
Citation: Ling, Q.; Zhang, Q.; Qu, W.;

Zhang, J. Probabilistic Evaluation of

Slope Reliability Considering

Groundwater Level Uncertainty

Based on Dynamic Agent Model

Using Uniform Design. Remote Sens.

2022, 14, 2779. https://doi.org/

10.3390/rs14122779

Academic Editors: Chun Zhu,

Zhigang Tao, Honghu Zhu, Chen Cao

and Manchao He

Received: 9 May 2022

Accepted: 6 June 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Probabilistic Evaluation of Slope Reliability Considering
Groundwater Level Uncertainty Based on Dynamic Agent
Model Using Uniform Design
Qing Ling 1,2 , Qin Zhang 2,*, Wei Qu 2 and Jing Zhang 2

1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China; lingqing@chd.edu.cn
2 College of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China;

quwei@chd.edu.cn (W.Q.); racheljing@chd.edu.cn (J.Z.)
* Correspondence: dczhangq@chd.edu.cn; Tel.: +86-29-8233-9261

Abstract: Due to the adverse influence of landslide disasters on human lives, property, and infras-
tructures, slope reliability analysis has attracted worldwide attention. However, many problems such
as the neglect of the uncertainty in the water table level and the balance between the performance
and efficiency in conventional models are still unresolved. This study investigates the influence
of the uncertainty in the water table level on the benefit of considering such uncertainty in slope
reliability analysis. For this purpose, a new method, i.e., a dynamic whale optimization algorithm
(WOA)–Gaussian process regression (GPR) agent model using uniform design with the consideration
of uncertainty in the groundwater level, is proposed for slope probabilistic analysis in this paper.
Then the developed technique is integrated with Monte Carlo Simulation (MCS) to obtain the slope
failure probability. The benefit of the proposed method is illustrated through two practical landslides.
The results demonstrate that the developed technique has better performance, as compared to MCS,
the v-support vector machine (v-SVR), and the generalized regression neural network (GRNN). This
may be attributed to the dynamic updating of the training samples provided by the uniform design,
the optimal hyper-parameters optimized by WOA, or the GPR model that has strong generalization
ability with limited samples. Furthermore, a small failure probability is obtained without consid-
ering the groundwater level uncertainty, which offers an optimistic estimate of landslide stability.
Therefore, it is necessary to consider the probabilistic features of the groundwater level, especially for
complicated landslides in high mountainous areas where the location of the water table level is not
accurately available due to their inaccessibility to people and instruments.

Keywords: GRP; uniform design; dynamic response surface model; WOA; reliability analysis

1. Introduction

At present, landslides have not only imposed huge direct economic losses on industrial
and agricultural production and the safety of human lives and properties but have also
resulted in incalculable indirect losses due to the suspension of amphibious transportation.
Therefore, it is urgent to conduct effective early-warning research on landslides, where the
reliability of slope stability analysis has been an important prerequisite. However, various
categories of inevitable uncertainties (e.g., the boundary conditions uncertainty, geological
model uncertainty, soil parameter uncertainty, and external trigger uncertainty) may pose
an important influence on accurate slope reliability, where the soil properties uncertainty
accounts for a major contribution to the probability of failure [1–7].

To offer a rational and convincing assessment of slope stability, scholars have made
numerous efforts to integrate probability and statistic theories with the traditional slope
reliability assessment approaches with consideration of the subsurface uncertainties [8–13].
For example, Low et al., (1997) developed a new method with the application of spread-
sheets to calculate the Hasofer–Lind second moment [14]. Cho (2013) adopted a first-order
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reliability method (FORM) to evaluate the slope stability considering multiple failure
modes [10]. Jiang et al., (2015) studied the slope stability with a low probability of failure in
spatially variable soils based on MCS [15]. However, the above-mentioned methods are
only effective in the case that the issues have explicit limit state function. Although MCS
had proven its ability to address cases with implicit limit state function or a low probability
of failure [16–21], it might encounter some limitations such as substantial computational
efforts and a complicated procedure, particularly for issues with a low probability of failure.

Agent model-based response surface methods (RSMs) [22–27] can make compensations
for the shortcomings of MCS. Cho (2009), Li et al., (2013), and Kang et al., (2015, 2016, 2017)
proposed a procedure by integrating numerical analyses such as FEM and LEM into the
reliability analysis for complicated slopes [22,28–31]. They employed an artificial neural
network (ANN), SVR, and extreme learning machine (ELM)-based RSMs to substitute the
real performance function. The failure probability was obtained from the agent model
in connection with MCS. Unfortunately, these studies paid extensive attention to the
uncertainty of soil properties but lacked investigations on the probabilistic characteristics
of the water table level, which may greatly contribute to the probability of slope failure.
In reality, the usual practice considers the water table level as a constant and proceeds
with probabilistic analysis. This practice, which neglects such uncertainty, may produce an
obvious deviation concerning the slope reliability, especially for complex landslides with
an unknown water table level in high mountainous areas where people and instruments
find it difficult to access. More importantly, extensive data are required to construct a
sufficiently accurate RSM. For instance, for ANN-based RSM, 20 training samples were
used to accurately establish the RSM for slope with three random variables, whereas
150 samples were needed for issues with four random variables [28]. Although the training
samples adopted to establish an effective SVM and ELM-based RSMs [22,26] were reduced
to fifteen times the random variables considered, the sample size generated was still large.

Alternatively, the GPR agent model offers a better choice. The merits of this technique
over the other machine-learning techniques had been extensively discussed by Seeger
(2008); Su et al., (2009); Kang et al., (2017) [30,32,33]. Furthermore, this study will illustrate
that limited samples are able to construct a sufficiently accurate GPR-based RSM, which
is much smaller than that needed by ANN, SVM, or ELM [34]. Nonetheless, the samples
are frequently generated by a random approach [35], which may not ensure that the
selected samples scatter in the domain uniformly. More importantly, most of the RSMs
in the available literature are constructed only based on training samples extracted once,
which may, in turn, lower the accuracy of the constructed method, and even increase the
computational effort when the sample size is small or the extrapolated testing samples
exceed the training sample space.

