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Abstract: Missions finalized at measuring the space-time variations of the Earth gravity field have
become of high relevance in recent years. These missions are indeed of interest for scientific purposes
and applications in several fields. Precise observations of the Earth gravity field can be accomplished
by measuring the distance between two satellites flying in suitable orbits. Several mission concepts
foresee an active formation control to maintain the distance variations between the two satellites
within given bounds. In this paper, we first present an original constellation model, called the Triangle
Dynamics (TD) model, which is particularly suitable to describe the orbital dynamics of satellite pairs.
Open-loop simulations are performed, where the TD model is compared with a standard model,
derived from the well-known Hill–Clohessy–Wiltshire (HCW) equations. The simulation results
show that the TD model provides more accurate predictions than the HCW model. Then, we propose
a formation control approach based on a new Model Predictive Control (MPC) algorithm. The core of
this algorithm is the TD model, which is used in real-time to predict the behavior of the satellite pair,
allowing the computation of an optimal formation control command. A case study concerned with
the Next Generation Gravity Mission (NGGM) is presented to demonstrate the effectiveness of the
proposed MPC-TD algorithm.

Keywords: constellation model; model predictive control; earth gravimetric measurements; NGGM
mission

1. Introduction

In the last few years, in the framework of Earth observation missions, the study of the
space-time variations of the Earth’s gravitational field has become an increasingly attractive
research topic in industry and academia. Indeed, the gravity anomalies detected during the
gravimetric missions allowed mapping with tighter accuracy in terms of the distribution of
the terrestrial mass around the planet and its changes in time [1]. The importance of Earth
gravity missions is mainly due to the huge relapses that such knowledge can have in several
fields of the science, where its applications fall under a wide variety (see, e.g., [2,3]). Indeed,
a detailed map of Earth gravity anomalies and its mass distribution offers an important tool
for several field of Earth sciences (e.g., oceanography [4], glaciology [5], atmospheric science,
meteorology, resources exploitation, and weather and climate studies) and for foreseeing
how humans are influencing climate change. For these reasons, over the last decades,
space agencies were pushed to design space missions for which their main purpose was to
study—from the orbit—the features and behavior of the Earth’s gravitational environment.
Examples are missions such as GRACE (Gravity Recovery and Climate Experiment [6]) and
GRACE Follow-on [7], launched in 2002 and 2018, respectively, and GOCE (Gravity field
and steady state Ocean Circulation Explorer [8]), launched in 2009. After the great scientific
success of the aforementioned missions, the European Space Agency (ESA) has proposed
several feasibility studies for a Next Generation Gravity Mission (NGGM)—based on the
heritage of the previous gravity missions—for which its aim is to measure the temporal
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variations of the Earth’s gravity field over a full solar cycle [9]. However, in order to perform
a more accurate map of the Earth’s gravity anomalies, NGGM will require a higher level of
technological standards with respect to its predecessors. Specifically, for what concerns the
automatic control side, major challenges will be the satellite-to-satellite tracking technology,
based on laser ranging [7], as well as the expected Guidance, Navigation, and Control (GNC)
performances and features. Indeed, many Earth observation (or, more specifically, Earth
gravimetric) mission concepts usually leverage cooperating satellites to enhance scientific
performance [10]. As matter of fact, an enhancement of the quality of data collected from
the orbit will require higher performances in terms of constellation formation, attitude, and
relative motion control [11–13].

Within the GNC framework, Model Predictive Control (MPC) has been accepted as
a powerful tool for a wide range of technological applications (see, e.g., [14,15]), which is
attractive also for satellite formation control. Indeed, MPC represents a flexible control tool
for dealing with linear and nonlinear (in its nonlinear formulation) multivariable systems
and is able to cope with both input and state constraints; it can merge into an unique loop
with satellite guidance and control tasks. Moreover, the minimization of a performance
index also provides the optimal selected system features. Then, it ensures the inherent
robustness with respect to external disturbances. MPC is fundamentally based on two key
operations: (i) the prediction of the system’s future behavior along a finite time span, which
is the so-called prediction horizon; and (ii) the minimization of a suitable cost function
in order to obtain an optimal control sequence over the prediction horizon time span.
Furthermore, when the receding horizon strategy is adopted, only the first time sample of
the optimal control sequence is applied to the plant, while the remainder of the solution
is discarded. Then, the same process is iterated for all the successive sampling time steps.
Examples of preliminary MPC applications to this class of missions are proposed in [16,17],
while the formation flight control scenario is confronted in [18–20].

The first contribution of this paper is a new model describing a constellation of two
different spacecraft (S/C) traveling in low-Earth orbits. The orbital motion is tailored to
space gravimetric missions and is based on the so-called Formation Local Orbital Frame
(FLOF) and the triangle virtual structure. Such a formulation, called Triangle Dynamics
(TD), allows the derivation of ad hoc differential equations for the description of the
spacecraft’s orbit and constellation dynamics. The choice is motivated by the advantage of
describing a unique formulation for both the orbit and constellation dynamics [21]. The TD
model is compared in simulation with a standard model and is based on the well-known
Hill–Clohessy–Wiltshire (HCW) equations. Specifically, the NGGM mission orbits are
used as a benchmark for analyzing the difference between the two models in predicting
spacecraft behavior over a finite time horizon.

The second contribution of this paper is a novel formation control approach based
on a Model Predictive Control (MPC) algorithm. The core of this algorithm is the TD
model, which is used in real-time to predict the behavior of the satellite pair, allowing the
computation of an optimal formation control command. The MPC choice is motivated by its
capability of ensuring a high level of performance in reference tracking, which accounts for
command constraints, efficiently limiting command activity and attenuating disturbance
effects. Indeed, the purpose of the orbit and formation control is to guarantee formation
stability during the long timescales characterizing the mission’s expected lifetime (approxi-
mately, an entire solar cycle), while rejecting the external disturbances potentially affecting
the inter-satellite distance and driving it outside the prescribed range requirements.

