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Abstract: Accurate individual tree segmentation (ITS) is fundamental to forest management and to
the studies of forest ecosystem. Unmanned Aerial Vehicle Light Detection and Ranging (UAV-LiDAR)
shows advantages for ITS and tree height estimation at stand and landscape scale. However, dense
deciduous forests with tightly interlocked tree crowns challenge the performance for ITS. Available
LiDAR points through tree crown and appropriate algorithm are expected to attack the problem.
In this study, a new UAV-LiDAR dataset that fused leaf-off and leaf-on point cloud (FULD) was
introduced to assess the synergetic benefits for ITS and tree height estimation by comparing different
types of segmentation algorithms (i.e., watershed segmentation, point cloud segmentation and layer
stacking segmentation) in the dense deciduous forests of Northeast China. Field validation was
conducted in the four typical stands, including mixed broadleaved forest (MBF), Mongolian oak
forest (MOF), mixed broadleaf-conifer forest (MBCF) and larch plantation forest (LPF). The results
showed that the combination of FULD and the layer stacking segmentation (LSS) algorithm produced
the highest accuracies across all forest types (F-score: 0.70 to 0.85). The FULD also showed a better
performance on tree height estimation, with a root mean square error (RMSE) of 1.54 m at individual
level. Compared with using the leaf-on dataset solely, the RMSE of tree height estimation was
reduced by 0.22 to 0.27 m, and 12.3% more trees were correctly segmented by the FULD, which are
mainly contributed by improved detection rate at nearly all DBH levels and by improved detection
accuracy at low DBH levels. The improvements are attributed to abundant points from the bole to
the treetop of FULD, as well as each layer point being included for segmentation by LSS algorithm.
These findings provide useful insights to guide the application of FULD when more multi-temporal
LiDAR data are available in future.

Keywords: fused dataset; individual tree segmentation; temperate deciduous forest; tree height
estimation; UAV-LiDAR

1. Introduction

Accurate individual tree segmentation (ITS) and tree height estimation are critical
in updating forest inventory, forest management and estimating growth and yield of
forests [1,2]. Over large spatial scales, ITS from remote sense data is a prerequisite to
extracting forest structural information at individual tree level. Once an individual tree
has been segmented correctly, tree location and relevant structural parameters (e.g., tree
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height, crown diameter and crown volume) can be obtained [3]. Tree functional parame-
ters, such as tree volume and above-ground biomass (AGB) [4], and attributes that link
to canopy gap [5] and rainfall interception [6] can be estimated. In addition, an accuracy
delineation of individual tree crowns can advance stand- and landscape-wise forest in-
ventory without time-consuming labor work, which is of great practical significance to
forest management [7,8].

ITS derived from remote sense images was traditionally achieved by delineating tree
crown boundary from two-dimensional information [9,10]. Selectively, aerial photography
interpretation could be used to derive indirect three-dimensional information from forest
canopy [11]. Compared with optical imaging, Unmanned Aerial Vehicle (UAV) Light
Detection and Ranging (LiDAR) can measure three-dimensional coordinates of forest
canopy directly and provide a promising approach to detect individual trees. Since laser
beams can penetrate forest canopy effectively, UAV-LiDAR can provide detailed forest floor
topography information and show the good performance of estimation of individual tree
height [12,13].

Various methods of UAV-LiDAR data-derived ITS can be broadly grouped into two
categories: Canopy Height Model (CHM)-based methods and point cloud-based meth-
ods [13,14]. The CHM-based method is to delineate the tree crown edge through a CHM
generated by interpolation of the original point clouds. This method primarily assumes
that a single tree has only one treetop with a general ellipsoidal shape [13]. As such, de-
tecting individual treetops correctly from CHM is crucial for delineation of individual tree
crown [15]. Once treetops are identified, tree crowns are delineated by algorithms, such
as the marker-controlled watershed algorithm [15–17] or seeded region-growing [17,18].
Various efforts were made to improve ITS accuracy by the CHM-based methods [19,20].
However, these methods have limitations due to information loss in interpolation possesses
from point clouds [21,22]. In addition, inappropriate window sizes for a CHM-based
method can lead to segmentation errors [15]. Unlike the CHM-based method, point cloud-
based methods are developed to process on the normalized UAV-LiDAR point data [8,23].
Reitberger et al. [24] used the normalized cut segmentation combined with a detection
of tree stems and tested the method in the stands dominated by coniferous species. By
detecting the relative spacing between trees, Li et al. [22] developed a top-to-bottom region
growing algorithm from the LiDAR point cloud, which showed a good performance of ITS
in mixed-coniferous forests. Ayrey et al. [25] introduced the layer stacking segmentation
algorithm, which slices the whole normalized point cloud and segments the tree in each
layer, and the algorithm performed well in stands with much fewer prominent crowns. In
general, these methods were designed to detect individual trees by developing manners
that aggregated by three-dimensional geometry (e.g., crown shape and structure) or spatial
information between trees.

