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Abstract: Satellite Image Time Series (SITS) record the continuous temporal behavior of land cover
types and thus provide a new perspective for finer-grained land cover classification compared with
the usual spectral and spatial information contained in a static image. In addition, SITS data is
becoming more accessible in recent years due to newly launched satellites and accumulated historical
data. However, the lack of labeled training samples limits the exploration of SITS data, especially
with sophisticated methods. Even with a straightforward classifier, such as k-nearest neighbor, the
accuracy and efficiency of the SITS similarity measure is also a pending problem. In this paper, we
propose SKNN-LB-DTW, a seeded SITS classification method based on lower-bounded Dynamic
Time Warping (DTW). The word “seeded” indicates that only a few labeled samples are required, and
this is not only because of the lack of labeled samples but also because of our aim to explore the rich
information contained in SITS, rather than letting training samples dominate the classification results.
We use a combination of cascading lower bounds and early abandoning of DTW as an accurate yet
efficient similarity measure for large scale tasks. The experimental results on two real SITS datasets
demonstrate the utility of the proposed SKNN-LB-DTW, which could become an effective solution
for SITS classification when the amount of unlabeled SITS data far exceeds the labeled data.

Keywords: satellite image time series; SITS; dynamic time warping; classification; lower bound

1. Introduction

With continuously-accumulating satellite images and fast-evolving analytical method-
ologies, studies focusing on Satellite Image Time Series (SITS) [1–5] began to emerge in
large numbers over the last ten years. The lack of SITS data is no longer a major barrier for
research and applications due to the launch of more satellites and the open access policy of
historical data. Data from new satellites, such as Landsat 9 [6] and GaoFen 6 [7], are already
available, and data from previous satellites, including but not limited to Landsat 5/7/8,
GaoFen 1/2/4, MODIS Terra/Aqua and Sentinel 1/2, have accumulated for decades [8–10].

Compared with single-temporal or multi-temporal images, SITS fully records the
continuous temporal behavior of land cover types, and the temporal behavior is critical
for the fine-grained distinguishability of land cover types in many circumstances [11–13].
Different land cover types may behave similarly in one or several discrete time phases but
they do not always behave the same if we observe continuously. In this paper, we separate
SITS from multi-temporal images by their continuity and frequency. SITS usually consists
of a longer and more continuous series of images, while multi-temporal images consist of
several temporally scattered images that are either too few or too discrete to construct a
SITS. Figure 1 shows an example of SITS.

Land cover is a fundamental source of information to describe or understand the envi-
ronment and its changes [14–16]. Thus, land cover classification has become an important
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task for earth sciences [17–19]. Given SITS data, a major goal of research is to achieve
more precise land cover classification results by further exploring the temporal informa-
tion contained in SITS [20]. A quick review of the literature shows that many methods
regarding the classification of SITS have been proposed in recent years [1,2,21–34], and
these methods can be divided into three major categories: neural-network-based methods,
similarity-measure-based methods, hybrid and other methods.

Neural-network-based methods focus on designing effective network architectures to
extract decisive temporal features, and the network architectures have evolved from tem-
poral convolutional networks [1,2] and recurrent neural networks [21,22], to self-attention
networks [23–25]. Similarity-measure-based methods evaluate the similarity between
labeled and unlabeled data. Currently, Dynamic Time Warping (DTW) [26,27] and its
variants [28], for example, time-weighted DTW [29,30], have become some of the most
widely used similarity measures for SITS. Hybrid methods include combining different
classification paradigms [31], fusing time series data from different satellites with differ-
ent spatiotemporal resolutions [32] and constructing new features with machine-learning
models [33,34] or phenological models [31].

Figure 1. An example of multi-spectral satellite image time series (SITS) with Landsat 8 OLI images
of path 123 and row 032.

Despite the variety of classification methodologies, one common point for most of
them is that they propose a high requirement for the amount and quality of labeled
training samples. Advanced neural networks for SITS are becoming sophisticated with
many network layers and millions of parameters to be tuned by a vast number of labeled
data [35,36]. Similarity-measure-based methods also demand a set of high quality labeled
samples to be compared with unlabeled query samples. However, in real world appli-
cations, the insufficiency of labeled samples is the normal situation, especially for land
cover classification tasks. Three typical approaches for the acquisition of labeled land cover
samples are listed as follows:

1. Field investigation: It is labor-and-resource-consuming to send people to the investi-
gation spots, and the number of labeled samples we can find in this way is limited.
Furthermore, the labels are difficult to update.

2. Visual interpretation: This relies heavily on high-spatial-resolution imagery and expert
knowledge. As a consequence, class labels are sometimes unavailable for certain areas
and considerable incorrect labels could be included.

3. Synthesis of existing results: It is difficult to evaluate the reliability of existing land
cover classification results or handle the diversity among different results due to the
sparsity of validation samples and the distinctions on classification systems, map
projections, etc.

The lack of labeled samples has long been noticed by researchers and many small-
sample-oriented methods, for instance, transfer learning [37,38], meta learning [39,40]
and knowledge distillation [41,42], have been proposed. However, these methods are
essentially based on the assumption that we have sufficient labeled data or knowledge
from other domains, which is also a difficult condition in many scenarios including land
cover classification. In addition to the above-mentioned difficulties, temporal data analysis
requires the class labels to be updated frequently, and that is scarcely satisfiable in a
moderate or larger-scale case [26]. In contrast with the insufficiency of labeled data, the
vast majority of SITS data are unlabeled.
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Therefore, exploring the potential of unlabeled data becomes crucial for the classifi-
cation of SITS, and in this way, we can achieve an all-data-driven paradigm rather than
only a labeled-data-driven paradigm. In this paper, we propose SKNN-LB-DTW , a seeded
SITS classification method based on the time series similarity measure of lower-bounded
DTW [43,44]. The word “seeded” indicates that we employ only a few labeled samples for
each class to serve as the seeds that guide the k-nearest neighbor classifier [45], instead of
requiring numerous labeled samples to train a classifier.