A case study concerned with the NGGM mission is presented to demonstrate the
effectiveness of the proposed MPC-TD algorithm. In this case study, simulations are carried
out using a detailed nonlinear simulation environment, where the MPC-TD algorithm
is compared with a standard MPC approach based on the well-known Hill–Clohessy–
Wiltshire (HCW) equations. The simulation results show that the MPC-TD approach can
guarantee an effective formation control, outperforming the MPC-HCW approach.



Remote Sens. 2022, 14, 2815 3 of 17

Note that the model proposed in this paper is currently part of the ESA-NASA coopera-
tion in the frame of the MAGIC (Mass Change and Geosciences International Constellation)
for future NGGM mission. Indeed the capability of describing, at the same time, the orbit
and the constellation dynamics allows the obtainment of a compact and robust model
that is suitable for all low-Earth-orbit scientific missions featuring a two-satellite constella-
tion (such as NGGM). Furthermore, when the Global Navigation Satellite System (GNSS)
and laser metrology are present, this model can be used for each space scientific mission
composed of a formation, even with more stringent requirements in the relative motion
between the satellite than only loose formations.

This paper is organized as follows. In Section 2, we present a mathematical model
concerning the novel orbit and formation dynamics (Triangle Dynamics, TD). In Section 3,
the mathematical formulation of the MPC controller is provided. The TD and HCW orbit
and formation models are firstly compared in an open-loop environment in Section 4, while
the closed-loop comparison is enclosed in Section 5. Finally, conclusions are drawn in
Section 6.

2. Triangle Dynamics Model

This section presents the main aspects of the developed constellation model. Specifi-
cally, the orbital dynamics is a special form of the Hill–Clohessy–Wiltshire equations [22,23].
Such formulation, described in detail in [24], is based on the definition of a peculiar forma-
tion reference frame (the Formation Local Orbital Frame, FLOF) and the formation triangle
virtual structure [21]. These, in turn, lead to the derivation of a novel set of equations
describing the spacecraft’s orbit and constellation dynamics. The rationale behind our
novel set of CW-type equations is the integration, into an unique model, of the orbit and
constellation dynamics through the formation triangle concept [25], defining the so-called
Triangle Dynamics (TD) model. In this context, the term “CW-type equations” means
equations based on the perturbation of S/C position, in the LVLH frame, with respect to a
chief reference frame in the case of a formation of two satellite. Moreover, with stochastic
disturbance dynamics, similarly to [26,27], it is possible to account for the orbit’s eccentricity
and J2 effects, thus making the state equations quasi-periodic.

2.1. Introduction and FLOF Definition

The TD is in charge of describing the orbital altitude of the two spacecraft, as well
as their relative distance. From this, we obtain an accurate and robust model that allows
the inter-spacecraft or inter-satellite distance d to be easily maintained within a prescribed
interval centered at a given nominal value dnom. In this model, the constellation dynamics
is derived by the definition of the FLOF reference frame, described in detail below, with the
result of achieving the formulation of a special variation of the Hill–Clohessy–Wiltshire
(HCW) equations [23], describing the S/C orbit and constellation behavior [25].

Let us now review the rationale behind the TD model design. As already mentioned,
it is based on the definition of a specific orbital reference frame, i.e., the Formation Local
Orbital Frame (FLOF)O= {CF,~o1,~o2,~o3} and the triangle virtual structure, allowing a com-
mon description of the constellation altitude and the inter-satellite distance. This triangle is
a virtual structure for which its vertices are the two S/C centers of mass (CoMs), C1 and C2
in Figure 1a, in addition to Earth CoM, CE. The FLOF frame is the constellation common
reference frame. Hence, the FLOF axes in Equation (1) are defined by the relative satellites
position ∆~r =~r1 −~r2 and by the mean radius~r = (~r1 +~r2)/2, whereas d= |∆~r| and r = |~r|.
The FLOF frame axes are defined as follows:

~o1 = ∆~r
d

~o2 = ~r/r×∆~r/d
|~r/r×∆~r/d|

~o3 =~o1 ×~o2.
(1)

Figure 1 shows a sketched representation of the FLOF axes, together with the triangle
virtual structure. The first axis~o1 is referred to as tangential (or along-track), the second
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one~o2 is reffered to as lateral (or cross-track), and the third one~o3 is reffered to as radial.
Other than the FLOF and the formation triangle concepts, for the derivation of the TD
architecture, common assumptions for Earth gravity sensing missions (such as GOCE) are
taken into account. The satellite nominal orbits are assumed to be polar, with an altitude
between 300 and 400 km, with the same right ascension of the ascending nodes (in-line
constellation). In addition, the satellite-to-satellite distance variations are measured along
the satellite-to-satellite line (SSL). SSL is defined as the line connecting the center of mass of
the two satellites, and the first FLOF axis~o1 sets its direction. In a low-Earth-orbit, SSL can
be materialized by a differential Global Navigation Satellite System (GNSS).

(a) (b)

Figure 1. The Formation Local Reference Frame (FLOF) and the triangle virtual structure. (a) FLOF
coordinated axes. (b) Formation triangle virtual structure.

Further assumptions concern the additional control unit tasks. Indeed, both the drag-
free control and the attitude and pointing controls are properly working. As a matter of fact,
the TD model assumes that the high-frequency ( f > fnom = 1/Pnom) forcing accelerations
are only due to gravity periodic components that are related to the scientific objective of
the gravimetric mission. This can be considered true if the short-term non-gravitational
accelerations are canceled by an appropriate control action. In other words, if it is a
drag-free control, both linear and angular settings are available. Note that, despite these
assumptions (reasonable in this context), the model remains valid even under different
conditions than those defined above (as proved in Section 4.2).