Although numerous methods have been developed to enhance the accuracy of ITS,
their performances are challenged by various types of forest stands. Most previous studies
for ITS paid more attention to coniferous forests [22,26,27], planted forests [28], and savanna
woodlands [15]. These forest types were characterized by distinct tree crown shapes and
boundary, which may allow tree crown to be delineated clearly. However, the performance
of ITS has been hampered when they are used in natural deciduous forest primarily because
of tree branch interlacing [8]. Particularly, the detection rates of the most methods were
not exceeded 70% in the dense deciduous forests [29–31]. The methods’ performances are
strongly dependent on the density and complexity of forest stand.

Generally, a good accuracy is easier to be achieved in stands with a low tree density
and a simple stand structure (e.g., less tree species and sparser understory) [8,32]. For
closed and dense forests in mountainous areas (e.g., East Asia), tightly interlocked tree
crowns enhance the difficulty in ITS. Rugged terrain and dense understory vegetation may
also increase the difficulty of tree bole extraction for some special approaches of ITS (e.g., a
bottom-up method reported by Lu et al. [8]). Furthermore, as it is difficult for laser pulses
to penetrate a dense stand with a closed canopy and flourish understory vegetation in
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leaf-on condition, forest floor cannot be detected well, leading to an incorrect estimation of
tree height. UAV-LiDAR data acquiring in leaf-off and leaf-on conditions are expected to
provide more information useful for ITS and tree height estimation in deciduous forests.
Most previous studies developed and tested the algorithms on UAV-LiDAR data, capturing
in mono-temporal stage, but few studies reported the performances of a fused UAV-LiDAR
dataset acquiring in leaf-off and leaf-on conditions. Knowledge about the performance of
the methods in leaf-off and leaf-on point cloud data, as well as the influence of different
stand types on the accuracy, is required to improve UAV-LiDAR-based extraction of forest
structural information.

Here, we assume that a fused UAV-LiDAR dataset obtained in leaf-off and leaf-on
conditions performs better for ITS than the dataset acquiring in a single condition for de-
ciduous forests. We acquired the leaf-off and leaf-on UAV-LiDAR data in dense deciduous
forests, and a fused leaf-off and leaf-on UAV-LiDAR dataset (FULD) was generated. Using
the leaf-off UAV-LiDAR dataset (OLD), leaf-on UAV-LiDAR dataset (LLD) and FULD,
a comprehensive comparison of algorithms was conducted to test their performance of
ITS and tree height estimation. This study can provide a reference for the application of
multi-temporal point cloud datasets.

2. Materials and Methods
2.1. Study Area

The study site is a mountainous temperate forest, located in eastern region of Liaoning
Province, Northeast China (41◦49′34′′ to 41◦51′08′′ N, 124◦53′53′′ to 124◦56′35′′ E) (Figure 1).
The site covers approximately 350 ha of forest stands and is part of field sites of the
Qingyuan Forest CERN (Chinese Ecosystem Research Network). The area is 500 to 1100 m
above sea level with a slope range of 10◦ to 34◦ [33]. The region has a continental monsoon
climate. The annual mean air temperature was 4.3 ◦C and annual mean rainfall was 758 mm
during 2010–2021. The study area is dominated by broadleaved deciduous forests with
mosaic coniferous plantations. The species composition mainly includes Quercus mongolica
Fisch., Acer spp., Betula platyphylla Suk., Fraxinus mandshurica Rupr., Fraxinus rhynchophylla
Hance., Juglans mandshurica Maxim., Populus davidiana Dode., Tilia spp., Ulmus spp., etc.;
the plantation species include Larix kaempferi and Pinus koraiensis Siebold & Zucc [34].