Further, the hyper-parameters of the covariance function for GPR play an important
role in model performance, which depends on the extent of parameter optimization. The
conjugate gradient method is often used to search the hyper-parameters. However, it
may encounter several limitations, such as over-dependence on the initial value, difficulty
in determining the number of iterations, and local optimization [36]. The issues may be
extremely severe since the best parameters for GPR are customarily unavailable.

Hence, to address the aforementioned issues, this study develops a practical procedure,
i.e., a dynamic WOA-GPR RSM based on a uniform design that considers the uncertainty
of the water table level [37]. One of the main purposes of this research is to investigate
the significance and benefits of considering such uncertainty in slope reliability analysis,
particularly for high mountainous areas where people and instruments find it hard to reach,
and to improve the model performance and efficiency through iteration. This study is also
devoted to improving the accuracy and efficiency of the current RSMs. Two practical slopes
are selected as the case studies, which have been reported by several researchers [38–40].
Accordingly, sufficient field monitoring data are available to compare and verify the slope
stability analysis. Conventional methods such as MCS, v-SVR, and GRNN are adopted for
comparison [41,42]. The results demonstrate that with the consideration of the uncertainty
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of the water table level, the developed model obtains a reasonable probability of failure.
At the same time, the application of an iterative algorithm has reduced the number of
representative samples selected by the uniform design and consequently improved the
accuracy and efficiency of GPR RSM. WOA, which is able to jump out of the local optimum,
is adopted to achieve the optimal hyper-parameters for GPR. In conclusion, this dynamic
WOA-GPR-based RSM with consideration of the water table level uncertainty, which
has not been investigated previously by other researchers, offers an effective way for
complicated slope reliability analysis.

2. Methodology
2.1. Slope Reliability Analysis Using MCS

Probabilistic and statistic approaches that consider geological uncertainties are fre-
quently adopted to evaluate slope stability. Assume that vector x = [x1, x2, . . . , xm] (m
denotes the number of random variables) are the uncertain parameters (random variables)
for the slope, and the slope failure probability (Pf ) is obtained from the following Equation:

Pf = P[g(x) ≤ 0] =
∫

g(x)≤0
f (x)dx (1)

where f (x) is the joint probability density function, and g(x) denotes the slope limit
state function.

The limit state function g(x) is expressed as:

Z = g(x) = Fs(x)− 1 (2)

where Fs(x) denotes the factor of safety determined by the strength reduction method (SRM).
Accordingly, the slope reliability analysis can be implemented with the Pf obtained

from Equation (1). However, for complicated slopes with high nonlinearity, Equation (1) is
impossible to be addressed by direct integration. Hence, MCS that uses massive statistic
samples is adopted for substitution. The expression of Pf determined by MCS is as follows:

Pf ≈
1
N

N

∑
i=1

I[g(xi) ≤ 0] (3)

where N is the sample size and xi is the i-th sample. Besides, I[·] represents the indicative
function of g(x). When the slope slides, g(x) ≤ 0, I[·] = 1, and otherwise, I[·] = 0.

Accordingly, the unbiased estimation of slope failure probability can be obtained from
MCS with sufficient samples. Unfortunately, deterministic slope stability analysis based
on SRM is required for each sample, which is time-consuming. Besides, MCS is also not
applicable to estimate slopes with low failure probability that need even more samples, as
compared to those with high failure probability.

Therefore, this paper presents a sufficiently accurate WOA-GPR RSM to calculate the
Fs(x) of a small number of representative samples. The g(xi) is subsequently obtained
from the following Equation:

g(xi) = FWOA−GPR(xi)− 1 (4)

where FWOA−GPR(xi) represents the factor of safety of the i-sample obtained from WOA-GPR.
By substituting Equation (4) into Equation (3), the landslide failure probability and its

variation coefficient determined by MCS can be obtained from Equations (5) and (6).

Pf ≈
1
N

N

∑
i=1

I[g(xi) ≤ 0] =
1
N

N

∑
i=1

I[FWOA−GPR(xi) ≤ 0] (5)
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COVPf =

√
1− Pf

NPf
(6)

2.2. Gaussian Process Regression (GPR)

GPR determines the conditional distribution of the target output by inferring the rela-
tion between the input vector and the target output vector for the training dataset based on
Bayesian theory [32,43,44]. It has a collection of various merits such as good generalization
ability and easy implementation and is suitable for solving nonlinear regression problems
with limited samples and high dimensions [44–46].

Given a training dataset D = {(xi, yi)|i = 1, 2, . . . , n} = (X, y), where xi is the input
of the i-th sample and yi represents the output of the i-th sample, the model is defined
as follows:

y = f (x) + ε (7)

where ε denotes the white noise that obeys a Gaussian distribution, namely, ε ∼ N
(
0, σ2

n
)
.

It is known that a Gaussian process is entirely determined by its mean and covariance
function. To simplify the calculation, the mean is set as zero. Hence, the expression of the
Gaussian process is obtained as follows:

f ∼ GP
(
0, k(x, x′)) (8)

where k(x, x′) is the covariance function of Gaussian progress.
According to the Bayesian principle, within a given training dataset D, the prior

distribution of y can be determined by Equations (7) and (8):

y ∼ N
(

0, K + σ2
n I
)

(9)

where K = K(X, X) = k
(
xi, xj

)
m×m and denotes a symmetric positive definite covariance

matrix, and I is the unit matrix.
Accordingly, the joint Gaussian distribution between the training samples and a given

test sample can be defined as shown in Equation (10).[
y
y∗

]
∼ N

(
0,
[

K(X, X) + σ2
n I K(X, x∗)

K(x∗, X) K(x∗, x∗)

])
(10)

where X represents the training input vector, x∗ is one of the input feature vectors of
the test samples, and y∗ is the output of the test sample. Besides, K(X1, X2) denotes the
n1 × n2–order covariance function matrix obtained from the datasets in X1 and those in X2,
in which ni is the sample (column) number of Xi.

