16, 32, 64, 128 

decision_function_shape ovr (One-vs-Rest) 

max_iter 3000 

Object features obtained from HOG are used in an SVM classifier to separate pixels 

into objects or background. Further, the trained SVM classifier can use sliding window to 

detect objects. The sliding window approach is an effective technique to localize objects 

with varying sizes in the image with time consumption. Figure 9 is a diagram of rice seed-

ling detection based on HOG and SVM. SVM determines whether the detected objects 

belong to rice seedlings or the rest of the classes. 

 

Figure 9. A diagram of rice seedling detection based on HOG and SVM. 

2.6. Evaluation Metircs 

To evaluate the localization of prediction boxes, intersection over union (IoU) is cal-

culated. High IoU represents precisely predicted object location compared to the ground 

truth. In practice, average precision (AP) is commonly used and is defined as the average 

detection precision under different recalls in a category-specific manner. The mean aver-

age precision (mAP) is evaluated by the average AP score across classes and is commonly 

used to evaluate many object-detection datasets [35] and the performance of all models in 

this study. For object detection, AP is calculated equal or greater than a certain IoU 
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threshold. From the definition of metrics evaluation of COCO datasets, three types of AP 

metrics related to IoU are proposed: AP, APIoU =0.50 and APIoU=0.75. The fist AP is the mean 

of AP with IoU ranging from 0.5 to 0.95 in a 0.05 interval, which are 10 intervals total. 

APIoU=0.50 and APIoU=0.75 are the APs at an IoU threshold equal or greater than 0.5 and 0.75, 

respectively. The larger the IoU threshold, the lower the AP. APIoU=0.50 is calculated in this 

study. 

Further, the performance of the HOG-SVM classification model is evaluated based 

on precision, recall, F1-score and overall accuracy (OA), representing the precision of the 

prediction, the accuracy of the prediction to the real data, the robustness of the prediction 

and the accuracy across all categories, respectively. 

3. Results and Discussion 

3.1. HOG-SVM 

To rapidly establish a GPU-capable computing environment, Taiwan Computing 

Cloud (TWCC) provided by the National Center for High-Performance Computing 

(NCHC, Taiwan) is used. The service provides a variety of containerized computing en-

vironments to run experiments using powerful computing resources. In this study, the 

containerized image tensorflow-19.08 is used to satisfy the requirement for running Thun-

derSVM in CUDA version 10.1. The container runs on the hardware specification of one 

NVIDIA Tesla V100 GPU, four cores of Intel Xeon Gold 6154 CPU, and 90 GB of host 

memory. 

In the experiments, features are extracted by HOG descriptor and then are used in 

SVM for image classification. As mentioned in Section 2.5, the grid search approach is 

applied to find the optimal parameters of the SVM classifier. After a search sequence, the 

parameter with C = 4 is chosen for the best classification capability. The evaluation metrics 

are given in Table 5, and the confusion matrix is given in Figure 10. The SVM based on 

HOG features has an overall accuracy of 93.9% and 93.1% for training and test data, re-

spectively. In the metrics of separate classes, all reach above 85%, especially the rice seed-

ling class, reaching above 99%. This shows that the model is capable of distinguishing rice 

seedlings from images robustly. 

Table 5. HOG-SVM training and test evaluation metrics. 

 Training Test 

 Precision Recall F1-Score OA Precision Recall F1-Score OA 

bare land 91.7 91.3 91.5 

93.9 

90.3 90.7 90.5 

93.1 grass 87.8 88.4 88.1 87.2 86.7 86.9 

rice seedling 99.9 99.9 99.9 99.7 99.6 99.6 
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Figure 10. HOG-SVM confusion matrix of (a) training dataset and (b) test dataset. 

To detect rice seedlings in the paddy field images, a sliding window approach is im-

plemented, where the highly overlapping tiles are firstly computed as HOG vectors and 

classified as probabilities in three classes. Then, the output probabilities are gathered and 

ordered as the shape of the input image to form the probability map. The probability map 

is passed to a gaussian filter for smoothing, and then a threshold of confidence is applied 

to keep the positive pixels. Finally, the process of finding contours is applied to identify 

every closed object and to generate the bounding boxes. 