2.2. Constellation Dynamics

Before detailing the TD model derivation, a brief account of spacecraft and constella-
tion dynamics is provided. The model should be built with respect to the chief frame of
reference, namely the FLOF frame defined in Equation (1). Indeed, the orbit and constella-
tion model requires the preliminary definitions of the orbit and constellation perturbations,
which are needed for the definition of triangle dynamics. Let us start by considering the
standard satellite CoM inertial dynamics with a GNSS range and rate measurements, yrk
and yvk, and accelerometer measurements yak:

r̈k(t) = −g(rk(t)) + ak(t), rk(0) = rk0, ṙk(0) = vk0

yrk(t) = rk(t) + erk(t)

yvk(t) = ṙk(t) + evk(t)

yak(t) = Pa(ak(t) + nak(t)) + wak(t),

(2)

where k = 1, 2 is the satellite number, and erk and evk are the model errors, thus including
measurement errors and the effect of neglected dynamics. On the other hand, nak and
wak are, respectively, the low-frequency and high-frequency accelerometer errors, while
Pa denotes accelerometer dynamics. In (2), we define ak = (uk + dk)/m that accounts for
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the non-gravitational accelerations acting upon the k-th S/C, where dk and uk are the
disturbance and thruster command forces, respectively. Furthermore, m is the spacecraft
mass, while U(r) is the gravity tensor to be measured in order to retrieve the scientific
gravimetry signal, namely the object of an Earth-gravity monitoring mission. The dynamics
in Equation (2) is equivalent to the constellation mean and differential dynamics (r and
∆r), which involves, starting from (2) for each S/C, dropping subscript k and holding the
following.

r̈(t) = −g(r1) + g(r2)

2
+ a(t)

= −g(r) + a(t), r(0) = r0, ṙ(0) = v0

∆r̈(t) = −(g(r1)− g(r2)) + ∆a(t)

= −U(r)∆r(t) + ∆a(t), ∆r(0) = ∆r0, ∆ṙ(0) = ∆v0.

(3)

We also define the following.

a =
a1 + a2

2
, ∆a = a1 − a2. (4)

Let us recall that the drag-free setting aims at reaching, in (3), the following conditions.

ak = 0 =⇒ a = 0, ∆a = 0. (5)

From (5), it follows that the drag-free constellation time-evolution is the free response
of the Equation (3). This allows the correlation of the interferometric measurements of ∆r
with gravity tensor U(r) to be measured to retrieve the scientific observable of interest.
As a matter of fact, the condition in (5) is achieved by forcing the drag-free command uk to
cancel the real-time prediction of the environment term d̂k obtained from accelerometer
wide-band measurements. Notwithstanding, this cancellation occurs for less than some
residuals mainly due to the limited bandwidth of the drag-free control law, causality, and
high-frequency accelerometer errors.

uk = −d̂k =⇒ ak = (−dk + d̂k)/m ∼= wak 6= 0. (6)

The effect of such residuals, as stated before, would impinge on the constellation’s
(and attitude’s) stability, without the proper position/velocity feedback ensured by a
formation control.

Generally speaking, the constellation and orbit perturbations, needed to build the
constellation model, can be expressed in two ways: (i) the standard Hill–Clohessy–Wiltshire
perturbations [23], defined as the 3D S/C CoM displacement δrk = rk − rnom,k from a Ke-
plerian reference orbit rnom,k(t) that is either circular or elliptical [27] or (ii) the S/C ra-
dial and angular perturbations approach, which is adopted in this study. Specifically,
the radial and angular perturbations consist in the following: (i) the radial perturbation
δrkl3,k = (rk − rnom,k)l3,k, l3,k being the local-vertical-local-horizontal (LVLH) radial axis,
and (ii) the angular rate ωk of the actual orbit LVLH frame. It can be proven that ωxk = 0, ωk
has only two degrees-of-freedom, adding up to the radial perturbation δrkl3,k to a total of
three degrees of freedom (DoFs) for the Cartesian perturbations. As a matter of fact, a spe-
cific combination of Cartesian and angular perturbations can be extended to a two-satellite
constellation with the help of the FLOF frame, defined in Equation (1). As sketched in
Figure 1b, a nominal reference sphere of radius rnom (i.e., the nominal constellation altitude)
can be associated to the constellation CoM r, defining the nominal orbit, while a nominal
constellation SSL, with a length of dnom (i.e., the mean reference inter-satellite distance)
and tangent to the reference sphere, can be associated to the relative position ∆r. Indeed,
the constellation radius r and the satellite radii (r1 and r2) hold the following:
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r = rx~o1 + rz~o3, r1 − r2 = dnom~o1

r1 =
(

rx +
d
2

)
~o1 + rz~o3, r2 =

(
rx −

d
2

)
~o1 + rz~o3,

(7)

where the SSL distance is d, and the triangle’s height is rz, which is the component of the
constellation radius r along the third FLOF axis~o3 (see Figure 1). Furthermore, rx is the
mean radius component along the SSL direction ~o1, defining the radius’s orthogonality
with respect to the triangle base vector ∆r= r1− r2 (see Figure 1). As a matter of fact, rx is
proportional to the satellite radii difference. Indeed, its nominal condition, namely rx = 0,
is a target of the control action, which tries to align radius r to~o3, thus making the triangle
isosceles. Consequently, three Cartesian perturbations in FLOF coordinates, δd, δrx, and δrz,
can be defined as follows.