Based on the obtained joint Gaussian distribution in Equation (10), the posterior
probability distribution of the output value y∗ is calculated from the mean function ŷ∗ and
covariance function cov(y∗):

y∗|X, y, x∗ ∼ N(ŷ∗, cov(y∗)) (11)

where ŷ∗ and cov(y∗) for GPR can be expressed as:

ŷ∗ = K(x∗, X)
[
K(X, X) + σ2

n I
]−1

y (12)

cov(y∗) = K(x∗, x∗)− K(x∗, X)
[
K(X, X) + σ2

n I
]−1

K(X, x∗) (13)

For the posterior distribution, the mean ŷ∗ represents the optimum value of y∗ and
cov(y∗) offers the estimation confidence. For instance, the 95% confidence interval of the
predictions is calculated as [ŷ∗ − 1.96cov(y∗), ŷ∗ + 1.96cov(y∗)]. Accordingly, the GPR tech-
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nique can not only provide accurate predictions, but also give the uncertainty estimation of
the predictions.

Besides, since the mean value of the Gaussian process is 0, the accuracy of GPR
depends completely on the type of covariance function that satisfies Mercer’s theorem.
In other words, the covariance function provides the estimation confidence. In this pa-
per, based on the performance of several commonly used kernel functions, the Rational
Quadratic covariance function (RQ) with better performance is adopted to construct a
GPR model.

kRQ
(
xi, xj

)
= σ2

f

(
1 +

(
xi − xj

)2P
2α

)−α

+ σ2
nδij (14)

where δij is the Kronecker delta function, {P} is the product matrix of the length-scale
function ι−2 and I, σf represents the variance of the kernel function, and α denotes the
relative weighting of large-scale and small-scale variations. The optimal hyper-parameters
Θ =

[
P, σf , α

]
are generally achieved from the conjugate gradient method adaptively. How-

ever, there have several limitations to this approach, such as over-dependence on the initial
value, the difficulty in determining the number of iterations, and local optimization [35].
Hence, WOA is adopted to achieve the optimal parameters of GPR in this paper.

2.3. Whale Optimization Algorithm (WOA)

WOA is a new meta-heuristic swarm intelligence optimization algorithm presented by
Mirjalili and Lewis (2016) [37]. It has several prominent merits such as a simple principle
and fewer parameters and is liable to jump out of the local optimum. This algorithm
simulates the “spiral bubble-net” feeding strategy of humpback whales to hunt their prey
by following its location and encircling the prey (Figure 1).

Figure 1. Bubble-net feeding behavior of humpback whales.

The detailed searching procedures are as follows.
In the first step, due to the unknown optimal position, the algorithm suggests that the

current best candidate location is the target prey or close to the optimal solution [37,47].
Once the best search individual has been identified, other search individuals will attempt
to move to the best position. Equations (15) and (16) demonstrate this behavior:

→
D =

∣∣∣∣→C · →X∗ (t)−→X(t)
∣∣∣∣ (15)

→
X(t + 1) =

→
X∗ (t)−

→
A·
→
D (16)

where t is the current iteration,
→
X(t) is the location vector of the prey, and

→
X∗(t) denotes

the location vector for the best solution and should be updated when a better solution is
obtained in each iteration.
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Besides,
→
A and

→
C are coefficient vectors that are defined in Equations (17) and (18).

→
A = 2

→
a ·→r −→r (17)

→
C = 2·→r (18)

where
→
a is decreased linearly from 2 to 0 during the iterative stage and

→
r denotes a

random vector within [0, 1].
In the second stage, i.e., the development stage, the humpback whales adopt either a

shrink encircling mechanism or a spiral model with a 50% probability when the whale’s
position is updated. This behavior is illustrated by the following Equation:

→
X(t + 1) =


→
X∗(t)−

→
A·
→
D i f p ≤ 0.5

→
D
′
·ebl · cos(2πl) +

→
X∗(t) i f p ≤ 0.5

(19)

where
→
D′ =

∣∣∣∣ →X∗(t)−→X(t)
∣∣∣∣ and denotes the distance between the i-th whale and the prey,

b is the type of the logarithmic spiral, and l is a random value that falls into [−1, 1].
At the exploration stage, humpback whales search the prey randomly based on each

other’s location. To assure the best solution can be obtained from WOA, random numbers

(
→
A) that are either smaller than −1 or greater than 1 are adopted to force the search agent

to stay away from the reference prey [47]. When
→
A is greater than 1, the algorithm is still in

the exploration stage. On the contrary, unlike the development phase, the location of the
search agent is updated based on the randomly selected search agent rather than the best
search agent found so far, allowing the WOA algorithm to perform a global search. The
position-updating Equations are as follows:

→
D =

∣∣∣∣→C ·→Xrand(t)−
→
X(t)

∣∣∣∣ (20)

→
X(t + 1) =

→
Xrand(t)−

→
A·
→
D (21)

where
→
Xrand(t) denotes the random vector selected from the current species group.

At the same time, the objective function-root mean square error (RMSE) (Equation (22))
is adopted to obtain the optimal parameters. The global optimal solution of the GPR model
(the position of the prey) is then obtained when the maximum iteration or the predefined
iterative criterion is reached. Figure 2 illustrates a brief flowchart of WOA.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (22)

where n denotes the number of observations, ŷi is the predicted i-th value, and yi is the
actual observed values.
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Figure 2. Distribution of samples produced by uniform design and random sampling.