We choose DTW as the similarity measure for k-nearest neighbor classifier because
DTW is capable of coping with time distortions. Since DTW has a quadratic computational
complexity [46], multiple levels of lower bounds, such as LB_Kim and LB_Keogh [44,47,48]
are employed to avoid unnecessary calculations of DTW and accelerate the whole process.
The proposed method maintains a moderate influence of training samples and attempts to
make the rich information contained in SITS data be the decisive factor.

To demonstrate the performance of our method, two SITS datasets of full-size Landsat
8 images from year 2013 to 2017 were constructed. Cloud and cloud shadow pixels were
mended by information transfer [49,50] from other images in the same SITS to ensure that
the temporal information was continuous enough to reflect the temporal evolution of land
cover types. Compared with several benchmark methods that are still usable with few
labeled samples, our method exhibits improved accuracy, and compared with raw DTW,
our method can save approximately half of the time.

The main contributions of this work are summarized as follows:

1. The proposed method only requires a few labeled samples and can achieve relatively
high accuracy. This means the method has wider availability in more applications.
We use limited samples not only because the lack of labeled samples is a common
phenomenon but also because we tend to dig the rich information of unlabeled SITS
data and keep a balance between the influence of labeled and unlabeled data.

2. The proposed method employs the combination of cascading lower bounds and early
abandoning of DTW to greatly accelerate the classification process while maintaining
exactly the same results. This is especially significant for SITS datasets because satellite
images usually contain millions of pixels, and the direct calculation of DTW will take
an unacceptable amount of time.

3. The proposed method introduces a seed-selection strategy from existing land cover
classification products if no labeled samples is available. The strategy aims to keep only
the “correctly-labeled” samples by a set of morphological and statistical approaches.
The strategy is totally unsupervised, which enables the automatic classification of SITS
in a large or even global scale.

The remainder of this paper is organized as follows. Section 2 systematically describes
DTW, the lower bounds of DTW, the early abandoning of DTW and the entire process of
seeded classification of SITS. Section 3 details the datasets, settings, statistical and visual
results of the SITS classification experiments. Section 4 discusses the contributions of lower
bounds and the limitations of SKNN-LB-DTW. Finally, Section 5 concludes this work.

2. Materials and Methods
2.1. Dynamic Time Warping

A similarity measure is a fundamental tool for k-nearest neighbor classification of
SITS [51,52]. Currently, Euclidean distance and Dynamic Time Warping (DTW) [53,54] are
the two most widely used similarity measure prototypes. Figure 2a,b illustrates Euclidean
distance and DTW, respectively. We observe that Euclidean distance imposes a temporally
linear alignment between time series, while DTW is more flexible, and non-linear alignment
is allowed in a temporally local range. The flexibility of DTW enables it to cope with time
distortions effectively and makes DTW a more suitable similarity measure for complex
SITS data.

To give a quantitative definition of Euclidean distance and DTW, let
A = {a1, a2, · · · , ai, · · · , aI} and B = {b1, b2, · · · , bj, · · · , bJ} be two time series of length
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I and J. The lowercase ai and bj with subscript i and j denote the i-th and j-th elements
of time series A and B, respectively. The cost between the i-th element of A and the j-th
element of B is denoted by d(i, j). In this setting, the Euclidean distance between A and B
can be formulated as:

EUC(A, B) =
I

∑
k=1

d(k, k)

I = J

(1)

where d(k, k) = (ak − bk)
2 skips the usual square-root operation to save more calculation

time, and the squared version does not influence the result of the k-nearest neighbor
classifier.

(a) Euclidean distance (b) DTW

(c) Warping Path of DTW

Figure 2. Examples of Euclidean distance, DTW and the warping path of DTW with Sakoe–
Chiba band.

As for DTW, its flexibility comes from its attempt to find an optimal alignment that
achieves a minimum accumulated cost between two time series. Unlike the Euclidean
distance, in DTW the k-th element of A is not always aligned with the k-th element of B,
and thus a warping path is used to record each pair of aligned elements. The warping
path is usually denoted by W = w1, w2, · · · , wk, · · · , wK, where each time warp wk = (i, j)
denotes a pair composed of ai and bj. The length of the warping path is the uppercase K.
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Figure 2c shows the warping path in correspondence with Figure 2b, where the x-
coordinate and y-coordinate of each matrix cell in the warping path are also the indices of
elements in the two time series, respectively. The final accumulated cost between the two
time series, namely the DTW distance, is the sum of all pairwise costs. In this setting, DTW
can be formulated as:

DTW(A, B) = min
W

K

∑
k=1

d(wk)

w1 = (1, 1)

wK = (I, J)

0 ≤ i′ − i ≤ 1

0 ≤ j′ − j ≤ 1

(2)

where wk = (i, j), wk+1 = (i′, j′) and d(wk) = d(i, j) = (ai − bj)
2.

Equation (2) is more of a conceptional definition of DTW than a solution. DTW, as
defined by Equation (2), is a typical dynamic programming problem that can be solved by
a more straightforward recursive formula:

DTW(Ai, Bj) = d(i, j) + min


DTW(Ai , Bj−1)
DTW(Ai−1, Bj )
DTW(Ai−1, Bj−1)

(3)

where DTW(Ai, Bj) is the partial DTW distance between sub-sequences composed of the
first i elements of A and the first j elements of B. DTW(AI , BJ) = DTW(A, B) is the final
DTW distance between the two entire time series.