To evaluate the performance of the sliding window approach of detection, two com-

mon metrics are calculated, AP and IoU. Prior to calculating AP, the IoU of every object is 

calculated to proceed the matching. If the predicting box overlaps with ground truth boxes 

and the IoU is above the threshold, the object is counted as a correct prediction. If the 

predicting box does not overlap with ground-truth boxes, or the overlapping IoU is below 

the threshold, the object is counted as misprediction. Then, AP is calculated in a descend-

ing power manner from the most confident box. An example of visualized detection re-

sults is shown in Figure 11. The dark green boxes present the ground truth boxes matching 

with prediction boxes, and the blue boxes present the ground truth boxes matching with 

no prediction box. The light green boxes present the prediction boxes matching with 

ground truth boxes with the IoU equal or over 0.5, the yellow boxes present the prediction 

boxes matching with ground truth boxes with the IoU under 0.5, and the red boxes present 

the prediction boxes matching with no ground truth boxes. An example of a visualized 

recall–precision curve (AP curve) is shown in Figure 12. By evaluating all training and test 

data, HOG-SVM performs 0.700 mAP and 0.465 mIoU on training data and 0.702 mAP 

and 0.466 mIoU on test data. 
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Figure 11. An example of HOG-SVM detection result on test data. 

 

Figure 12. Visualization of recall–precision curve of the test image for AP calculation. The yellow 

curve depicts the precision metric in a descending power manner from the most-confident box. The 

area under the green curve represents AP (0.842). 

3.2. CNN Models 

The experiments of the two CNN-based detection models are also implemented on 

TWCC. The containerized image for the experiments is tensorflow-21.06-tf2 with Tensor-

Flow version 2.5 to have the latest function support. The hardware specifications are the 

same as for the HOG-SVM experiment. 

Starting from the model building, both experiments apply the same scripts from the 

officially released object detection example of TensorFlow. The only two changes are the 

configuration files and the pretrained weights. Detailed documentation of usage can be 

accessed from TensorFlow on GitHub. Both detection models are initialized with the 
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COCO 2017 pretrained weights, which provides prior knowledge of object features to give 

a better and faster model convergence. Evaluation of the two detection models is the same 

as for HOG-SVM and is skipped herein. Figure 13 shows the visualized detection results, 

and Figure 14 shows the visualized AP curve. For all the training and test data, Effi-

cientDet-D0 performs 0.955 mAP and 0.676 mIoU on the training data and 0.837 mAP and 

0.575 mIoU on the test data. Faster R-CNN performs 1.000 mAP and 0.996 mIoU on the 

training data and 0.888 mAP and 0.637 mIoU on the test data. The metrics between train-

ing and testing show a big gap that could be caused by overfitting during training. The 

comparison of all the models will be mentioned in Section 3.3. 

 

Figure 13. Example of visualized detection results of (a) EfficientDet-D0 and (b) Faster R-CNN. 

 

Figure 14. AP curves of the detection results of (a) EfficientDet-D0 with AP 0.924 and (b) Faster R-

CNN with AP 0.964. 
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3.3. Comparison of Model Performance 

Three detection models are compared by evaluation metrics and computation costs 

(i.e., execution time) to illustrate the tradeoffs between the models from different view-

points of applications. The workflows of detection between the HOG-SVM model and 

CNN-based models are different, so the comparison of computational costs is separated 

into three segments: preprocess, inference and visualization. The comparison is listed in 

Table 6. 

Table 6. Comparison of model performance and computational cost. (Best performance marked in 

bold) 

Model Training Test Computational Cost 

 mAP mIoU mAP mIoU Preprocess Inference Visualization Total Total 

HOG-SVM 0.700 0.465 0.702 0.466 28.659 s 46.644 s 0.020 s 75.323 s 0.013 fps 

EfficientDet 0.955 0.676 0.837 0.575 0.005 s 0.026 s 0.003 s 0.034 s 29.412 fps 

Faster R-CNN 1.000 0.996 0.888 0.637 0.005 s 0.042 s 0.003 s 0.050 s 20.000 fps 

To simulate the inference for real-time scenarios, images are loaded one by one from 

the disk for all three models. In HOG-SVM, images are processed through the sliding win-

dow approach and HOG feature computation to generate the input vectors for SVM clas-

sification. This is a tedious process that does not take advantage of the GPU to perform 

parallel processing. Different to HOG-SVM, the CNN-based detection models highly uti-

lize the GPU to extract features and detect objects parallelly. The comparison shows an 

obvious gap of computation time between HOG-SVM and CNN-based models, especially 

in the preprocessing and inference segments. The huge gap in computational time is due 

to the adoption of the sliding window approach that processes data in an exponential 

explosion time if parallel computing is not applied. Our previous study (Yang et al., 2021) 

[61] used a simple CNN classification model with a sliding window approach to detect 

rice seedlings on the open dataset. The results showed the classification model performed 

well, with an F1-score of 0.99, but showed less localization accuracy, similar to the results 

of the HOG-SVM approach in this study. In this study, deep learning methods with one 

stage and two stages were employed to enhance localization accuracy. Wu et al., 2019 [20], 

used fully convolutional architecture to count rice seedlings in 40 UAV images, resulting 

in high correlation to the ground truth count (R2 = 0.94), but false positive counting was 

not considered and adjusted for. Moreover, the size of detected objects was not detected, 

so it was unable to estimate localization accuracy. In addition to rice seedling counting, 

the proposed methods in this study can detect the position and size of the rice seedlings. 