2.4. Model Performance Evaluation

The indices, namely the Nash–Sutcliffe Efficiency (NSE) [48], variance account factor
(VAF) [49], coefficient of determination (R2), adjusted R2 (R2

Adj) [50], relative percentage dif-
ference (RPD) [51], performance index (PI) [52], and Willmott’s index (WI) [53], are applied
to assess the performances of the discussed techniques in this paper. Detailed expressions
of the abovementioned measures are shown as follows:

NSE = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − ymean)

2 (23)

VAF =

(
1− var(ŷi − yi)

var(yi)

)
(24)

R2 =
(n ∑n

i=1 ŷiyi −∑n
i=1 ŷi ∑n

i=1 yi)
2(

n ∑n
i=1 ŷ2

i − (∑n
i=1 ŷi)

2
)(

n ∑n
i=1 y2

i − (∑n
i=1 yi)

2
) (25)

R2
Adj = 1− n− 1

n− p− 1

(
1− R2

)
(26)

PI = R2
Adj + 0.01 ∗VAF− RMSE (27)

WI = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(|ŷi − yi|+ |yi − ymean|)2 (28)

RPD =
SD

RMSE
(29)

where ymean is the observed mean values, var denotes the variance, p is the number of
regression coefficients, and SD is the standard deviation

The above measures are explained as follows: The closer the NSE, VAF, R2, R2
Adj,

and WI values are to 1, the better the model performs. For PI, which represents the
comprehensive performance of a method, a value of 2 shows that the model performs
excellently. The lower the RMSE, the better the model performs. Besides, the values of
RPD divided by Viscarra Rossel et al., (2006) [51] are presented in Table 1.
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Table 1. The range of RPD for model evaluation.

Range Model Performance

RPD < 1 Very poor
1.0 < RPD < 1.4 Poor
1.4 < RPD < 1.8 Fair
1.8 < RPD < 2.0 Good
2.0 < RPD < 2.5 Very good

2.5 < RPD Excellent

2.5. Dynamic WOA-GPR Response Surface Framework Using Uniform Design

Generally, the more variables and the higher the nonlinearity of the performance
function, the more samples are needed to establish an accurate RSM model. In other words,
extensive samples are required to construct a sufficient RSM model for slopes with more
random variables or problems with higher nonlinearity. On the other hand, to ensure the
high precision of RSM, the training samples selected should cover the distribution interval
of random variables uniformly. Therefore, to reduce the calculation cost, researchers used
experimental designs such as the central composite design to produce limited sampling
points for the RSM [54]. However, the performance of the constructed model may not
be satisfactory once the samples are too small, the spatial distribution of the samples is
unreasonable, or the extrapolated testing samples exceed the training sample space. In
conclusion, the main limitation of the traditional approach is the large number of training
samples needed to establish an adequately precise RSM technique.

To obtain the best performance through the least number of points, the uniform de-
sign [55–57] is adopted to generate the training samples that are scattered uniformly within
the range. For example, the 20 points generated by the uniform design within the range
[–1, 1] are scattered uniformly in 20 grids with each grid containing one sample (Figure 2).
On the contrary, an identical number of points obtained from random sampling is scattered
randomly, which may increase the number of samples to build a comparatively accurate
RSM. Thus, in this paper, we propose an iterative procedure to construct a dynamic RSM
using thee uniform design for lower computational cost. At the first iteration, the sampling
range is evenly divided in the U-space (i.e., independent standard normal distribution
space) according to the sample size and factor levels. Then the random variables obtained
in the U-space are shifted to those in the X-space as illustrated in Low et al., (2011) and
Lue et al., (2012) [21,58]. We use Latin Hypercube Sampling (LHS) to generate the testing
points. All the points are adopted to establish and test the WOA-GPR model. In the next
iteration, we reduce the width of the sampling range and the number of sampling points.
The iteration will not be stopped until the convergence requirement is satisfied.

In conclusion, given the aforementioned limitations in the published studies, an itera-
tive procedure based on uniform design is presented, where the number of training samples
is slightly increased and thus achieved from the astringency of the problems considered.
Figure 3 illustrates the procedure of slope reliability analysis considering groundwater
level uncertainty based on the WOA-GPR dynamic RSM using the uniform design.
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Figure 3. Slope reliability analysis considering groundwater level uncertainty based on the WOA-
GPR dynamic RSM using uniform design.

3. Results

In the published literature, the majority of the slope stability evaluations are focused
on uncertainties in soil properties, ignoring the probabilistic characteristics of the water
table level that may make a significant contribution to the probability of slope failure.
Shadabfar et al., (2020) [59] considered the uncertainty in groundwater level, but only
simplified the water table and did not combine it with the model. Hence, for reliable slope
stability analysis, the location of the water table level is defined as a stochastic variable
in this study. The slope safety factors for all samples are obtained from SRM using the
finite difference method. Then the WOA-GPR dynamic RSM is constructed based on the
sampling points produced by uniform design. The failure probability is subsequently
obtained from the developed technique when combined with MCS. Two practical slopes
are adopted for model verification. The number of sampling points is also gradually
increased to illustrate the reliability of the constructed RSM output. Besides, the v-SVR and
GRNN-based RSM are also applied for comparison.

3.1. Case 1: Lodalen Slope

Lodalen landslide took place on 6 October 1954, in the region of the Lodalen mar-
shalling yard near the Oslo railway station [39,60]. Since then, several excavations and
reconstructions had been operated on the landslide. Before it collapsed, the landslide
was 17 m high with a slope angle of 26◦ (2H: 1V). Figure 4 depicts the geometric profile
of the landslide before the time of failure. More detailed descriptions of this slope can
be found in previous reports [13,39,40]. The statistical information of this case is shown
in Table 2. All random variables of the slope obey a normal distribution. The water ta-
ble, determined by a blue solid-line as shown in Figure 4, is obtained by the Equation
y = −0.003x2 − 0.078x + 22.765 (where x is the horizontal axis and y is the vertical axis).
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Figure 4. Geometric profile of the Lodalen slope.

Table 2. Statistical properties of soil parameters for Lodalen slope.