Based on the fact that if two elements from different time series are temporally too far,
their correlation tends to be weak and they should not be paired together, many constraints
on DTW have been proposed to limit the warping path inside a warping window [55,56].
Among these constraints the Sakoe–Chiba band [53] as shown in Figure 2c is the most
intuitive yet effective one. Given a radius r of the Sakoe–Chiba band, the temporal difference
of two time series elements |i− j| cannot exceed r for any time warp wk = (i, j) in a warping
path. In addition, the Sakoe–Chiba constraint is a prerequisite for LB_Keogh, a lower bound
of DTW that will be used in our method and will be introduced in the next subsection.
Thus, we adopt the Sakoe–Chiba constraint throughout this work.

2.2. Lower Bounds of DTW

As the name implies, a lower bound of DTW is a value that is guaranteed to be smaller
than DTW. If the computation speed of a lower bound is significantly faster than DTW,
then the lower bound can be used to prune off unpromising candidates and thus speed up
the k-nearest neighbor search of time series. For example, suppose the threshold distance
for a candidate B to be the k-nearest neighbor of a time series A is δ. If a lower bound
distance between A and B is LB and LB > δ, then we can be sure that the DTW distance
DTW > LB > δ since DTW > LB is guaranteed, and because of DTW > δ, which means
the distance is too far, the candidate can be pruned off, and the calculation of DTW can be
safely skipped.

In this manner, a portion of time-consuming calculations of DTW can be replaced by
the faster calculations of lower bounds, and thus the entire k-nearest neighbor classification
process is accelerated. The use of lower bounds still maintains exactly the same result as
the raw DTW rather than generating an approximate result.

Besides the computation speed, tightness is another important property for a lower
bound. Tightness indicates how close the lower bound is to the original measure. If the
tightness is high, more candidates will be pruned off and vice versa. Usually there is a
tradeoff between the tightness and the computation speed of a lower bound, and thus it is
difficult to find the best lower bound to use. Since each single lower bound has its weakness,



Remote Sens. 2022, 14, 2778 6 of 25

a classic strategy is to use different kinds of lower bounds in a cascade. For example, we
can first employ a fast lower bound to reject some obvious outliers and then employ a tight
lower bound to maintain a high prune rate. In our method, we use LB_Kim [48] as the fast
lower bound and LB_Keogh [44,47] as the tight one for DTW.

Equation (4) shows the definition of LB_Kim and it has a computational complexity of
O(1), which is the fastest possible situation. Figure 3 illustrates an examples of LB_Kim.
The full LB_Kim is the sum of three parts. The first part LB_Kim1 as shown in Figure 3a
considers the minimum possible cost among the starting elements and the ending elements
of the two time series given the rule of DTW. Similarly, the second part LB_Kim2 as shown
in Figure 3b further considers the minimum possible cost among the first two and the last
two elements, and the third part LB_Kim3 as shown in Figure 3c considers the situation
for the first three and the last three elements. Figure 3d shows the combination of the
three parts.

(a) LB_Kim1 (b) LB_Kim2

(c) LB_Kim3 (d) LB_Kim

(e) LB_Keogh (r = 5) (f) LB_Keogh (r = 7)

Figure 3. Examples of LB_Kim and LB_Keogh. LB_Kim is composed of three parts. LB_Keogh is related
to the radius of the Sakoe–Chiba band of DTW because different radius lead to different envelopes of
the time series.
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LB_Kim1(A, B) = d(1, 1) + d(I, J)

LB_Kim2(A, B) = min{d(1, 2), d(2, 1), d(2, 2)}
+ min{d(I − 1, J − 2), d(I − 2, J − 1), d(I − 2, J − 2)}

LB_Kim3(A, B) = min{d(1, 3), d(2, 3), d(3, 3), d(3, 2), d(3, 1)}
+ min{d(I − 1, J − 3), d(I − 2, J − 3), d(I − 3, J − 3), d(I − 3, J − 2), d(I − 3, J − 1)}

LB_Kim (A, B) = LB_Kim1(A, B) + LB_Kim2(A, B) + LB_Kim3(A, B)

(4)

where d(i, j) = (ai − bj)
2 is the cost between the i-th element of A and the j-th element of B.

In contrast with LB_Kim, LB_Keogh achieves a higher tightness by comparing one time
series with the upper and lower envelopes of the other time series. Equation (5) defines the
envelopes of time series and Equation (6) defines LB_Keogh. The upper or lower envelope
consists of a sequence of local maximum or local minimum values for a sequence of sliding
windows centered at each element of a time series. The length of the sliding window is
2 ∗ r + 1 where the r is the radius of the Sakoe–Chiba band of DTW. In this setting, LB_Keogh
is guaranteed to be smaller than DTW, and the proof can be found in [47]. Given a pair of
envelopes, LB_Keogh sums the cost caused by elements larger than the upper envelope and
elements smaller than the lower envelop. Figure 3e,f illustrates the LB_Keogh with different
Sakoe–Chiba band radii.

U = u1, u2, · · · , ui, · · · , uI

L = l1, l2, · · · , li, · · · , lI

ui = max{amax(i−r,1) : amin(i+r,I)}
li = min{amax(i−r,1) : amin(i+r,I)}

(5)

where r is the radius of the Sakoe–Chiba band of DTW, and ai is the i-th element of time
series A. U and L have the same length I as A and 1 ≤ i ≤ I .

LB_Keogh(A, B) =
I

∑
i=1


(bi − ui)

2 i f bi > ui,
(bi − li)

2 i f bi < li,
0 otherwise

(6)

where bi, ui and li are the i-th element of time series B, upper envelope U and lower
envelope L, respectively.

For cascading lower bounds, we calculate LB_Kim first, and if LB_Kim is smaller than
the current k-nearest neighbor threshold, we calculate LB_Keogh. If LB_Keogh is still smaller
than the threshold, we calculate DTW. In this manner, we create two additional chances to
skip the time-consuming calculation of DTW.