2.2. Field Data Collection

Four typical stand types, including mixed broadleaved forest (MBF), mixed broadleaf-
conifer (larch) forest (MBCF), Mongolian oak (Quercus mongolica) forest (MOF) and larch
(Larix kaempferi) plantation forest (LPF), were selected in the study area (Table 1). Five to
eight rectangular plots (30 m × 20 m) were set up for each of stand type. Ground reference
data were collected for 25 plots in May 2019, and their central locations were obtained
with the ultrasound-based Haglöf PosTex positioning instrument (Långsele, Sweden) and
Trimble GeoXH6000 global positioning system (GPS) (Trimble, Sunnyvale, CA, USA) units.
The tree diameter at breast height (DBH) and tree height (Vertex V® hypsometer (Langsele,
Sweden)) were measured for all live trees with a DBH that is greater than 5 cm, and
average Lorey’s height (basal-area-weighted average height) was calculated. Crown class
(dominant, co-dominant, intermediate and overtopped) of a tree was recorded by a visual
comparison with the crown heights of its neighboring trees. Tree species and stem density
(tree·ha−1) were recorded. Tree positions within 15 sample plots were acquired by the
Haglöf PosTex positioning instrument [28]. The average Lorey’s height is 19.3 m, and the
average stand density is 935.7 tree·ha−1.
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Table 1. General description of the study plots.

Forest
Type Number of Plots Lorey’s Height (m) DBH (cm) Stem Density

(Tree·ha−1)
Stem Density in the Dominant

Canopy (Tree·ha−1)

MBF 6 19.8 ± 2.2 16.9 ± 1.3 841.7 ± 269.7 483.3 ± 128.4
MOF 5 14.8 ± 1.7 14.6 ± 1.5 1060 ± 60.2 800 ± 35.0

MBCF * 8 21.8 ± 0.8 19.1 ± 1.2 843.8 ± 172.0 579.2 ± 153.2
LPF 6 20.7 ± 2.0 19.1 ± 2.3 997.2 ± 317.6 952.8 ± 320.2

MBF, mixed broadleaved forest; MOF, Mongolian oak forest; MBCF, mixed broadleaf-conifer forest; LPF, larch
plantation forest; * The proportions of basal area of conifer tree species and broadleaf ratio of MBCF are
42.0% ± 23.1% and 58.0% ± 23.1%, respectively.

2.3. LiDAR Data Collection

Two LiDAR datasets were acquired on 15 April 2018 (leaf-off condition) and on
22 August 2018 (leaf-on condition), respectively. Both datasets were collected using a
Riegl VUX-1LR sensor, which operates at 1550 nm and transmits 750,000 pts·s−1 for leaf-off
condition and 500,000 pts·s−1 for leaf-on condition (Table 2). The averaged point densities of
the two LiDAR datasets were 110 pts·m−2 for leaf-off condition and 280 pts·m−2 for leaf-on
condition. The extent of the two datasets was approximately overlapped by 350 ha, covering
all the sampling plots (Figure 1). A differential global position system was introduced to
obtain accurate position information, as well as to reduce positional difference between the
two datasets.

The swaths matching of both OLD and LLD were performed by Green Valley Inter-
national LiDAR360 (v3.2) software. A total of 100 ground control points, which locates
buildings, flux towers and huts with different elevations in the overlapped area, were
manually selected for co-registration of the two datasets. The co-registration accuracy of
the OLD and LLD was 0.12 m.
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Table 2. LiDAR acquisition and sensor specifications from leaf-off and leaf-on datasets.