∆r = (dnom + δd)~o1

r = rz~o3 + rx~o1 = (rnom + δrz)~o3 + (0 + δrx)~o1.
(8)

The perturbations defined in Equation (8) will be directly leveraged to build the TD
model based on the FLOF frame. Specifically, perturbation δrx is referred to as ‘differential
altitude’ or ‘differential radius’. Indeed, from Figure 1b, it is possible to observe that δrx is
proportional to the mean radius difference of the satellite orbits. In addition, three DoFs
are provided by the 3D nonzero components of the FLOF angular rate vector ω. Therefore,
we have a total of six DoFs describing the constellation dynamics.

It is worth point out that the three perturbations in (8), being defined with respect
to a reference sphere of radius rnom, perfectly fit the in-line constellation type and is
characterized by a circular reference orbit.

2.3. TD Model Derivation

In this section, the derivation of the continuous-time constellation dynamics model,
namely the Triangle Dynamics model, is considered. Specifically, in the following, a brief
development from the triangle differential dynamics to the continuous-time final models is
provided. Of course, the model developed here is defined with respect to the FLOF frame
(see Equation (1)).

The constellation dynamics expresses the triangle dynamics based on the differential
equations of the six DoFs defined above in Section 2.1: (i) the three Cartesian perturbations,
namely the distance, the differential and mean altitudes (δd, δrx, δrz) defined in Equation (8),
and (ii) the three FLOF angular rate perturbations defined by ω =ωnom + δω.

ω = ωx~o1 + ωy~o2 + ωz~o3. (9)

Hence, by starting from the relative satellite position vector ∆r= d~o1 in (8), which
is aligned to the FLOF axis ~o1 by construction, as sketched in Figure 1, it is possible to
derive the differential equation of the inter-satellite distance variable, d. Let us observe that,
since ∆r has three DoFs, we obtain three scalar second-order differential equations: (i) One
expressing the second-derivative of the distance, namely the distance variation acceleration
d̈, while two further differential equations detail the pitch and yaw angular accelerations
of~o1, namely (ii) ω̇y and (iii) ω̇z. As a result, the differential radius ∆r kinematic equation
in FLOF coordinates reads as follows:

∆r̈ =
(

d̈− d(ω2
y + ω2

z)
)
~o1

+
(

2ḋωz + d(ω̇z + ωxωy)
)
~o2

+
(
−2ḋωy + d(−ω̇y + ωxωz)

)
~o3,

(10)

where ω is the FLOF angular rate, while ω̇ is the angular acceleration. Consequently,
by wisely comparing components with respect to the differential radius kinematics in
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Equation (10) with the differential dynamic equation in (3) (second line), we have the
following:

d̈ = −d(ω2
y + ω2

z)− ∆gx + ∆ax

dω̇z = −2ḋωz − dωxωy − ∆gy + ∆ay

dω̇y = −2ḋωy + dωxωz − ∆gz + ∆az,

(11)

which describes the FLOF dynamics of the first three DoFs (d, ωy, and ωz) out of the six
needed to build the complete triangle model (Figure 1b). In (11), the FLOF coordinates
of the differential external acceleration ∆a in (4) are highlighted. Moreover, the gravity
gradient term ∆g= g(r1)− g(r2) can be expressed in FLOF coordinates and through the
identified triangle variables (r and ∆r) in terms of the spherical gravity terms only, while
ideally arranging the higher-order terms in the external acceleration contribution ∆a:

∆g(r, ∆r) = ∆gx~o1 + ∆gy~o2 + ∆gz~o3

= −
(

∆Grx + G
d
2

)
~o1 − ∆Grz~o3,

(12)

where ∆G = µ(r3
2− r3

1)/r3
2r3

1 and G = µ(r3
2 + r3

1)/r3
2r3

1. For the sake of completeness, in this
context, with spherical gravity, a gravity model defined by a central potential (spherical
symmetry) is intended, defined as U = −µ/r, where µ is Earth’s gravitational parameter
and r is the distance from Earth’s CoM to the orbiting spacecraft’s CoM. Moreover, we
can say that the model simplification in (12) could impinge on the model capability’s in
describing the constellation dynamic behavior only in case that distance d is not a negligible
fraction of the mean constellation radius r = |r|. Indeed, in that case, where the dimensional
coefficient α= dnom/rnom, which will be introduced later (see (18)), is greater than, let us say,
0.01, the J2 gravity term (i.e., the second order harmonics of the gravity gradient expansion)
contribution to the gravity gradient should be accounted for to ensure a more reliable
control action. Thus, from (11) and (12), the following holds:

d̈ = −ω2
s (r)d

(
1− 3

r2
x

r2

)
+ d
(

ω2
y + ω2

z

)
+ ∆ax

ω̇z = −2ḋ
ωz

d
−ωyωx +

∆ay

d

ω̇y = −3ω2
0(r)

rxrz

r2 −
2
d

ḋωy + ωzωx −
∆az

d
,

(13)

where r = |r|, ω2
s = µ/r3 is the mean orbital rate, while rx and rz come from the definitions

in (8).
As a further step, let us detail the second set of equations completing the six constel-

lation degrees of freedom. For this purpose, let us focus on the mean and the differential
altitude, rz and rx, by computing the kinematic equation of the constellation mean radius
r and then applying the same component-wise comparison procedure between the com-
puted radial kinematics (14) and the mean dynamic equation in (3) (first line). Thus, if the
following constellation radial kinematics holds:

r̈ =
(

r̈x + ω̇yrz + 2ωy ṙz −
(

ω2
y + ω2

z

)
rx + ωxωzrz

)
~o1

+

(
−ω̇xrz + ω̇zrx + ωxωyrx + ωyωzrz + 2

(
−ωx ṙz + ωz ṙx

))
~o2

+

(
r̈z − ω̇yrx − 2ωy ṙx −

(
ω2

x + ω2
y

)
rz + ωxωzrx

)
~o3,

(14)

from (14) and (3), the radial dynamics in FLOF coordinates read as follows.
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r̈x = −ω̇yrz − 2ωy ṙz +
(

ω2
y + ω2

z

)
rx −ωxωzrz − gx + ax

ω̇xrz = ω̇zrx + ωxωyrx + ωyωzrz + 2
(
−ωx ṙz + ωz ṙx

)
+ gy − ay

r̈z = ω̇yrx + 2ωy ṙx +
(

ω2
x + ω2

y

)
rz −ωxωzrx − gz + az.