2.3. Early Abandoning of DTW

For a k-nearest neighbor classification problem, the similarity measure is used to
decide whether a time series is close enough to be the neighbor of another time series. As
soon as we know the distance between two time series is already too large to be neighbors,
the calculation of distance can be abandoned to save more time. For many similarity mea-
sures we cannot know the interim results until the full calculation is completed; however,
fortunately, DTW is calculated in an incremental manner, and we can obtain the interim
result at each step. Figure 4a illustrates an example of early abandoning of DTW, and
Figure 4c shows the corresponding accumulated costs at each step. From Figure 4c, we
observe that the distance threshold is reached at the 45th step, and correspondingly in
Figure 4a, the calculation of DTW is abandoned at the 45th step.
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(a) Early abandoning of DTW (b) Early abandoning of DTW with partial LB_Keogh

(c) Accumulated costs correspond with the early abandoning of DTW

(d) Accumulated costs correspond with the early abandoning of DTW with partial LB_Keogh.

Figure 4. Examples of early abandoning of DTW with and without partial LB_Keogh. The green lines
indicate the alignments of DTW, and the gray lines indicate the alignments of LB_Keogh. k is the
counter of steps. The numbers in subfigure (a,b) are ordinal numbers of steps.

Another trick to make the abandoning happen even earlier is to adopt partial LB_Keogh
during the calculation of DTW [48]. At any step k, compared with DTW(Ak, Bk), the sum of
DTW(Ak, Bk) + LB_Keogh(Ak+1:I , Bk+1:I) is a closer lower bound to the full DTW distance
DTW(AI , BI). With the LB_Keogh contribution from k + 1 to I, we can always predict the
full DTW distance and thus conclude whether the distance will exceed the threshold in
an earlier step. Figure 4b,d illustrates the use of partial LB_Keogh and its corresponding
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accumulated costs at each step. We observe that with partial LB_Keogh the abandoning
happens at as early as the ninth step.

2.4. Seeded Classification of SITS

After the description of DTW based similarity measure combinations, in this sub-
section we present the whole process of the proposed seeded classification method for
SITS. Figure 5 shows the complete flow chart with three main stages. The first stage is the
preprocessing of SITS data. Optical satellite imagery usually contains massive cloud and
shadow contaminated pixels. In order to ensure the continuity of temporal information,
one major task is to recover cloud and shadow contaminated pixels for each image in a
SITS.

If there is no cloud and shadow mask, cloud and shadow detection has to be conducted
beforehand. Then, we use the information transfer method proposed in [50] to recover
contaminated pixels. For each cloud or shadow contaminated image patch, the method
searches for a similar image patch from the same geographical location in other images of
the SITS, and then Poisson blending [57] is employed to make image patches transferred
from other images fit seamlessly into the current image. For images that are too cloudy to
recover, we must skip them.

For many satellites, such as Landsat 8 and GaoFen 1, images with the same tile number
do not cover exactly the same spatial scope due to some linear offsets. Thus, we crop the
intersection area of all images in a SITS to ensure pixels with the same coordinates in
different images cover the same spatial scope and all time series have the same length.
If a reference classification map with training labels is used for seed selection, we need
to reproject all images to the same map projection system and spatial resolution as the
reference map.

Figure 5. The process of seeded classification of SITS.

Due to the large size of satellite images, a full-size SITS with dozens of images will cost
hundreds or thousands gigabytes of memory, which is difficult to satisfy by conventional
computers. Therefore, images and the corresponding reference map have to be subdivided
into multiple grids. In this work, the size of grids is 600× 600.

The second stage of the process is the selection of labeled seeds for each land cover
class. We select seeds from existing land cover classification products, such as FROM-
GLC30 [58] or GLC-FCS30 [59]. With the aim of exploring the rich information contained
in SITS data, rather than letting the training samples dominate the classification results, we
strictly limit the number of seeds for each class.
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Concretely, suppose the number of seeds for a class is denoted by S, the total number
of samples of that class in the reference map is N, and the number of nearest neighbors is
K for the classifier. Then, we make S = max( e

√
N, ceil(K/2)). The former part e

√
N greatly

condenses the number of samples, for example, e
√

1, 000, 000 ' 161, and it also makes the
number of seeds proportional to the ground truth in general. The latter part ceil(K/2)
allows tiny classes to exist by giving them the minimum number of samples required by
the k-nearest neighbor classifier.

Since the numbers of seeds are limited, the quality of seeds becomes critical. We adopt
two techniques, one morphological and one statistical, to select more correctly classified
samples and enhance the reliability of seeds. We first morphologically erode [60] all class
labels in the reference map to keep only the central pixels of each land cover patch, because
the central pixels usually have a higher possibility to be correctly classified. Then, we use
the statistical isolation forest [61,62] algorithm to keep only the inliers, and finally seeds
are randomly selected from the inliers according to the given quantity. If the number of
selected seeds for a class is less than ceil(K/2), we randomly select non-repeated samples
before the erosion for complements.

Given the seeds and SITS data, the third stage is the k-nearest neighbor classification.
The seeds are used as the training samples and the combination of cascading lower bounds
and early abandoning of DTW are used as the similarity measure. The classification is
conducted by grids and results of all grids are finally merged into one land cover map.

Concretely, for each input sample to be classified, we first find the K closest training
examples of it, and then it is classified by a plurality vote of the K closest neighbors. To
search for the K closest training examples, we iterate through all training samples and
check whether a training sample is close enough to be the top K closest ones. However, we
do not calculate the DTW distance directly because of its high computational complexity.
Instead, we calculate the lower bounds of DTW first to prune off unnecessary calculations
of DTW.