Attribute Leaf-Off Dataset Leaf-On Dataset

Acquisition date 15 April 2018 22 August 2018
Scan sensor Riegl VUX-1LR Riegl VUX-1LR

Flight altitude (m asl) 300 300
Flight speed (m·s−1) 3.6 3.6

Maximum effective measurement rate (pts·s−1) 750,000 500,000
Footprint (cm) 25 25

Side overlap (%) 30 30
Average point density (pts·m−2) 110 280
Maximum field of view angle (◦) 330 330

Absolute accuracy (mm) ±50 ±50

2.4. Data Preprocessing

A new LiDAR dataset was fused by the OLD and LLD, and the three datasets were
used for segmentation (Figure 2). The point cloud of each plot was clipped according to the
plot boundary point location acquired in the ground survey.
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The subsequent analysis and processing of point cloud can be directly affected by the
quality of data preprocessing [35]. First, the noise points of the raw data were removed
through the distance threshold method. Second, the data were filtered into ground and
vegetation points through the progressive triangulated irregular network (TIN) densifi-
cation. Then, digital elevation model (DEM) and digital surface model (DSM) with 0.5 m
spatial resolution were generated [21,28], and CHM was derived by subtracting DEM from
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DSM. Finally, the normalized point cloud data were generated by DEM [36] (Figure 2). The
preprocessing steps were performed by the commercial software, LiDAR 360 v3.2 (Green
Valley International, Ltd., Merced, CA, USA).

2.5. Individual Tree Segmentation Algorithms

Three segmentation algorithms were employed for comparison with the three datasets
in the four forest types (Figure 2). Based on CHM, the boundary of the individual tree
canopy is generated via the watershed algorithm, and then the local maximum is identified
as the treetops. Minimum tree height, Gaussian smoothing factor, and Gaussian smoothing
radius are three important parameters for the watershed algorithm. The minimum tree
height was set to 2 m [37]; Gaussian smoothing factor was set to a range of 0.8 to 2 and
the radius was set to a range of 5 to 9 pixels. The parameters were set depending on the
specific conditions of each plot [38,39].

Point cloud segmentation (PCS) is an algorithm based on normalized point cloud
data through a regional growth generally as the following steps: identifying a treetop,
including the points within a specified relative distance from the treetop of the target tree
and excluding the points with a distance greater than a specified threshold from the target
tree [22]. We set the spacing threshold (0.8–2 m) according to the average distance of trees
in the plots [22].

Layer stacking segmentation (LSS) is an algorithm that combines the layer stacking
and PCS algorithm. The tree position of each tree in the plot was obtained by determining
local maxima through k-means clustering of each layer. Then, seed points that generated
by the local maxima were used to detect the individual tree by PCS algorithm. The layer
thickness was set to 1 m [25].

2.6. Estimation of Tree Height

Tree height was estimated at individual tree level (tree height ≥ 10 m) and at stand
level. The individual tree height was estimated based on correct results of ITS. The treetop
can be identified when an individual tree has been segmented correctly, and individ-
ual tree height can be calculated from normalized point clouds. For an estimation of
Lorey’s mean height (stand level), LiDAR metrics, which were extracted from the normal-
ized point clouds of 25 plots through the Matlab processing, were used to establish tree
height estimation models [40]. These metrics included (Table 3): (1) height-based metrics
(H25, H50, H75, H95, Hmean, Hcv and Hkur); (2) density-based metrics (D3, D5, D7 and D9);
(3) canopy volume metrics (C1.3). The metrics were selected as they have been found to be
more sensitive to changes in forest canopy [41]. The “randomForest” package in statistical
software R 4.1.3 was employed, and the increase in the mean-squared error (%IncMSE) and
Var explained were calculated [42].

Table 3. Description of metrics derived from the three UAV-LiDAR datasets.

Metrics Description

Height-based

Height percentiles (H25, H50, H75, H95) The percentiles of the canopy height distributions
(25th, 50th, 75th and 95th) above 2 m.

Mean height (Hmean) The mean height of all points after normalized.

Coefficient of variation of heights (Hcv) Coefficient of variation of heights of non-ground
LiDAR returns above 2 m.

Kurtosis height (Hkur) The kurtosis of the heights of all points.

Density-based Canopy return density (D3, D5, D7, D9) The proportion of points above the height percentiles
(30th, 50th, 70th and 90th).