Parameter Probability
Distribution Mean Standard Deviation Maximum Minimum

γ (kN/m3) Normal 19.1 4 31.1 7.1
C (kpa) Normal 10 2.21 16.63 3.37
ϕ (◦) Normal 27.1 1.72 32.26 21.94

Water table (m) Normal 22.765 (x = 0) 1.3 26.95 18.58

For a slope that has many random variables and a high fluctuation of variables,
extensive training samples are required to establish an adequately precise RSM. As the
number of samples required is previously unknown, the training procedure should start
with comparatively limited samples. Then the number of training samples is gradually
increased to update the training sample set until the convergence requirement is satisfied.
Accordingly, for the Lodalen slope, the WOA-GPR approach is established with the initial
21 samples within the range [–3, 3] determined by the uniform design, which are scattered
evenly in the domain. The factors of safety for all training samples are calculated from
SRM. Then a temporary WOA-GPR model is constructed according to the training samples
(model input) and corresponding factors of safety (model output). In the next iteration, the
number of training samples is reduced by half and evenly distributed within the interval
[−2, 2]. Figures 5 and 6 present the prediction error in the factor of safety and RMSE
obtained from WOA-GPR with different samples and cycles, respectively. Concerning the
training points, the results of two cycles for different samples are comparable to that of
three cycles except for 32-2 training. The results of testing points show a similar pattern.
However, considering the overall performance it is obvious that the accuracy of the WOA-
GPR technique constructed by two iterations is close to that of the model established by
three iterations. The nearly equal results illustrate the uselessness of increasing the time of
cycles. In other words, the increase in the number of iterations causes a slight difference in
the performance of the developed approach. The attempt to improve the model accuracy
significantly through three cycles might be in vain. Therefore, two iterations can afford to
build an RSM with acceptable accuracy for the Lodalen slope.
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Figure 5. The error in factor of safety prediction obtained from WOA-GPR with different samples
and cycles (here 32-2 denotes two cycles with 32 samples): (a) Training; (b) testing.

Figure 6. RMSE obtained from WOA-GPR with different samples and cycles for Case 1.

Table 3 shows the parameters of different algorithms for Lodalen slope. Then the
performances of WOA-GPR, v-SVR, and GRNN models constructed by two iterations with
different initial samples are calculated and listed in Table 4. The results of the statistical
measures (NSE, R2, R2

Adj, VAF, PI, RPD, WI) illustrate that the accuracies of the discussed
models are greatly improved with the increase in training samples. However, considering
the results for the same samples, the WOA-GPR has the best performance, followed by the
v-SVR and GRNN.

Table 3. The parameters of different algorithms for Lodalen slope.

Models GPR[
log
(
ι−2),log

(
σf

)
,logα

] v-SVR
[c,g,v]

GRNN
δ

32 [2.9989, 2.7922, −0.4652] [900.01, 2.760, 0.8522] 0.42
38 [3.8686, 6.3821, −2.3139] [666.56, 3.097, 0.9937] 0.4
42 [1.9501, −1.1954, 0.100] [200.004, 3.4147, 0.8837] 0.32
45 [2.9028, 2.0782, −0.6715] [738.599, 0.1612, 0.4254] 0.32

Note: For v-SVR, c is the cost coefficient, g is the gamma for radial basis function, and v is the parameter of v-SVR;
for GRNN, δ is the smoothing factor.
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Table 4. Model accuracy of GPR, v-SVR, and GRNN methods in Case 1.

Indices
GPR v-SVR GRNN

32 38 42 45 32 38 42 45 32 38 42 45

NSE 0.9718 0.9685 0.9798 0.9805 0.6959 0.5436 0.9220 0.9242 0.4109 0.3620 0.8634 0.7773
R2 0.9745 0.9733 0.9813 0.9818 0.7952 0.7451 0.9265 0.9432 0.8577 0.9077 0.9023 0.9396

R2
Adj 0.9697 0.9683 0.9778 0.9784 0.7536 0.6973 0.9127 0.9325 0.8498 0.9026 0.8968 0.9363

VAF 97.220 97.137 98.034 98.119 75.539 62.006 92.599 94.057 56.866 67.216 90.153 83.863
PI 1.9259 1.9228 1.9447 1.9464 1.4566 1.2531 1.8122 1.8469 1.3455 1.4988 1.7632 1.6544

RPD 6.1073 5.776 7.2102 7.3447 1.8604 1.5187 3.6740 3.7272 1.3367 1.2845 2.7763 2.1741
WI 0.9987 0.9985 0.9991 0.9991 0.9862 0.9796 0.9963 0.9963 0.9765 0.9754 0.9936 0.9906

Figure 7 presents the errors of the factor of safety obtained from GPR, v-SVR, and
GRNN methods. Figure 8 displays the Taylor Diagram of training and testing results in
terms of the standard deviation and correlation (the sqrt of R2), where the black circle de-
notes the references, while the others denote the predictions. The closer the predictions are
to the reference data, the higher the accuracy of the discussed model will be. Accordingly,
as for the training procedure, the proposed method and v-SVR show comparable accuracy,
while the GRNN has a bad performance. However, the best performance is recorded in the
developed technique in the testing stage. Moreover, compared to the v-SVR and GRNN, the
proposed approach performs better with fewer samples. For instance, 38 training samples
are required to build an accurate GPR model, while 52 training samples are needed for
both v-SVR and GRNN models. Hence, the presented model is superior to the other two
models in accuracy and efficiency.

Figure 7. Case 1: Errors of factor of safety obtained from GPR, v-SVR, and GRNN methods by
employing (a) training points; (b) testing points.

Besides, for WOA-GPR, the increase in sampling points may contribute little to the
improvement in model precision. The comparable performance of the developed model
with 42 and 45 points illustrates the inefficiency of increasing training samples. More im-
portantly, according to the outcomes calculated from MCS (Table 5), the presented method
with 42 samples is sufficient to substitute the real limit state function of the Lodalen slope.
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Figure 8. Taylor diagram of training and testing obtained from WOA-GPR, v-SVR, and GRNN.

Table 5. Model failure probability estimated from GPR, v-SVR, and GRNN methods in Case 1.

Sample Size
(Training Points)

Failure Probability (%)

GPR v-SVR GRNN

32 27.97 29.40 35.97
38 27.51 29.13 38.12
42 26.69 28.26 31.85
45 26.67 28.31 26.78

Accordingly, based on the dynamic WOA-GPR model with 42 sampling points, a total
of 1 × 105 samples are generated by MCS based on the probabilistic distribution of random
variables. The histogram and the cumulative probability density for the factor of safety
obtained from the MCS are shown in Figure 9a,b, respectively. It is obvious that the factor
of safety by the proposed method obeys a normal distribution, which is in accordance with
the distribution of random variables.