Etienne et al., 2021 [34], aimed to detect monocot and dicot weeds in corn and soybean 

fields using YOLOv3 with different sets of images captured in two spatial resolutions (1.5 

cm and 0.5 cm). The results showed that both the AP at IoU 0.5 threshold reached the 

highest number, 65.37% and 45.13%, for monocot and dicot weeds in the dataset with the 

finest spatial resolution (0.5 cm). In general, YOLOv3 is a popular one-stage detection ar-

chitecture, whereas EfficientDet adopted in this study is a new one-stage detection archi-

tecture with less computation and better accuracy (Tan et al., 2020) [55]. Moreover, this 

study applied transfer learning to reduce the need for a great amount training data and 

training time (less than 1 h for 500 epochs). Overall, the EfficientDet and Faster R-CNN 

models show the capability of real-time inference, as they performed around 30 fps and 

20 fps detection, respectively. However, the computational cost of the CNN-based model 

is overstated, because normally the images are read from the camera cache through the 

bus instead of the disk. Further, the CNN models will be optimized to a faster and lighter 

runtime package to satisfy various deployment environments. 
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3.4. Model Evaluation on Different Datasets 

Three detection models were all evaluated with four test datasets, which were differ-

ent in the planting year, growth day, location and environmental conditions. The AP and 

IoU metrics of three models are listed in Table 7 and visualized in Figure 15. To evaluate 

the robustness of the models, metrics of precision, recall and F1-score were also evaluated, 

the results are listed in Table 8 and visualized in Figure 16. 

Table 7. Evaluation of AP and IoU on four datasets. 

Model EfficientDet Faster R-CNN HOG-SVM 

Date AP IoU AP IoU AP IoU 

7 August 2018 0.837 0.575 0.888 0.637 0.702 0.466 

14 August 2018 0.965 0.631 0.981 0.686 0.732 0.315 

12 August 2019 0.903 0.537 0.986 0.871 0.476 0.156 

20 August 2019 0.744 0.357 0.739 0.382 0.335 0.092 

Table 8. Evaluation of model performance on four datasets. 

Model EfficientDet Faster R-CNN HOG-SVM 

Date 
Preci-

sion 

Re-

call 

F1-

Score 

Preci-

sion 
Recall 

F1-

Score 

Preci-

sion 

Re-

call 

F1-

Score 

7 August 2018 0.753 0.817 0.783 0.855 0.780 0.815 0.514 0.524 0.518 

14 August 2018 0.904 0.905 0.904 0.948 0.747 0.834 0.506 0.480 0.491 

12 August 2019 0.809 0.774 0.790 0.972 0.615 0.737 0.123 0.110 0.115 

20 August 2019 0.515 0.460 0.480 0.583 0.345 0.422 0.071 0.079 0.073 

 

Figure 15. A vertical chart comparing evaluation results with AP and IoU metrics. 
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Figure 16. Comparison of evaluation metrics (precision, recall and F1-score) on four datasets. 

According to the test results, the performance of the CNN-based detection models 

surpassed the HOSVM model with at least 10% higher performance in all metrics. The AP 

and IoU metrics of Faster RCNN were higher than EfficientDet-D0. Oppositely, the recall 

of Faster RCNN was lower than EfficientDet-D0 on all the test sets. To discuss this issue, 

an example of the test images on four different datasets was selected and visualized (Fig-

ure 17), and comparison of the test results is visualized as Figure 18. Figure 17 shows the 

variances of paddy environment, seedling size and illumination. The variance of seedling 

sizes is due to the different image acquisition date, which can be categorized into three 

sizes of side length 20, 25 and 30 pixels. The paddy environment can be categorized into 

four situations with combinations of ponding management and growth of algae. The illu-

mination conditions can be categorized into object with shadow and object without 

shadow. 

An example of the detection results with comparisons between the three models is 

shown in Figure 18. Precision was calculated by the number of predictions for which the 

IoU is equal or greater than 0.5 (light green boxes) divided by the total number of predic-

tions. Recall was calculated by the number of light green boxes divided by the total num-

ber of ground truth boxes. 