If a lower bound is already too large to make a training sample one of the K closest
neighbors, then the calculation of DTW for this training sample is unnecessary because
DTW is guaranteed to be larger than its lower bounds. The threshold to decide whether a
training sample belongs to the top K closest ones is the DTW distance between the current
k-th closest training sample and the input sample. If lower bounds are smaller than the
threshold, we calculate the DTW and compare the DTW distance with the threshold. To
accelerate each single calculation of DTW, the early abandoning strategy can be adopted
because DTW can be calculated incrementally.

During DTW calculation, we observe the interim result at each step and as soon as
the threshold is reached, we know this training sample is already too far to be the top K
closest neighbors and the calculation can be abandoned safely. If a training sample is closer
than the threshold, then it will replace one of the old K closest neighbors, and the threshold
should be updated by the new k-th closest distance. In the entire classification process,
we do not abandon the classification of any sample but we abandon the unnecessary
calculations during the search for the K closest neighbors. All samples will be classified as
the standard k-nearest neighbor classification.

It is worth noting that the process as a whole is actually unsupervised because the seed
selection is unsupervised, and the succeeding classification turns unsupervised without
manually training sample preparation. This enables the automatic classification of SITS in
a large or even global scale.

3. Results
3.1. Datasets and Reference Samples

To demonstrate the accuracy and efficiency of the proposed SKNN-LB-DTW method
for SITS, in this section we conduct classification experiments on two SITS datasets. The two
datasets each consist of 40 full-size Landsat 8 images from year 2013 to 2017 with a spatial
resolution of 30 m. Figure 6 shows the temporal distributions of images in the two SITS.
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Each element in a time series contains seven features, namely the seven surface reflectance
bands (Ultra Blue, Blue, Green, Red, NIR, SWIR1 and SWIR2) of Landsat 8 imagery. Images
in each SITS were preprocessed by cloud and shadow removal, intersection area cropping
and reprojection as described in Section 2.4. Thus, images in each SITS cover the same
spatial scope and pixels are aligned throughout the image sequence.

The first SITS locates in path 123 and row 032 of the WRS-2 (Worldwide Reference
System) tiles adopted by Landsat 8 satellite. The spatial scope covers most part of Beijing
city and its north. After cropping and reprojection, the image size is 9637× 7385. The
second SITS with path 122 and row 032 locates in the adjacent tile to the east of the first
SITS. The image size is 9507× 7376. The GLC-FCS30 2010 land cover classification product
is used as the reference map for seed selection, and thus we inherit the classification system
of the GLC-FCS30 product, which considers 29 fine-grind land cover classes in total.

(a) Dataset 1

(b) Dataset 2

Figure 6. Temporal distributions of images in the two SITS datasets.

3.2. Experimental Settings

The proposed SKNN-LB-DTW method is compared with Euclidean distance based
seeded classification (SKNN-EUC), Support Vector Machine (SVM) [63–65] and Decision
Tree (DT) [66–68]. Euclidean distance is the benchmark similarity measure for time series
because of its robustness and accuracy. SVM is a widely used classifier that is effective in
high dimensional spaces even with only a subset of training points in the decision function.
DT is able to learn multiple decision rules inferred from data features and performs well
even if its assumptions are violated to some extent.

In this paper, we focus only on non-deep learning methods due to the severe lack
of training samples in practice, and we choose these competing methods also because
they are relatively accurate even with limited training samples. For SKNN-EUC, we use
the same classification process as the proposed SKNN-LB-DTW method except for the
similarity measure. For DT, we employ the classification and regression trees (CART) [69,70]
algorithm.

Since SVM and DT cannot handle time series data directly, we apply SVM and DT
to SITS by flattening time series into one vector. For example, a time series of length 40
and 7 features (40, 7) can be flattened into a vector of size (40× 7, 1). All these classifiers
are implemented by the scikit-learn machine learning package in Python. To ensure a fair
competition, if any parameter is involved, we use the optimal one, and we use the same
random number generator for different methods.

3.3. Experimental Results

Figure 7 displays one example image and the classification map generated by the
proposed SKNN-LB-DTW method for each SITS datasets. We can assume the classification
maps represent the land cover of year 2015 because the datasets contain images from year
2013 to 2017, and year 2015 is the central year. We select the two images in Figure 7 because
they are the temporally nearest cloud-free images to year 2015, and thus they are more
probable to show the ground truth. An intuitive visual impression shows that spatial
details, such as boundaries and textures are well preserved. For a more detailed look,
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Figure 8 shows a comparison between our method and the competing methods in multiple
image grids with typical land cover types.

In addition, one representative image from the SITS and the reference land cover
product to choose seeds from are also illustrated for each grid. The location of these grids
are marked by red squares in Figure 7. We observe that water boundaries, fragmented im-
pervious surfaces, terrain changes, building and road shapes are more accurately captured
by the seeded classification method.

Figure 7. Example images and the classification maps generated by the proposed SKNN-LB-DTW
method. The date of the first image is 6 October, and the second is 26 March 2016. Red squares
locate the grids used in Figure 8 for visual comparisons, and yellow squares locate the grids used for
statistical evaluations with their ordinal numbers.