Figure 9. Results of MCS with 5 × 104 samples for Case 1: (a) Histogram and normal fit for the
obtained factor of safety with a normal distribution of random variables; (b) probability density
distribution for the obtained factor of safety.
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Table 6 shows the results of failure probability achieved in the published literature
for an identical problem. Compared to the results obtained from the v-SVR and GRNN,
the failure probability of 26.67% obtained from this paper is closer to that determined by
Shadabfar et al. in 2020 [59]. However, if the water table remains the same, the instability
probability is only 21.36%, which is smaller than that obtained from this paper. We would
achieve an optimal outcome in this case. The deviations between the two scenarios illustrate
the importance and benefit of considering the groundwater level uncertainty. As the failure
probability for the Lodalen slope could increase under the effect of groundwater level
uncertainty, it is necessary to establish such uncertainty for accurate slope stability analysis.
In conclusion, with the consideration of the uncertainty in the water table, reliable failure
probability with high precision is achieved from the presented model in this study.

Table 6. Comparison between the dynamic WOA-GPR models with published literature.

Model Pf References

MCS with 1 × 104 samples without considering uncertainty in groundwater level 21.36% Shadabfar et al., (2020) [59]
MCS with 1 × 104 samples considering uncertainty in groundwater level 26.06% Shadabfar et al., (2020) [59]

WOA-v-SVR-MCS model with 5 × 104 samples 28.31% (COV = 0.7%) This study
GRNN-MCS model with 5 × 104 samples 26.78% (COV = 0.7%) This study

WOA-GPR-MCS model with 5 × 104 samples 26.76% (COV = 0.7%) This study
WOA-GPR-MCS model with 1 × 105 samples 26.69% (COV = 0.5%) This study
WOA-GPR-MCS model with 1 × 106 samples 26.67% (COV = 0.2%) This study

3.2. Case 2: Dangchuan Landslide in Heifangtai

Given the results for the Lodalen slope in Case 1, the proposed approach has good ap-
plicability in the reliability analysis for practical slopes with consideration of the uncertainty
in the groundwater level. Therefore, the model is used to assess the stability of the landslide
in Heifangtai, China. The slope failure occurred in the vicinity of Dangchuan No.6 and
No.7 landslides, Gansu Province, China, where landslide disasters took place frequently.
Figure 10 is the simplified geometric profile of the Dangchuan landslide. More detailed
geological descriptions of the landslide can be obtained from [42]. The soil properties are
reported in Table 7. Besides, the uncertainty in groundwater level is also considered as a
random variable that obeys an assumed normal distribution, where the mean and variance
are 13 m and 0.3 m, respectively.

Table 7. Statistical properties of soil parameters for Dangchuan landslide.

Slope
Layer

Unit Weight
(kN/m3)

Cohesion (kpa) Friction (◦)

Mean Cov Mean Cov

1 20 15 NA 18 NA
2 15.4 30 0.1 26 0.077
3 0.5 0.3 NA 2 NA

Note: NA = Not applicable.

Considering the results of Lodalen slope in Case 1, the more random variables and the
larger variation of random variables, the bigger the number of training samples required to
establish an accurate RSM. On the contrary, fewer sampling points are needed for slopes
with a small number of random variables. Accordingly, the initial samples should be
reduced since there are only three random variables in this example. Take the experiment
with 23 samples as an example. In the first iteration, 15 sampling points are provided
by the uniform design, and 8 points within the reduced sample interval are added to the
training samples in the subsequent iteration. Figures 11 and 12 present the prediction error
in the factor of safety and RMSE obtained from WOA-GPR with different samples and
cycles, respectively. It is obvious that the developed model performs well in the same initial
samples of two and three cycles for the training and testing stages, indicating that two
iterations can afford the accuracy requirement of RSM for the Dangchuan landslide.
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Figure 10. (a) Location of the study region (red star); (b) aerial view of the Heifangtai with landslide
sections (image photo on 18 January 2015) [61]; (c) distribution of monitoring points and residential
area; (d) monitored slope fracture in HF06; (e) lithological profile of cross-section A-A′; (f) geometric
profile of the cross-section A-A′ (1 denotes saturated loess, 2 denotes unsaturated loess, 3 denotes
the crack).

Figure 11. The error in factors of safety prediction obtained from WOA-GPR with different samples
and cycles (here 23-2 denotes two cycles with 32 samples): (a) Training; (b) testing.

Table 8 shows the parameters of different algorithms for Case 2. Then the performances
of the three models with gradually increased samples are calculated and reported in Table 9.
The errors in the factor of safety and the Taylor Diagram of training and testing results ob-
tained from GPR, v-SVR, and GRNN methods are shown in Figures 13 and 14. It is evident
that the predictions determined by the three models show good agreement with those ob-
tained from SRM in model training. Nevertheless, when it comes to the model testing stage,
the performance is in favor of the developed technique (NSE, R2, R2

Adj, VAF, PI, RPD, WI).
Moreover, considering the results with identical samples, the developed model has the best
performance in model testing, followed by v-SVR and GRNN.
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Figure 12. RMSE obtained from WOA-GPR with different samples and cycles for Case 2.

Table 8. The parameters of different algorithms for Dangchuan Landslide.

Models GPR[
log
(
ι−2),log

(
σf
)
,logα

] v-SVR
[c,g,v]

GRNN
[c,g,v]

23 [2.0030, 0.2705, 1.0090] [120.076, 0.291, 0.1417] 0.23
28 [4.8441, 1.0510, −1.900] [9.9001, 0.2331, 0.4258] 0.23
32 [4.9999, 10.880, 3.9983] [1999.0, 0.1252, 0.9804] 0.29
34 [7.1470, 8.6390, 0.4230] [10.000, 0.4921, 0.6840] 0.33

Note: For v-SVR, c is the cost coefficient, g is the gamma for radial basis function, and v is the parameter of v-SVR;
for GRNN, δ is the smoothing factor.

Table 9. Model accuracy of GPR, v-SVR, and GRNN methods in Case 2.