Canopy volume Canopy cover above 1.3 m (C1.3 m) Percentages of LiDAR returns above 1.3 m.
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2.7. Accuracy Assessment

The performances of the three segmentation algorithms were assessed at individual
tree level according to the spatially corresponding trees that were recorded in the field.
It was considered to be correct when a segmented tree was located within the boundary
of ground-referenced tree crown [28,43]. The evaluation can produce three types of seg-
mentation results: (1) If a tree exists and is identified successfully, it will be labeled as true
positive (TP), representing correct segmentation; (2) If a tree exists but is not detected, it
will be labeled as false negative (FN), representing under-segmentation [44]; (3) If a tree
is detected by the algorithm but does not exist on the ground, it will be labeled as false
positive (FP), representing over-segmentation. The F-score represents the overall accuracy,
which is calculated as follows [45,46]:

r =
TP

TP + FN
(1)

p =
TP

TP + FP
(2)

F−score =
2× r× p

r + p
(3)

where recall (r) represents detection rate (omission); precision (p) represents detection
accuracy (commission); and F-score is the weight average taking both detection rate and
detection accuracy into consideration.

The adjusted R-square (Adj-R2), root-mean-squared error (RMSE) and relative root-
mean-squared error (rRMSE) were applied to evaluate height estimation with field reference
data. The calculation equations are as follows:

Adj−R2 = 1− n− 1
n− p− 1

(1− R2) (4)

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)2 (5)

rRMSE =
RMSE

x
× 100% (6)

where xi is the ground measured tree height; xi is the average tree height of ground
measured; x̂i represents the tree height estimated by the model; x represents the average
tree height of all the sampling plots; p represents the number of intendant variables; n is
the number of the sampling plots.

3. Results
3.1. Performance of ITS

A total of 884 individual tree positions were recorded in the 15 field plots, and 763,
780 and 819 trees were segmented through OLD, LLD and FULD, respectively (by LSS
algorithm, Table 4). Overall, FN was higher than FP, indicating a trend toward an under-
estimation. The FULD performed best among the three datasets, and its FN (238) and FP
(173) were lower than those of FN (311 and 309) and FP (190 and 205) from OLD and LLD,
respectively. FULD can improve the correct detect rate of ITS, and a total of 573, 575 and
646 trees were detected correctly by OLD, LLD and FULD, respectively. Compared with
segmentation using LLD solely, the FULD correctly segmented 15.7% more trees in MBF,
16.5% more in MOF, 18.2% more in MBCF and 4.4% more in LPF.
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Table 4. Performance of tree segmentations by LLS algorithm on the filed plots.

Forest
Type

Field Plot
Density

(Tree·ha−1)

Number of
Field Surveyed

Trees

Number of
Segmented

Trees *

Leaf-Off Dataset Leaf-On Dataset The Fused Dataset

TP FP FN TP FP FN TP FP FN

LPF

633 38 35/38/36 30 5 8 33 5 5 32 4 6
1250 74 68/70/67 58 10 16 60 10 14 58 9 16
933 56 51/46/58 43 8 13 41 5 15 47 11 9

1383 83 75/75/84 67 8 16 69 6 14 75 9 8

MBF
1167 70 76/73/63 46 30 24 45 28 25 49 14 21
1033 62 50/54/54 37 13 25 37 17 25 42 12 20
717 43 37/39/48 26 11 17 26 13 17 34 14 9

MBCF
750 45 42/41/49 30 12 15 28 13 17 36 13 9
817 49 41/49/49 30 11 19 30 19 19 35 14 14
767 46 46/45/44 31 15 15 30 15 16 33 11 13

MOF

1083 65 49/58/58 36 13 29 38 20 27 43 15 22
967 58 44/44/49 31 13 27 33 11 25 39 10 19

1100 66 49/48/53 36 13 30 35 13 31 42 11 24
1133 68 57/51/57 38 19 30 36 15 32 43 14 25
1017 61 43/49/50 34 9 27 34 15 27 38 12 23

TP: True positive; FN: False negative; FP: False positive. * The three numbers indicate the numbers of segmented
trees by leaf-off dataset, leaf-on dataset and the fused dataset, respectively.