(15)

Equation (15) describes the FLOF dynamics of the further three DoFs (rx, ωx, and rz)
needed to build the complete triangle model (Figure 1b). In (15), the mean gravity term,
g(r, ∆r) = (g(r1) + g(r2))/2= gx~o1 + gy~o2 + gz~o3 in FLOF coordinates, is still described
through the identified constellation triangle variables (r and ∆r) in terms of the spher-
ical gravity terms only, as specified above. Indeed, the higher-order terms are again ideally
accounted for in the three components of the external mean acceleration contribution a
from (4). As a result, the second set of differential equations, concerning the triangle DoFs
rx, rz (Figure 1b), and ωx, reads as follows:

r̈x = −ω2
s (r)rx

(
1− 3

r2
z

r2

)
− 2ωy ṙz +

(
ω2

y + ω2
z

)
rx

− 2ωzωxrz + 2
rz

d
ωyḋ +

rz

d
∆az + ax

r̈z = −ω2
s (r)rz

(
1 + 3

r2
x

r2

)
+ 2ωy ṙx +

(
ω2

x + ω2
y

)
rz

− 2
rx

d
ωyḋ− rx

d
∆az + az

ω̇x =
2
rz

(
−ωx ṙz + ωz ṙx

)
+ ωzωy − 2

rx

drz
ωzḋ +

rx

drz
∆ay −

ay

rz
,

(16)

where ωs is defined above.
Provided with the two equation sets from (13) and (16) that fully describe two-

spacecraft constellation dynamics by means of triangle dynamics and the perturbation
variables from (8), we proceed by adopting the perturbation equations modeling strategy.
Indeed, since the control is expected to keep the selected constellation variables close to
their nominal value, some equilibrium points and trajectories can be defined for the control
design purpose. Hence, we seek the equilibrium by setting the constellation variable
derivatives in (13) and (16) to zero under zero input signals, thus finding the following
equilibrium components and making up the equilibrium state vector xeq.

deq = dnom, rz,eq = rnom, rx,eq = 0

ωy,eq = ωs(rnom) = ωnom, ωx,eq = ωz,eq = 0.
(17)

Accordingly, by means of (17), we can define the triangle perturbed state variables,
namely δx= x− xeq, as well as the external non-gravitational acceleration input vector a f :

δx f =

[
δd = d− dnom

ρx = −αrx
δρz = α(rz − rnom)

]
, δv f =


δḋ/ωnom
ρ̇x/ωnom
δρ̇z/ωnom

wx = dnomωx/ωnom
wy = dnom(ωy −ωnom)/ωnom

wz = dnomωz/ωnom

, a f =


∆ax
∆ay
∆az
αax
αay
αaz

, (18)

where the perturbed state vector δx is split into its sub-vectors δx f and δv f , accounting
for the length and the rate state variables all in length unit, whereas the adimensional
scale factor α= dnom/rnom is defined as above. Hence, the orbit and constellation dynamics
is based on the perturbation differential equations, for which its equations were built
by combining the kinematics equations involving the six selected perturbations with the
triangle dynamics, as explained above. The final perturbation equations were used for the
control design after having been linearised around the equilibrium point defined in (17). As
a result, by rewriting model Equations (13) and (16) in the equilibrium conditions through
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the perturbed state variables and inputs (18), the following linear time-invariant (LTI)
continuous-time state equations hold follows:[

δẋ f
δv̇ f

]
(t) = ωnom

[
0 A12

A21 A22

][
δx f
δv f

]
(t) +

1
ωnom

[
0
B2

]
a f (t)

y f (t) =
[
C1 C2

][δx f
δv f

]
(t),

(19)

for which matrices A12, A21, A22, and B2 are parameter free. As a design choice, the angular
rate components, ωx, ωy, and ωz, are normalized in (19), through the definition of the state
variables wx (roll), wy, (pitch), and wz (yaw) in (18). By doing so, all the state variables
in δx are length increments, with the same unit of measurements, i.e., the meter, and the
constellation model looks more homogeneous and is easier to interface with the model’s
inputs and outputs. Furthermore, from (19), we can observe how the roll and yaw state
variables, wx and wz, are decoupled from the other state variables. Likewise, decoupling
applies also to input signals ∆ay and αay, which are orthogonal to the formation plane.
The state matrix of the model (19) is of ninth order, and the nine eigenvalues are as follows.