For a statistical evaluation of these methods, we chose four typical grids with different
landscapes from the two SITS datasets. The size of the grids is 600 × 600 pixels, and
the locations are marked by yellow squares in Figure 7. The first grid mainly consists of
impervious surfaces, croplands and wetlands. The second grid mainly consists of forests,
grasslands and rivers. The third grid mainly consists of croplands, forests and grasslands.
The fourth grid mainly consists of herbaceous covers, impervious surfaces and grasslands.
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Figure 8. Comparison between the proposed SKNN-LB-DTW method and the competing methods
with multiple cases. We still observe the terrain and texture of land cover in the classification maps
due to the fine-grained classification system enabled by the rich information contained in SITS data.
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We selected these grids because they contain more temporal-varying land covers to
better demonstrate the performance of time series analysis methods. For instance, the first
grid is a large artificial wetland near cities, and wetland classification is challenging due to
frequent temporal changes. The croplands and inland waters largely contained in these
grids involve seasonal changes, and thus they are suitable targets to evaluate the capability
of SITS classification methods. Expanding cities reflect temporal changes caused by human
activities and they are also included in these selected grids. In addition, the balance of the
sizes of land cover classes are considered.

The performance of each method is evaluated with the three most widely used criteria:
the Overall Accuracy, Weighted F1 Score and Cohen Kappa Score. The overall accuracy is a
straightforward performance metric, which is defined as the fraction of correct predictions.
The F1 score is the harmonic mean of precision and recall of a classifier. The Cohen Kappa
score is a statistic that measures the agreement between two classification results. All of the
three criteria usually range in [0, 1], and a higher value indicates a better result.

Figure 9 shows the classification maps generated by different methods for the first
grid, together with the corresponding validation samples and a reference image from the
SITS. As the temporal range of the SITS is from year 2013 to 2017, we presume the date of
the results is the central year 2015. Validation samples are selected manually with the help
of very high resolution Google Earth images in 2015, and the proportion of classes is also
considered. From Figure 9, we observe that the rainfed cropland and herbaceous cover
(yellow) are well recognized by all the four methods.

(a) DT (b) SVM (c) Raw Image

(d) SKNN-EUC (e) SKNN-LB-DTW (f) Validation Samples

Figure 9. Comparison of classification maps of the first grid with the corresponding validation
samples and a reference image.
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However, the boundary of impervious surfaces (brown red) is not well captured by
DT. SVM misclassifies a portion of irrigated cropland (light blue) and wetlands (cyan green)
into water (blue). The two seeded classification methods, SKNN-EUC and SKNN-LB-
DTW, basically capture most of the land cover classes well. Compared with SKNN-EUC,
SKNN-LB-DTW maintains neater boundaries and more complete shapes of some water
body, wetland and irrigated cropland patches, which are difficult land cover classes to
distinguish.

Table 1 shows the statistical comparison of the four methods for the first grid. SKNN-
LB-DTW consistently achieves the best results in terms of the three criteria with margins
of 3.8%, 4.1% and 4.4% compared to the second best result for each respective criterion.
The statistical evaluation in Table 1 coincides with the visual impression in Figure 9. We
note that two seeding schemes, local seeding and global seeding, are also compared in
Table 1. Recall that the full-size satellite images have to be subdivided into multiple grids
for hardware reasons, and the succeeding classification procedure is executed by each grid.

Local seeding indicates that we select seeds from the current grid, which usually
results in less but more-relevant seeds. In contrast, global seeding indicates that we select
seeds from the entire image, which results in more but less-relevant seeds. Statistical
results show that local seeding always leads to higher accuracies by large margins, and it
demonstrates that the quality of seeds plays a more important role than the quantity of
seeds in our method.

Table 1. Statistical comparison of the classification performance for the first grid.

Method DT SVM SKNN-EUC SKNN-LB-DTW

Overall Accuracy Local Seeding 0.582 0.760 0.844 0.882
Global Seeding 0.433 0.667 0.623 0.605

Weighted F1 Score Local Seeding 0.580 0.747 0.839 0.880
Global Seeding 0.433 0.662 0.606 0.588

Cohen Kappa Score Local Seeding 0.498 0.708 0.810 0.854
Global Seeding 0.316 0.596 0.545 0.523

Elapsed Time (seconds) Local Seeding 0.453 18.469 11.172 243.641
Global Seeding 1.306 203.256 28.154 1282.277

Similarly with Figure 9, Figure 10 shows the classification maps, validation samples
and a reference image of the second grid. We observe that SVM fails to recognize different
types of forests (green and darker green) in a large portion. Wetlands (cyan green) close to
the river are misclassified as forests (dark green) by DT. Furthermore, a part of impervious
surfaces (brown red) are confused with sparse vegetation (beige) by DT.

SKNN-EUC and SKNN-LB-DTW capture most of the land cover classes accurately,
while they still have many differences in detailed. Table 2 shows the statistical comparison
of the four methods for the second grid. SKNN-LB-DTW again achieves the best results in
terms of the three criteria with margins of 2.6%, 3.4% and 3.3% compared to the second best
result for each respective criterion. In addition, local seeding consistently leads to higher
accuracies than global seeding by large margins, as in the first grid.
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Table 2. Statistical comparison of the classification performance for the second grid.

Method DT SVM SKNN-EUC SKNN-LB-DTW

Overall Accuracy Local Seeding 0.720 0.764 0.844 0.870
Global Seeding 0.646 0.770 0.705 0.690

Weighted F1 Score Local Seeding 0.702 0.729 0.831 0.865
Global Seeding 0.627 0.732 0.667 0.656

Cohen Kappa Score Local Seeding 0.636 0.686 0.798 0.831
Global Seeding 0.536 0.698 0.612 0.592

Elapsed Time (seconds) Local Seeding 0.500 21.719 11.422 174.218
Global Seeding 1.418 210.292 31.062 1124.103

(a) DT (b) SVM (c) Raw Image

(d) SKNN-EUC (e) SKNN-LB-DTW (f) Validation Samples

Figure 10. Comparison of classification maps of the second grid with the corresponding validation
samples and a reference image.