The Watershed, PCS and LSS algorithms showed a similar performance using OLD or
LLD (Figure 3). LPF showed a higher F-score (0.84 ± 0.01) than those in MBF (0.66 ± 0.01),
MBCF (0.66± 0.02) and MOF (0.64± 0.02) when using OLD or LLD solely. When the FULD
was introduced, LSS algorithm significantly improved F-score while the improvements
were not observed for Watershed and PCS algorithms (Figure 3). Compared with OLD
or LLD, the FULD can improve F-score by 0.10 ± 0.02, 0.08 ± 0.02, 0.08 ± 0.02 for MBF,
MBCF and MOF, respectively. A relatively small improvement in F-score (0.03 ± 0.01) was
observed for LPF.
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(b) PCS algorithm; (c) LSS algorithm. Different lowercase letters indicate significance among different
UAV-LiDAR datasets at p < 0.05 level.

Segmentation accuracies depended on different forest types and characteristics. Using
FULD and LSS algorithm (the same algorithm and dataset hereinafter), the F-score of the
coniferous stands (LPF) was 0.85 ± 0.03; the accuracy of broadleaved or broadleaved-
dominated stands was lower, with F-score of 0.74 ± 0.01, 0.74 ± 0.02 and 0.70 ± 0.02, for
MBF, MBCF and MOF, respectively. The two broadleaved stands showed a higher value
of precision (0.76 ± 0.03) than recall (0.67 ± 0.05), while the differences between precision
and recall of LPF and MBCF were small. In addition, F-score was also hampered by an
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increase in tree density (R2 = 0.39, p = 0.039) for MBF, MBCF and MOF. In particular, recall
negatively related to tree density (R2 = 0.65, p = 0.003), whereas precision positively related
to tree density (R2 = 0.45, p = 0.023) for the broadleaved or broadleaved-dominated stands.

The F-score was positively related to tree DBH (Figure 4). The increasing trend of
F-score (R2 = 0.90, p < 0.001) was mainly contributed by the increase in recall along the DBH
gradient, whereas no significant trend of precision was found. Small trees (DBH < 12 cm)
contributed to 60.8% (135 trees) of the undetected trees, with a recall of 54.5%, which was
much lower than the overall recall level (74.9%). The F-score of FULD was higher than those
of OLD and LLD. The improvements are mainly contributed by the improved detection
rate at nearly all tree DBH levels and by the improved detection accuracy at the low tree
DBH levels.
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3.2. Estimation of Tree Height

The comparison of the field-measured tree height and estimated tree height based on
the three UAV-LiDAR datasets with LSS algorithm is shown in Figure 5. The individual
tree height estimated by FULD (Adj-R2 = 0.87, RMSE = 1.54 m, rRMSE = 8.53%) was better
than OLD (Adj-R2 = 0.77, RMSE = 1.81 m, rRMSE = 10.00%) and LLD (Adj-R2 = 0.83,
RMSE = 1.76 m, rRMSE = 9.74%). All the datasets showed overestimations of individual
tree heights.
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Figure 6 presents an accuracy assessment of models for the RF-based Lorey’s mean
tree height estimation at plot level with different combinations of LiDAR metrics by the
percentage increase in the mean-squared error (%IncMSE), Adj-R2 and Var Explained. The
prediction accuracy based on the FULD was the highest (Adj-R2 = 0.93), followed by that
of the LLD (Adj-R2 = 0.77), and the accuracy of the OLD was the lowest (Adj-R2 = 0.66).
The performance of the LiDAR metrics for estimation of Lorey’s mean tree height was
varied with datasets. The FULD was most influenced by H95 (%IncMSE = 16.92%), LLD
was most controlled by D9 (%IncMSE = 13.04%), and OLD was most determined by
H75 (%IncMSE = 13.87%). Overall, H95 was the most important variable in the RF-based
Lorey’s mean tree height estimation (%IncMSE = 11.4), indicating that H95 is sensitive and
informative for tree height estimation.
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4. Discussion
4.1. ITS Accuracy

This study highlights that the FULD shows an excellent performance on ITS. The FULD
robustly improved the accuracy of ITS in broadleaved deciduous forest in comparison with
the performance of cloud data acquiring in mono-temporal condition. The performance of
the FULD is better than the results of Koch et al. [20], Jing et al. [30] and Tochon et al. [31]
(Table 5). Because FULD that captures at leaf-off and leaf-on conditions can provide
abundant canopy structure information, it is more advantageous for ITS than point cloud
dataset captured at mono-temporal condition [47]. It should be noted that this study was
carried out in dense forests with a high average tree density (935.7 tree·ha−1) and a high
canopy coverage (94.8%), which could increase the difficulty of ITS [37]. High accuracies
(not less than 80%) of ITS were easy to be achieved for a low density stand. In addition,
the minimum tree DBH for field sampling for verification also influences the accuracy.
As small trees are difficult to be detected, only recording bigger trees (ex. DBH is greater
than 8 cm) in field surveys can enhance the verification accuracy. Considering that natural
uneven-aged forests are widespread, it is necessary to cover a great range of the tree DBH
for segmentation of the natural forests.
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Table 5. Comparison of performance of individual tree segmentation using airborne-LiDAR.