λ1,2,3 = 0, λ4,5,6 = jωnom, λ7,8,9 = −jωnom. (20)

Hence, the three eigenvalues λ1,2,3 = 0 need to be stabilized, while the other ones are
imposed by the nature. As a matter of fact, by including also the angular kinematics of
the triangle, further zero eigenvalues would arise. On the other hand, the out-of-plane
constellation dynamics, encompassing the (normalized) roll and yaw angular rates, wx and
wz, are decoupled in (19) and likewise its input signals ∆ay and αay, and it will be neglected
from here. Thus, from the completed model in (19), let us consider only the three Cartesian
perturbations, namely the differential height ρx, the mean height ρz, and the distance δd
in δx f and their normalized rates, in δv f , in addition to the normalized perturbation of
orbital rate wy. Moreover, the input vector is restricted to the four in-plane input variables
in a f . It is worth noting that the restricted seventh-order model from (19) can be proven to
be observable and controllable when assuming y f (t) = δx f (t), which implies C1 = I3 and
C2 = 0. Hence, after some treatment, we have the following:[

ṙ
ẇ

]
(t) =

[
0 A12

A21 A22

][
r
w

]
(t) +

[
0
B2

]
u(t)

y f (t) =
[
I 0

][ r
w

]
(t),

[
r
w

]
(0) =

[
r0
w0

]

r =

ρx = αδrx
ρz = αδrz

δd

, w =


wx
wz
wd
wy

, u =


u f x
u f z

∆u f x
∆u f z

,

(21)

where the following is the case.

A12 = ωnom

1 0 0 0
0 1 0 0
0 0 1 0

, A21 = 3ωnom


1 0 0
0 1 0
0 1 0
−1 0 0



A22 = 2ωnom


0 −1 1 0
1 0 0 1
0 0 0 1
0 0 −1 0

, B2 =


α 0 0 1
0 α 0 0
0 0 1 0
0 0 0 −1

/ωnom.

(22)
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The eigenvalues of the system are as follows.

λ1,2,3 = 0, λ4,5,6,7 = ±jωnom. (23)

From the derived LTI model, it follows that only seven states are required to control
a formation of two S/C. This can be a benefit from a control design point of view with
respect to the use of the HCW model. Indeed, with the HCW equations, six states are used
to provide the approximate dynamics of a single spacecraft with respect to an orbiting
frame. This results in the implementation of two different HCW models and then in the
use of twelve states for controlling a formation of two satellites.

3. Model Predictive Control

Since, as described in Section 2.3, the triangle dynamics model is linear time-invariant,
a model predictive control algorithm can be employed. Consider the general form of linear
continuous-time dynamic systems described by the following state equations:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(24)

where x ∈ Rnx , u ∈ Rnu , and y ∈ Rny are the state, the input, and the output, respectively,
A ∈ Rnx×nx is the state transition matrix, B ∈ Rnx×nu is the input matrix, C ∈ Rny×nx is the
output matrix, and D ∈ Rny×nu is the matrix that allows a direct coupling between u and y.
We assume that the state x is measured in real time, with a sampling time TS, according to
x(tk), tk = TSk, k = 0, 1, .... If this assumption does not hold, an observer can be employed.
At each time t = tk, a prediction of the system state and output evolution over the finite time
interval [t, t + TP] is performed, where TP ≥ TS is the prediction horizon. The prediction
is obtained by integrating Equation (24). At any time τ ∈ [t, t + TP], the predicted output
ŷ(τ) ≡ ŷ(τ, x(t), u(t : τ)) is a function of the ‘initial’ state x(t) and the input signal u(t : τ).
Notation u(t : τ) is used to indicate the model’s input signal in interval [t, τ].

The idea behind the MPC is to look, at each time t = tk, for an input signal u∗(t :
t + TP) such that ŷ(τ, x(t), u(t : τ)) has the desired behavior in time interval [t, t + Tp]
by minimizing a suitable cost function J

(
u(t : t + Tp)

)
subject to possible constraints

that may occur during the system’s operations. Mathematically, at each time t = tk,
the following optimization problem is solved.

u∗(tk : tk + Tp) = arg min
û(·)

J(û(tk : tk + Tp))

subject to:
˙̂x(τ) = Ax̂(τ) + Bû(τ), x̂(tk) = x(tk)

ŷ(τ) = Cx̂(τ) + Dû(τ)

x̂(τ) ∈ XC, ŷ(τ) ∈ YC, û(τ) ∈ UC.

(25)

The first two constraints in the optimization problem (25) ensure that the predicted
state and output are consistent with the system’s Equation (24), while XC, YC, and UC are
suitable sets describing possible constraints on the state, output, and input, respectively.
The performance index J is a weighted quadratic function of the predicted output tracking
error ỹp and system input ũ.

J(u(t : t + Tp)) =
∫ t+Tp

t
‖ỹp(τ)‖2

Q + ‖ũ(τ)‖2
R dτ + ‖ỹp(t + Tp)‖2

P. (26)

Notation ‖v‖2
W represents the (square) weighted norm of a vector v ∈ Rn such that

‖v‖2
W = vTWv = ∑n

i=1 wiv2
i and W = diag(w1, ..., wn) ∈ Rn, with wi ≥ 0. The predicted

tracking error is ỹp(τ) = r(τ)− ỹ(τ), whereas r(τ) is the desired reference to track and
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ỹ(τ) is obtained by the integration of Equation (24). The weights Q ≥ 0, P ≥ 0, and R ≥ 0
are diagonal matrices. Note that Q, P ∈ Rny×ny and R ∈ Rnu×nu .

For the optimal control problem, the Receding Horizon (RH) strategy is employed.
At each time t = tk, the optimization problem (25) is solved such that the optimal control
sequence u∗(t : t + Tp) = [u∗tk

, u∗tk+TS
, ..., u∗tk+Tp

]T is available over the prediction horizon.
Then, only the first sample of the optimal solution u∗tk

is applied to the plant, while the
remaining samples of the optimal input signal are discarded. At the next time steps
t = tk+1, t = tk+2, ..., a new optimization problem and the complete procedure is repeated.
The RH strategy is important in order to have a feedback control action, which may be
crucial in order to stabilize unstable systems, attenuate external disturbances, and properly
react if sudden changes occur in the scenario where the system of interest is operating.