Figure 11 shows the classification maps, validation samples and a reference image of
the third grid. We observe that DT confuses sparse vegetation (beige), grasslands (orange)
and herbaceous covers (yellow). SVM fails to capture most of the sparse vegetation (beige)
and wetlands (cyan green). SKNN-EUC and SKNN-LB-DTW precisely recognize the
majority of these land cover classes except that the area of wetlands (cyan green) in the
upper right is over-expanded by SKNN-EUC.
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(a) DT (b) SVM (c) Raw Image

(d) SKNN-EUC (e) SKNN-LB-DTW (f) Validation Samples

Figure 11. Comparison of classification maps of the third grid with the corresponding validation
samples and a reference image.

Table 3 shows the statistical comparison of the four methods for the third grid. SKNN-
LB-DTW achieves the best results in terms of the three criteria with margins of 3.4%, 4.0%
and 4.0% compared to the second best result for each respective criterion. For the two
seeding schemes, the local seeding still leads to higher accuracies by large margins.

Table 3. Statistical comparison of classification performance for the third grid.

Method DT SVM SKNN-EUC SKNN-LB-DTW

Overall Accuracy Local Seeding 0.714 0.736 0.828 0.862
Global Seeding 0.645 0.693 0.686 0.681

Weighted F1 Score Local Seeding 0.708 0.663 0.817 0.857
Global Seeding 0.626 0.624 0.630 0.636

Cohen Kappa Score Local Seeding 0.670 0.687 0.800 0.840
Global Seeding 0.584 0.636 0.631 0.625

Elapsed Time (seconds) Local Seeding 0.547 22.437 13.188 218.672
Global Seeding 1.317 203.602 30.944 1197.428
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Figure 12 shows the classification maps, validation samples and a reference image
of the fourth grid. We observe that DT confuses a portion of impervious surfaces (brown
red) with bare areas (light beige). Some water bodies (blue) in the upper left corner
are also misclassified as irrigated croplands (light blue) by DT. SVM misclassifies most
irrigated croplands (light blue) as wetlands (cyan green). SKNN-EUC fails to capture some
continuous impervious surfaces (brown red) like roads.

(a) DT (b) SVM (c) Raw Image

(d) SKNN-EUC (e) SKNN-LB-DTW (f) Validation Samples

Figure 12. Comparison of classification maps of the fourth grid with the corresponding validation
samples and a reference image.

Table 4 shows the statistical comparison of the four methods for the fourth grid. SKNN-
LB-DTW achieves the best results in terms of the three criteria with margins of 6.2%, 6.1%
and 7.0% compared to the second best result for each respective criterion. For the two
seeding schemes, the local seeding again leads to higher accuracies with large margins
compared to the global seeding.

The elapsed times of these methods in different grids are also shown in the four tables
above. There is a tradeoff between accuracy and efficiency. SKNN-LB-DTW achieves the
highest accuracy with considerable times.
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Table 4. Statistical comparison of the classification performance for the fourth grid.

Method DT SVM SKNN-EUC SKNN-LB-DTW

Overall Accuracy Local Seeding 0.618 0.572 0.794 0.856
Global Seeding 0.520 0.618 0.656 0.655

Weighted F1 Score Local Seeding 0.621 0.519 0.798 0.859
Global Seeding 0.505 0.550 0.626 0.627

Cohen Kappa Score Local Seeding 0.560 0.499 0.762 0.832
Global Seeding 0.438 0.548 0.595 0.594

Elapsed Time (seconds) Local Seeding 0.453 21.813 12.422 210.219
Global Seeding 1.432 208.398 28.399 1068.571

3.4. Parameter Analysis

The proposed SKNN-LB-DTW method has two parameters. The first is the radius r of
the Sakoe–Chiba band of DTW, and the second is the number of nearest neighbors K for
the classifier. The SKNN-EUC method also has the K parameter due to the same classifier.
The radius r decides the range of temporal neighborhood to be considered by DTW, and if
two elements of different time series are temporally too far away, the connection between
them tends to be weak. In this work, we fix the value of r at 3 considering the temporal
resolution (16 days) of Landsat 8 imagery, and it indicates a time window of at least
3× 2× 16 = 96 days to accommodate most of the possible time distortions. As for images
with higher temporal resolution, the value of r can be larger accordingly.

The value of K is decided with the help of experiments. Tables 5–8 compare the
classification performance of different K values in SKNN-EUC and SKNN-LB-DTW for the
four SITS grids, respectively. The candidates are [3, 5, 7, 9] and we observe a trend that as K
becomes too large the performance will decrease, and thus other larger candidates become
unnecessary.

Tables 5 and 8 show that, for the first and fourth grids, the optimal K for both SKNN-
EUC and SKNN-LB-DTW is 3. Tables 6 and 7 show that, for the second and third grids, the
optimal K for SKNN-EUC is 5, and the optimal K for SKNN-LB-DTW is also 3. In k-nearest
neighbor classification, K is the number of labeled samples required by the plurality vote to
decide the class label of each input sample, and in this paper, seeds are the labeled samples
provided for the classifier. Thus, a smaller K value indicates that fewer seeds, namely fewer
labeled samples per class, are required. The results shown in Tables 5–8 demonstrate that
only a few seeds are required, and it coincides with our aim to weaken the influence of
training samples and let the data itself be the decisive factor. Given the above observation,
in practice we can set K to 3 for general datasets and 5 for very large datasets.

Table 5. Comparison of different K values for the first SITS grid.

Similarity Measure EUC LB-DTW
K = 3 K = 5 K = 7 K = 9 K = 3 K = 5 K = 7 K = 9

Overall Accuracy 0.844 0.844 0.830 0.816 0.882 0.868 0.839 0.828
Weighted F1 Score 0.839 0.836 0.816 0.801 0.880 0.863 0.830 0.819
Cohen Kappa Score 0.810 0.808 0.791 0.775 0.854 0.839 0.803 0.790

Table 6. Comparison of different K values for the second SITS grid.