Reference Forest Type Stem Density
(Tree·ha−1) Segmentation Algorithm Accuracy (%) Evaluation Method

Koch et al.
(2006) [20]

Conifer,
broadleaved 457 Watershed 61.7 Manual to automated

recognition accuracy
Jing et al.

(2012) [30]
Conifer,

broadleaved 398 Watershed 69.0 Commission, omission

Smits et al.
(2012) [48]

Conifer,
broadleaved 560 Local maxima 87.5 Detection

Ayrey et al.
(2017) [25]

Conifer,
broadleaved 737 Layer stacking segmentation 72.0 Detection, commission,

omission

Tochon et al.
(2015) [31]

Conifer,
broadleaved – Watershed 69.9

Detection,
under-segmentation,

over-segmentation, miss
Lu et al.

(2014) [8] Broadleaved 238 Bottom-up region growing 84.0 F-score

Yang et al.
(2019) [37]

Conifer,
broadleaved 330

Watershed, Point cloud
segmentation, Layer

stacking segmentation
75.5 F-score

Wu et al.
(2019) [28] Broadleaved 561

Watershed, Point cloud
segmentation,

Polynomial fitting
80.3 F-score

Dai et al.
(2018) [27] Broadleaved 436 Mean shift segmentation 82.5 Detection rate

The performances of the three algorithms on the FULD were different in the four stand
types. By using the watershed and PCS algorithms, FULD did not improve the accuracy
of ITS in comparison with OLD or LLD, while a significant improvement was found by
using the LSS algorithm in the three deciduous broadleaved tree-dominated stands. The
key to the improvement in accuracy is whether the points below the canopy surface can be
used for ITS. The watershed algorithm mainly uses crown surface information to detect
individual trees based on CHM. The PCS algorithm is a top-to-bottom approach through
identifying treetop to the lowest point [22]. As the two algorithms cannot effectively use the
points from bole to treetop, their performance of ITS was not improved by FULD. The LSS
algorithm slices the point cloud within a plot into multi-layers, and points of FULD from
the bottom and the treetop can be used for ITS [25]. For natural uneven-aged stands, some
trees are more likely to be undetected due to a larger possibility that they are shielded by
neighboring taller trees with dominant crowns, leading to an under-segmentation [49]. The
under-segmentation can be effectively mitigated by the LSS algorithm, especially for trees
with a DBH < 16 cm (Figure 4a), and the recall was improved by 0.10 to 0.25. For natural
broadleaved stands with irregularly shaped and interlocked tree crowns, LSS algorithm can
identify a tree’s center by slicing its bole into multi-layers although the tree’s crown is not
markedly above the stand canopy, which gives the LSS algorithm an advantage over the
other algorithms [25]. Note that, the watershed algorithm and PCS algorithm can perform
nearly as well as the LSS algorithm in even-aged conifer stands with a higher computational
efficiency. The results suggest that selecting segmentation algorithms should take stand
types and property of point cloud into consideration. LSS algorithm is recommended when
abundant cloud data from bole to treetop are available in dense uneven-aged stands of
broadleaved deciduous trees.