Note that the optimization problem in Equation (25) is in general numerically hard
to tackle, since u is a continuous-time signal and, thus, the number of decision variables
is infinite. To overcome this issue, a finite parametrization of the input signal u can be
employed. In this paper, a piece-wise constant parametrization is assumed, with changes
of value at the nodes τ1, . . . , τnN ∈ [t, t + Tp]. Several simulations have been carried
out, considering values of nN from 1 to 6. It has been observed that nN = 1 leads to a
satisfactory behavior, without any significant performance degradation but with a reduced
computational complexity with respect to case nN > 1. Hence, this value (corresponding to
a constant input for every τ ∈ [t, t + TP]) has been assumed for all simulations of Section 5.

4. Open-Loop Model Comparison between TD and HCW

In order to prove the benefit of using the TD formation model, an Open-Loop Model
Comparison with the classical Hill–Clohessy–Wiltshire equations and two-body dynamics
is taken into account. First, a brief description of HCW was reported. Then, the results of
the comparison are shown, taking into account as benchmark the Next Generation Gravity
Mission (NGGM).

4.1. Hill–Clohessy–Wiltshire Equations

The Hill–Clohessy–Wiltshire (HCW) equations constitutes a model used to analyze
the relative motion of two spacecraft in Earth-bound orbits, such as space rendezvous. This
analysis is usually carried out on the basis of the assumption that the reference spacecraft,
called Target, follows a circular orbit about a central body that is considered a point mass.
Since the in-line configuration of NGGM formation envisages a circular nominal orbit,
HCW can be used to describe the relative motion of each spacecraft with respect to its
nominal position on the orbit.

The spacecraft dynamics in a neighborhood of the target is described by the follow-
ing equations:

z̈1 = 3ω2
nomz1 + 2ωnom ż2

z̈2 = −2ωnom ż1

z̈3 = −ω2
nomz3

(27)

where ωnom is the nominal angular velocity of the target point on the nominal orbit. The
Hill–Clohessy–Wiltshire frame, sketched in Figure 2, is centered in the target point and has
a z1-axis along the radius vector of the target point, a z3-axis along its angular momentum
vector, and a z2-axis, which completes the right-handed system. The model equations
previously defined can be rewritten in matrix form by means of the following LTI system:

ẋ = Ax + Bu

y = Cx + Du
(28)

where the following is the case.
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x =



z1
z2
z3
ż1
ż2
ż3

, A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2
nom 0 0 0 2ωnom 0
0 0 0 −2ωnom 0 0
0 0 −ω2

nom 0 0 0

, B =

[
0
I

]
, C = I, D = 0.

Figure 2. Hill–Clohessy–Wiltshire frame of reference.

Note that, in the case of the HCW dynamics, the out-of-plane motion corresponds
to an undamped oscillator, which has a non-negative eigenvalue. On the other hand,
the in-plane motion is equivalent to the parallel of a double integrator and an oscillator,
resulting in a combination of unstable and oscillatory components.

4.2. Open-Loop Comparison

The first comparison performed is an open-loop one, consisting in the analysis of the
model free responses (i.e., with zero input) of the HCW and TD models and compared
against the real two-body dynamics. Note that, with real two-body dynamics, we mean the
numerical solution (obtained through simulation) of the unperturbed two-body equation
described by r̈ = −(µ/r3) r, where r is the position vector of the orbiting spacecraft, r is the
length of that vector, and µ is Earth’s gravitational parameter. The analysis focuses on the
relative inter-satellite distance d, specifically on the accuracy of the prediction of its value
obtained from the two models, which are an approximation of the real dynamics.

In the following tests, a circular orbit, designed for the NGGM mission, has been used.
The reference orbit is described by the following orbital elements: inclination 90° (polar
orbit), right ascension of the ascending node (RAAN) of 0°, semi-major axis of 6723.4 km,
an eccentricity of 0, and an argument of perigee of 0°. At the beginning of each simulation,
spacecraft 1 and 2 are placed at initial true-anomaly angles of ν1 and ν2, respectively, such
that ν2 < ν1 and the initial distance between the two spacecraft is 100 km, which is also the
nominal distance dnom.

When the circular reference orbit is considered, the two models yield quite accurate
results, as seen from Figure 3, although the TD model is more accurate. Specifically,
the satellite inter-distance remains within (i) 0.7 m of the nominal value, when predicted by
the TD model, and (ii) 5.5 m, when predicted by the HCW model.
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Figure 3. Inter-satellite distance for reference orbit.

A series of tests has been performed, varying each of the orbital elements of the
nominal orbit. In all the tests, the TD model was closer to two-body dynamics with respect
to the HCW model. Most notably, among all orbital parameters, eccentricity proved to
be the most critical parameter, resulting in a larger performance gap between the two
models. Indeed, as the eccentricity of the orbit slightly increases, the HCW model starts to
become less accurate and quickly diverges, as shown in Figure 4. For instance, given an
eccentricity of 10−5, the inter-satellite distance predicted by HCW diverges with a linear
trend of −2.2 m per day. This rate of divergence increases up to −235 m per day, with an
eccentricity of 10−3.

(a) (b)

Figure 4. Inter-satellite distance for different eccentricities. (a) Eccentricity e = 10−5. (b) Eccentricity
e = 10−3.