Remote Sens. 2022, 14, 2837 18 of 23 
 

 

 

Figure 17. An example of the test images on four datasets on (a) 7 August 2018, (b) 14 August 2018, 

(c) 12 August 2019 and (d) 20 August 2019. 

The detection results of Faster RCNN on the dataset acquired on 12 August 2019 

(center column of Figure 18c) shows a large percentage of omission objects, which causes 

a lower recall rate. This issue could be relatively low light intensity on rice seedlings con-

trasting with the high reflectance of turbid water. All three models yield a lower precision 

and recall on the dataset acquired in 20 August 2019 (Figure 18d), which was due to the 

significant difference in seedling size between the training samples (Figure 6) and test 

samples. The data of 12 August and 20 August 2019 were acquired on 17 and 25 days after 

seedling transplantation, respectively. Further, the field was fertilized 19 days after seed-

ling transplantation. According to the rice growth calendar [66], the rice seedlings on 20 

August 2019 were in the middle of the active-tillering stage, during which the rice seed-

lings were growing rapidly with more canopy cover. Therefore, the size of rice seedlings 

from the nadir perspective is obviously different from the training data, reducing the pre-

cision, recall and f1 score. 

According to the evaluation in Table 8 and Figure 16, EfficientDet-D0 shows similar 

prediction results on the first three datasets. Figure 18 also shows a stable prediction ca-

pability of EfficientDet, although differences in image tone and contrast, object size and 

surrounding reflectance appear between the test datasets and the training dataset. Thus, 

EfficientDet has the highest robustness to minimize the impact of image variance. 
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Figure 18. An example of detection results with precision and recall metrics on four datasets: (a) 7 

August 2018, (b) 14 August 2018, (c) 12 August 2019 and (d) 20 August 2019. 

4. Conclusions 

Tiny-object detection in UAV images is a challenging task in practical applications. 

Long computation time and slow speed due to memory consumption are the first-priority 

causes. Complex background and scenes, high density areas and random textures of fields 

can also decrease the performance of small-object detection. In this study, small rice 
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seedlings are presented in highly noisy environments that influence the detection using 

deep learning on UAV imagery. 

This study presents three machine learning models, HOG-SVM, EfficientDet and 

Faster R-CNN on UAV images to detect tiny rice seedlings. The datasets are semi-anno-

tated with preprocessing of image processing and manual verification to reduce the cost 

of labor. This approach is sure to generate usable datasets rapidly. The combination of 

HOG descriptor and SVM classifier gives a robust result for rice seedling classification, 

which achieves 99.9% F1-score in training and 99.6% F1-score in testing. The rest of the 

two classes also achieve above 85% F1-score in both training and testing. However, explo-

sive data growth is one of problems that needs to be solved in practical applications. For 

SVM classification, computational complexity grows exponentially with sample size. This 

is a significant drawback for such an algorithm that cannot efficiently process such big 

data for practical applications. In this study, two CNN models were transferred from pre-

trained models to develop a well-generalized model with high detection accuracy and 

rapidity. The pretrained models were well-trained by splitting four paddy images into 

297 sub-images (each image sized 512 × 512 × 3) by annotating each rice seedling in every 

sub-image. 

To verify model applicability with various imaging conditions, HOG-SVM, Effi-

cientDet and Faster R-CNN were applied to the rest of the images and three additional 

datasets acquired on different dates for model testing. The test results of HOG-SVM, Effi-

cientDet and Faster R-CNN to detect rice seedlings showed that Faster R-CNN has the 

best detection performance, with mAP of 0.888, 0.981 and 0.986 and mIoU of 0.637, 0.686 

and 0.871 on the first three test datasets. Further, EfficientDet had promising results, with 

mAP of 0.837, 0.965 and 0.903 and mIoU of 0.575, 0.631 and 0.537 on the first three test 

datasets, and it had the fastest computation speed at nearly 30 fps. Moreover, the two 

CNN-based models had acceptable detection results, with 0.744 mAP and 0.357 mIoU (Ef-

ficientDet) and 0.739 mAP and 0.382 mIoU (Faster RCNN) on the fourth dataset, even 

though huge variances exist between test datasets and training datasets. EfficientDet es-

pecially showed the highest robustness to minimize the impact of image variance. Overall, 

rice seedlings can be well-detected using both CNN-based models with real-time compu-

tation performance. In contrast, HOG-SVM gave a merely adequate result with long com-

putation time. 

Further study will focus on detecting rice seedlings with more variety in imaging 

conditions, such as illumination, tone, color temperature, blur and noise. The models can 

be retrained using these additional images to adapt to more image changes. Further, op-

timizing model parameters to reduce computational time and increase prediction accu-

racy is needed to enable models to be deployed in environments with tight resources. 
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