Indices
GPR v-SVR GRNN

23 28 32 34 23 28 32 34 23 28 32 34

NSE 0.9207 0.9859 0.9863 0.9850 0.9184 0.9676 0.9772 0.9814 0.8218 0.8407 0.8525 0.8317
R2 0.9648 0.9895 0.9863 0.9875 0.9498 0.9791 0.9775 0.9842 0.8821 0.8609 0.8573 0.8833

R2
Adj 0.9581 0.9875 0.9837 0.9851 0.9404 0.9752 0.9733 0.9813 0.8756 0.8532 0.8494 0.8768

VAF 96.268 98.804 98.605 98.635 94.893 97.878 97.727 98.423 88.195 85.071 85.325 87.924
PI 1.9030 1.9680 1.9626 1.9637 1.8712 1.9425 1.9410 1.9569 1.7309 1.6787 1.6784 1.7302

RPD 3.6444 8.6556 8.7584 8.3749 3.5914 5.6979 6.7896 7.5198 2.4304 2.5703 2.6713 2.5010
WI 0.9980 0.9996 0.9996 0.9996 0.9979 0.9992 0.9994 0.9995 0.9956 0.9957 0.9936 0.9959

Figure 13. Case 2: Errors of factors of safety obtained from GPR, v-SVR, and GRNN methods by
employing (a) training points and (b) testing points.
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Figure 14. Taylor Diagram of training and testing obtained from WOA-GPR, v-SVR, and GRNN.

Then an MCS with 1 × 105 samples is implemented by adopting the developed RSM
based on the probabilistic distribution of random variables. Table 10 shows the failure
probabilities estimated from GPR, v-SVR, and GRNN methods with different sample sizes.
According to the results obtained from MCS in Table 10, 28 sampling points are sufficient
to build an accurate GPR model, which is much smaller as compared to those required
to construct the v-SVR and GRNN models. Besides, the histogram and the cumulative
probability density for the factor of safety based on the dynamic WOA-GPR model with 28
sampling points are in good agreement with the actual normal distribution as illustrated
in Figure 15a,b. In conclusion, the developed dynamic WOA-GPR RSM based on the
uniform design in this paper is superior to v-SVR and GRNN-based RSMs in accuracy
and computational effort, which further verifies the feasibility of the proposed method to
evaluate slope reliability.

Table 10. Model failure probability estimated by GPR, v-SVR, and GRNN methods in Case 2.

Sample Size
(Training Points)

Failure Probability (%)

GPR v-SVR GRNN

23 7.53 7.41 8.16
28 9.46 8.89 8.76
32 9.47 9.24 9.04
34 9.45 9.27 9.99

Figure 15. Results of MCS with 5 × 104 samples for Case 2: (a) Histogram and normal fit for the
obtained factor of safety with the assumed normal distribution of random variables; (b) probability
density distribution for the obtained factor of safety.
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Overall, the method presented in this paper can aptly approximate the real perfor-
mance function. Hence, MCS based on the proposed RSM is conducted to calculate the
slope failure probability. Table 11 presents the results achieved from the published liter-
ature for the same issue. As shown, the obtained failure probability for the Dangchuan
landslide is closer to the value determined by MCS, as compared with both the value
of 9.22% reported by v-SVR and that of 9.99% obtained from GRNN. Besides, when the
groundwater level was defined as a constant, Ling et al. obtained a 23.57% reduction in the
failure probability of the landslide in 2021 [42]. This indicates the significant influence of
groundwater uncertainty on the failure probability. The slope reliability would be over-
estimated without considering the uncertainty in the water table level, especially when
its position is difficult to be determined. Hence, it is essential to explore the probabilistic
characteristics of the water table level in addition to the uncertainties in soil properties.

Table 11. Comparison between the dynamic WOA-GPR models with published studies.

Model Pf References

MCS with 1 × 104 samples without considering uncertainty
in water table level

7.33% Ling et al., (2021) [42]

MCS with 5 × 104 samples 9.59% (COV = 1.4%) This paper
WOA-ε-SVR-MCS model with 5 × 104 samples 9.22% (COV = 1.5%) This paper

GRNN-MCS model with 5 × 104 samples 9.99% (COV = 1.5%) This paper
WOA-GPR-MCS model with 5 × 104 samples 9.47% (COV = 1.4%) This paper
WOA- GPR -MCS model with 1 × 105 samples 9.49% (COV = 1.0%) This paper
WOA- GPR -MCS model with 1 × 106 samples 9.44% (COV = 0.3%) This paper

4. Discussion

Achieving a precise RSM for a complicated slope has been a hot topic in recent decades.
Machine-learning-based RSMs are demonstrating promising applicability in addressing
such issues with the development of artificial intelligence. Accordingly, we present a
dynamic WOA-GPR RSM to analyze landslide reliability in this study. An iterative proce-
dure based on uniform design is adopted to reduce the number of sampling points. Then
we implement an extensive comparison (over seven indices) to assess the performances
of GRNN, v-SVR, and GPR-based RSMs through two practical landslides. As shown in
Tables 4 and 9, it is clear that the presented technique performs better compared to the
other two techniques in terms of the indices illustrated in Equation (23) to Equation (29).
At the same time, the Taylor diagram, which offers the degree of approximation between
the actual and predicted data in terms of standard deviation and their correlation, is also
plotted for training and testing datasets as illustrated in Figures 8 and 13. According to the
results and analysis in Section 3, the WOA-GPR-based RSM yields the best predictions as
compared with the GRNN and v-SVR-based models. Besides, slight deviations in failure
probability obtained from our method and MCS are reported in both cases. In summary,
our approach is superior to the other models discussed with respect to accuracy.