Similarity Measure EUC LB-DTW
K = 3 K = 5 K = 7 K = 9 K = 3 K = 5 K = 7 K = 9

Overall Accuracy 0.840 0.844 0.791 0.789 0.870 0.855 0.800 0.802
Weighted F1 Score 0.827 0.831 0.776 0.769 0.865 0.845 0.785 0.788
Cohen Kappa Score 0.791 0.798 0.726 0.723 0.831 0.812 0.738 0.741
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Table 7. Comparison of different K values for the third SITS grid.

Similarity Measure EUC LB-DTW
K = 3 K = 5 K = 7 K = 9 K = 3 K = 5 K = 7 K = 9

Overall Accuracy 0.816 0.828 0.816 0.827 0.862 0.852 0.831 0.836
Weighted F1 Score 0.804 0.817 0.807 0.816 0.857 0.844 0.822 0.824
Cohen Kappa Score 0.786 0.800 0.785 0.798 0.840 0.829 0.804 0.809

Table 8. Comparison of different K values for the fourth SITS grid.

Similarity Measure EUC LB-DTW
K = 3 K = 5 K = 7 K = 9 K = 3 K = 5 K = 7 K = 9

Overall Accuracy 0.794 0.783 0.781 0.754 0.856 0.837 0.824 0.796
Weighted F1 Score 0.798 0.780 0.780 0.747 0.859 0.832 0.817 0.779
Cohen Kappa Score 0.762 0.748 0.746 0.712 0.832 0.809 0.794 0.760

3.5. Computational Time

One motivation of using lower-bounded DTW is to improve the efficiency of raw DTW,
which is insufficient in current state especially for large images. To demonstrate the effect of
using LB-DTW, Figure 13a,b illustrates the computational times of each method, including
the raw DTW on the two SITS datasets. After subdivision, the boundary and corner grids
are not full of pixels, and thus we keep only the results of full grids in the two figures to
avoid irrelevant rise and fall that interrupt the comparison of computational times.

(a) Dataset 1

(b) Dataset 2

Figure 13. Computational times of each method on all full grids of the two datasets.

From Figure 13a,b, we observe that DT, EUC and SVM cost much less time than
DTW-based methods, while LB-DTW costs approximately half of the time than raw DTW.
The result shows that LB-DTW successfully accelerates DTW, and LB-DTW is more feasible
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for larger scale tasks. In scenarios where computational time becomes the bottleneck,
SKNN-EUC can be a substitution for SKNN-LB-DTW.

4. Discussion
4.1. Contributions of Lower Bounds

The proposed SKNN-LB-DTW employs the cascading of two lower bounds, LB_Kim
and LB_Keogh, to prune off unpromising candidates and avoid the slow calculation of DTW.
The percentage of candidates that are pruned by LB_Kim or LB_Keogh, or trigger the final
calculation of DTW decides the efficiency of the classification procedure and reflects the
capability of lower bounds. The percentage varies largely with datasets from different
fields. Figure 14a,b shows the percentages in each grid of the two SITS datasets. The
x-axis indicates the indices of grids, and the y-axis indicates the percentages of candidates
incrementally. We observe that, for SITS data, the simple LB_Kim can prune about 35%
candidates on average and the LB_Keogh can prune about 20% candidates, which explains
why LB-DTW can save approximately half of the time than raw DTW and proves the utility
of LB-DTW intuitively.

(a) Dataset 1

(b) Dataset 2

Figure 14. Percentages of candidates that are pruned by LB_Kim or LB_Keogh, or trigger the final
calculation of DTW in each grid of the two SITS datasets.
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4.2. Limitations of SKNN-LB-DTW

Despite the advantage on accuracy, the computational efficiency of SKNN-LB-DTW
still has a large room for improvement. Even with multiple lower bounds, a portion
of DTW calculation is always inevitable and thus SKNN-LB-DTW still has a quadratic
computational complexity. Land cover classification usually involves a large spatial range
such that the computational speed has to be considered. Currently most lower bounds of
DTW are designed for general time series rather than the STIS data. The designing of some
dedicated lower bounds that targets at the features of SITS might be a promising research
direction to further improve both the accuracy and efficiency of DTW-based methods. In
addition, some fast approximations of DTW for SITS datasets are also of great potential.

Another issue of SKNN-LB-DTW is that we select seeds and inherit the classification
system from existing land cover products. If a different classification system is required,
additional steps for the transformation of classification systems should be inserted before
the selection of seeds.

5. Conclusions

In this paper, we proposed SKNN-LB-DTW, a seeded classification method for satellite
image time series (SITS) data that achieved a relatively high accuracy with only a few
labeled samples. Since multiple global land cover products have been published, we
used morphological erosion and a statistical isolation forest algorithm to select a limited
number of highest-confidence seeds from existing products, and then these seeds served
as the training set to guide the k-nearest neighbor classifier. A combination of cascading
lower bounds and early abandoning of Dynamic Time Warping (DTW) was adopted as the
similarity measure for SITS during classification.

The similarity measure preserves the accuracy of DTW and improves the efficiency
compared with raw DTW, which enables SKNN-LB-DTW to cope with larger scale tasks.
Since the lack of labeled SITS samples is a common situation, the SKNN-LB-DTW can
serve as a usable tool to release the potential of the vast unlabeled SITS data and achieve
fine-grained classification of the land cover in large scale. Experimental results on two
Landsat 8 SITS datasets demonstrated the accuracy of the proposed method compared with
other widely used classification methods. However, although lower-bounded DTW is faster
than raw DTW, it is still computationally expensive compared with the Euclidean distance.
Future work can focus on SITS-dedicated lower bounds of DTW to further improve the
accuracy or faster approximations of DTW to improve the efficiency.
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