The ground measured positions of trees provide valuable information for a better
understanding of how error is generated in segmentation. More than 60% of undetectable
trees were small trees (here defined as DBH < 12 cm), mainly contributing to omission errors
in natural uneven-aged stands, although the under-segmentation was mitigated to some
degree by FULD. Because LiDAR struggles to penetrate canopy and to hit small trees [8],
there are insufficient points reflected from small trees and point cloud cannot generate
enough layers to assemble for generating seed points. These points from a small tree are
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likely to be segmented as a part of a neighboring tall tree. A possible and feasible resolution
is increasing the point density of the leaf-off LiDAR dataset so that enough layers of bole
can be generated for identifying the seed point of a small tree. However, the increases in
point density should be weighed against the UAV-LiDAR scanning time and computational
efficiency, because LSS computation time increases with point cloud density [25]. It might
be suited for some specific research purposes, such as forest regeneration when a low
omission is required. In addition, almost all of the commission errors were contributed by
irregularly shaped tree crowns in natural stands, which are likely to be over-segmented.
For example, the points from the irregular branch of a tree and a bush under the tree are
likely to be over-segmented as a tree.

The reliable ITS has significant implications of forest ecology and management and
an accurate estimation of AGB or biomass carbon stocks [8]. Based on ITS, AGB can be
estimated at tree’s individual level [50–52]. Meanwhile, error in ITS would be transferred
to AGB estimation. For example, tree density is easier to be underestimated by ITS, which
can result in an underestimation of AGB. Compared with using the leaf-off or leaf-on
UAV-LiDAR dataset solely, the underestimation was alleviated by FULD with an improve-
ment of 2.6–10.0% in accuracy of estimation of AGB (data not shown). We recommend that
the FULD should be used for ITS-based AGB estimation in dense deciduous forest.

4.2. Uncertainty of Tree Height Estimation

The accuracy of tree height estimation can be improved by FULD as well. Due to the
advantage that can detect tree base and treetop efficiently, individual tree height can be
estimated by FULD better than by OLD or LLD in the four stand types. Treetop cannot be
detected well by OLD due to leafless branches, while ground cannot be detected well by
LLD due to the dense understory. Both shortcomings are expected to lead to the under-
estimation of tree height. Unexpectedly, significant over-estimations were found for OLD
and LLD, although the over-estimations were alleviated by FULD. The possible reasons are
as follow. First, although these trees were segmented correctly (only correctly segmented
trees were included for tree height estimation), their treetops may be not identified well.
For example, due to an irregular crown, high LiDAR points from a tall tree crown may
be misclassified as a neighboring small tree, and the incorrect treetop can result in an
over-estimation of height for the small tree. This situation may often happen in an uneven-
aged stand due to overlapping tree crowns. Second, rugged terrain influences tree height
estimation. Tree crowns tend to develop toward the slope direction to maximize their light
interception, which results in stem inclination [53], and the DEM-based normalized point
cloud might further lead to a systematic overestimation of tree height [54]. Khosravipour
et al. [55] reported that the terrain effect on tree height estimation closely links to crown
shape, which is species-dependent. The tree species are various in this study, and the effect
on tree height estimation may be complex. Understanding how crown morphology affects
UAV-LiDAR-based tree estimation would be interesting [55]. Finally, a possible uncertainty
is from field measurement of tree height. In dense broadleaved forests, some treetops
were difficult to be identified because of occlusion from branches and leaves [56,57]. The
temporal difference (1 year) between field measured data and LiDAR data acquisition may
also introduce error for tree height accuracy assessment. Considering the short temporal
difference and the growth of temperate forest, this error may be expected to be small.

5. Conclusions

We used a new UAV-LiDAR dataset that fused leaf-off and leaf-on point cloud datasets
to detect individual trees and to estimate tree height in dense deciduous stands that we con-
sider to be challenging. Compared with segmentation using the leaf-on UAV-LiDAR dataset
solely, the FULD correctly segmented 16.7% more trees in the dense stands dominated
by broadleaved deciduous trees and 4.4% more trees in the coniferous stands. The im-
provements are attributed to abundant points from the bole to the treetop of FULD, which
can be included for segmentation by the LSS algorithm. The segmentation performance
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depends on stand characteristics and tree size. Undetectable small trees are the main error
source, although their detection rate are improved to some degree by FULD. Increasing the
scanning point density at leaf-off condition should be a possible and feasible resolution to
detect small trees better. The FULD, promoted by the LSS algorithm, appears to be well
suited for ITS and tree height estimation in dense deciduous broadleaved stands and forest
ecology research or inventory, in which a high accuracy is required. These findings provide
useful insights to guide the application of FULD when more multi-temporal LiDAR data
are used for estimation of stand structure.
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