These open-loop tests suggest that the HCW model is accurate only when a circular
reference orbit is considered and is very susceptible to changes with respect to this ideal
orbit. On the other hand, the TD model consistently maintains a good level of accuracy
even when changing orbits; thus, it is more robust to variations from the reference orbit.
Even if there are extensions of the HCW model where the chief satellite moves along an
elliptical orbit, these are more suitable for the control of a single spacecraft and not for the
control of a two satellite formation, where the number of states doubles. In conclusion,
the TD model has the benefits both of a single model in terms of reduced number of states
and of a single HCW model, which is the simplicity of linearized dynamics, and it is more
accurate and robust than using two separate HCW models.
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5. Closed-Loop Model Comparison between TD and HCW

The closed-loop model comparisons have the goal of assessing the performance and
suitability of both TD and HCW models when used to control, via an MPC, a two satellite
formation. The control task is to keep the two satellites at a relative distance d within
a margin of 10% of the nominal value dnom = 100 km along a reference orbit: between
90 and 110 km. The chosen orbit is a circular orbit (e = 0) at an altitude of h = 338.5 km,
inclination of 90°, RAAN of 0°, and argument of perigee of 0°. These values were proposed
for the NGGM mission. The two spacecrafts start at a true anomaly angle of ν1 = 0.4261°
and ν2 = −0.4261° such that their initial distance is 100 km.

In the TD model case, during the test, a single MPC controller directly controls
formation variable d, provided by the model itself, generating the four formation commands
u f x, u f z, ∆u f x, and ∆u f z, that are then distributed to the two spacecrafts. On the other
hand, the HCW model provides only the approximate dynamics of a single spacecraft
with respect to an orbiting frame (the LVLH reference frame is used). Hence, during the
test, two different MPC controllers were used, each one controlling a single spacecraft and
trying to maintain its position on the desired point such that the inter-satellite distance and
the resulting formation satisfy the requirement.

All tuning parameters have been obtained by a grid search of the parameter’s val-
ues, looking for the suitable trade-off between convergence time and command activity.
The weight matrices were assumed to have a diagonal structure parametrized by a single
scalar value for each matrix, i.e., Q = q Iny , P = p Iny , R = r Inu , q, p, r ∈ R. The final
MPC parameters adopted in the closed-loop simulation campaign with TD, and HCW
models are listed in Table 1, where Ts and Tp are the sampling time and prediction horizon,
respectively.

Table 1. MPC tuning and test parameters.

Parameter TD Model HCW Model

q 1 1
p 1 105

r 0.5 1
Ts [s] 10 10
Tp [s] 4000 4000

u [−5× 10−5, 5× 10−5 ] [−2× 10−2, 2× 10−2]

The TD model yielded a satisfactory performance with very little command effort:
The bounds on the command used in the MPC optimization problem were ±5× 10−5 m/s2

component-wise. On the other hand, the HCW model required very large command
bounds of ±2× 10−2 m/s2 to converge, which can be considered unrealistic for the typical
class of thrusters adopted for scientific missions, such as those currently envisaged by
NGGM mission design.

Figures 5 and 6 show the inter-satellite distance d and the commands requested by the
MPC controller for the TD and HCW models, respectively. Note that, for the latter case,
only the commands generated by the MPC controller of spacecraft 1 are shown. Figure 7
further shows the relatively poor performance obtained with the HCW model in the task of
formation control with MPC, where the same component-wise bounds on the command
vector u used for the TD model have been imposed.

To prove the effectiveness of the proposed method also in terms of fuel saving, a quan-
titative measurement of the gain obtained by adopting the TD model over the HCW model
has been computed by using the same command bounds for both: ±5× 10−5 m/s2. Note
that these bounds can be considered realistic for the type of mission taken into account
as the case study. For both models, the command effort was measured by integrating,
along the simulation time window, the euclidean norm of the spacecraft CoM acceleration
requested by the controller at each time step. The resulting effort measurements were
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1.50 m/s2 and 3.89 m/s2 for TD and HCW models, respectively. This measurement highly
correlates with the fuel saving that can be expected, i.e., a saving factor of 3.89/1.50 ≈ 2.59.

(a) (b)

Figure 5. MPC formation control using TD model. (a) Inter-satellite distance. (b) Commands
requested by MPC.

(a) (b)

Figure 6. MPC formation control using HCW model with large command bounds. (a) Inter-
satellite distance. (b) Commands requested by MPC.

(a) (b)

Figure 7. MPC formation control using HCW model with small command bounds. (a) Inter-
satellite distance. (b) Commands requested by MPC.

Finally, an additional test was performed where a single MPC controller was em-
ployed using two distinct HCW models as a model of the constellation dynamics: one
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for each spacecraft, providing as output the inter-satellite distance d, which was then
optimized by the MPC controller. As a matter of fact, in this test, the bounds on the com-
mand inputs required for convergence resulted in being even larger than the one reported
above for HCW with two separate MPC controllers, thus making the performance of this
configuration worse.

6. Conclusions

In summary, we have proposed an innovative spacecraft orbit and constellation
model, called the Triangle Dynamics (TD) model, and it is suitable for describing the
orbital dynamics of satellite pairs. As a case study, the Next Generation Gravity Mission
(NGGM) has been considered. The activity has been carried out in collaboration with
Thales Alenia Space Italy (TASI), under an ESA contract. Firstly, an open-loop comparison
with the classical HCW equations has been presented. The obtained results highlight the
increased effectiveness of the Triangle Dynamics model in terms of accuracy, both for
circular and nearly circular orbits. Interestingly, the Triangle Dynamics model behaves
substantially better than the HCW model as soon as the eccentricity of the orbit is even
slightly increased. Furthermore, a formation control approach, based on a model predictive
control architecture in which the TD model has been used as real-time prediction model,
has been presented. In the NGGM case-study, simulations were performed using a detailed
nonlinear simulation environment, where the MPC-TD algorithm was compared with a
standard MPC-HCW approach. The simulation results demonstrated that the TD model is
a more robust and effective method for controlling low-Earth-orbit spacecraft formations
with a model predictive control algorithm.
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