To achieve rapid results, we implement an iterative algorithm based on a uniform
design. Notably, the results of the two cases show that the number of training samples
is reduced to a relatively small level, i.e., 42 samples for Case 1 and 28 samples for Case
2. This means that for issues with three and four random variables, our study reduces
17 and 18 samples as compared to the studies in [22,26,29,30,42], which need 45 and
60 samples to construct an accurate RSM, respectively. Accordingly, the iterative procedure
can effectively improve the efficiency of our method. Besides, considering the approximate
accuracy, our model requires much fewer sampling points to establish an accurate RSM for
both cases. This demonstrates that the WOA-GPR model is efficient for landslide reliability
analysis. From what has been discussed above, we can reasonably conclude that our
approach performs better in comparison with the GRNN and v-SVR models in terms of
computation effort.

Further, as compared with the other methods, our study can not only provide the
factor of safety, but also offers sufficient confidence levels. Figure 16a,c shows the factor of
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safety (Fs) calculated from SRM and 95% confidence levels of Fs obtained from dynamic
WOA-GPR RSM for the two landslides. Figure 16b,d presents the Fs and the corresponding
95% confidential level determined by the proposed model when combined with MCS with
5000 samples for both cases. As shown, all the values of Fs fall into the 95% confidential
interval obtained from the dynamic WOA-GPR RSM using the uniform design.

Figure 16. (a) Fs calculated from SRM and 95% confidence levels of Fs obtained from WOA-GPR RSM
in Case 1; (b) Fs and the corresponding 95% confidence level determined by the proposed model
based on MCS with 5000 samples in Case 1; (c) Fs calculated from SRM and 95% confidence levels of
Fs obtained from dynamic WOA-GPR RSM in Case 2; (d) Fs and the corresponding 95% confidence
level determined by the proposed model based on MCS with 5000 samples in Case 2.

Additionally, the uncertainty in the water table level appears to have a larger contri-
bution to the increase in failure probability in our case studies. In other words, a small
failure probability is achieved in the absence of water table level uncertainty, which is
in agreement with the previous literature reported in [59]. We may obtain an optimistic
assessment of landslide stability and fail to predict future landslide occurrence. Hence, for
slopes in which it is hard to determine their water table level, it is reliable to consider such
uncertainty, especially in high mountainous areas where people and equipment find it hard
to reach.

Besides, the failure probability of the Lodalen slope achieved in this paper is slightly
higher than the value of 26.06% determined by Shadabfar et al., (2020) [59]. This might be
ascribed to the factor of safety obtained from different methods of Simplified Bishop and
SRM, or to the dissimilar application of the water table level as shown in Figure 17.
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Figure 17. (a) The normalized water table level employed in Shadabfar et al., (2020) [59]; (b) the
water table level used in this paper.

We also investigate the impact of the type of groundwater level distribution on failure
probability. Table 12 shows the values for the water table level with assumed distribution
functions for both slopes. Results obtained from our model with a uniform distribution
are different from those determined by the other three distribution functions. Besides,
the approximate failure probability is determined by the proposed method with the nor-
mal, lognormal, and triangular distribution functions, where the result with a normal
distribution offers a more optimistic assessment of the landslide stability.

Table 12. Pf values for water table level with assumed distribution functions in Case 1 and Case 2.

Distribution Function Pf for Case 1 Pf for Case 2

Uniform 29.80% 8.98%
Lognormal 26.85% 9.44%
Triangular 27.65% 9.37%

Normal 26.65% 9.47%

In this study, since the reliability evaluation based on MCS is independent of the
factor of slope safety using SRM, other available methods such as LEM and the Simplified
Bishop can also be adopted to implement the developed technique. Besides, the required
samples are found to be 42 for Case 1 with four random variables, and the samples are
28 for Case 2 with three random variables. For problems with more than five random
variables, experimental results show that it is quite possible to increase the times of cycles
to implement probabilistic analysis, which will be further studied in the future.

5. Conclusions

Accurate and efficient slope stability analysis can improve the accuracy of landslide
early warnings, thus reducing the casualties and damage to properties from such disasters.
For decades, machine-learning-based RSMs have been developed for probabilistic analysis
of landslides, including ANN, SVM, KELM, and so on. However, it is still a challenging task
to determine an efficient method from the machine-learning-based RSMs, which would
help researchers accurately analyze slope reliability and thus help benefit human lives and
property safety. Besides, most studies rarely consider the uncertainty in the underground
water table, which has become a crucial element absent in slope stability assessment.

One of the contributions of this study is the development of a new method that adds
the uncertainty in groundwater level to existing approaches of slope reliability analysis and
facilitates the researcher to uncover the hidden patterns and regularities in the deformation
of landslides. We adopted a uniform design to construct a dynamic WOA-GPR-based RSM
model. Two practical landslides, i.e., the Lodalen slope and Dangchuan landslide, were
chosen to verify the applicability of the developed technique. For the case studies illustrated
in the study, we found that the water table level uncertainty made higher contributions
to offering reliable results. Besides, with the aid of a uniform design and a new iterative
dynamic RSM, we are able to save large amounts of time in terms of reducing the samples
generated for the construction of the WOA-GPR-based RSM. We are also able to reduce



Remote Sens. 2022, 14, 2779 21 of 23

the number of iterative times the RSM is established. Considering the overall performance,
our method has proven to be the best model, since it produced higher results with lower
computation time, and significantly outperformed the GRNN and v-SVR-based RSMs.
The technique developed in this research is a new hybrid approach for landslide stability
analysis, which combines the merits of uniform design and WOA and GPR models. The
results in this paper show the potential usability of the developed method in evaluating
the stability of slopes that are difficult in terms of determining their underground water
levels, especially in high mountainous areas where people and equipment find it hard to
reach. The novel technique can also be applied to similar geological scenarios for landslide
risk reduction.

In conclusion, machine-learning-based RSMs show promising applicability in land-
slide reliability analysis. The assessment of such hazards is vital for landslide mitigation
and prevention. The results achieved can help researchers to better understand the influ-
ences of different types of uncertainties encountered in landslides, and thus help disaster
emergency management departments to implement effective measures to reduce the poten-
tial risks to an acceptable degree. In the future, methods to address problems with more
than five random variables still need to be validated through different cases by investigat-
ing proper measures such as the increase in iterations. In addition, in order to realize early
landslide warnings, real-time monitoring data of a higher resolution will be integrated into
the WOA-GPR framework in the future.
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