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Abstract: Reflectance-based vegetation indices can be valuable for assessing crop nitrogen (N) status
and predicting grain yield. While proximal sensors have been widely studied in agriculture, there
is increasing interest in utilizing aerial sensors. Given that few studies have compared aerial and
proximal sensors, the objective of this study was to quantitatively compare the sensitivity of aerially
sensed Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red-Edge Index
(NDRE) and proximally sensed NDVI for assessing total N uptake at panicle initiation (PI-NUP)
and predicting grain yield in rice. Nitrogen response trials were established over a 3-year period
(10 site-years) at various locations throughout the Sacramento Valley rice growing region of California.
At PI, a multispectral unmanned aircraft system (UAS) was used to measure NDVIUAS and NDREUAS

(average ground sampling distance: 3.7 cm pixel−1), and a proximal GreenSeeker (GS) sensor was
used to record NDVIGS. To enable direct comparisons across the different indices on an equivalent
numeric scale, each index was normalized by calculating the Sufficiency-Index (SI) relative to a non-
N-limiting plot. Kernel density distributions indicated that NDVIUAS had a narrower range of values
that were poorly differentiated compared to NDVIGS and NDREUAS. The critical PI-NUP where
yields did not increase with higher PI-NUP averaged 109 kg N ha−1 (±4 kg N ha−1). The relationship
between SI and PI-NUP for the NDVIUAS saturated lower than this critical PI-NUP (96 kg N ha−1),
whereas NDVIGS and NDREUAS saturated at 111 and 130 kg N ha−1, respectively. This indicates that
NDVIUAS was less suitable for making N management decisions at this crop stage than NDVIGS and
NDREUAS. Linear mixed effects models were developed to evaluate how well each SI measured at PI
was able to predict grain yield. The NDVIUAS was least sensitive to variation in yields as reflected by
having the highest slope (2.4 Mg ha−1 per 0.1 SI). In contrast, the slopes for NDVIGS and NDREUAS

were 0.9 and 1.1 Mg ha−1 per 0.1 SI, respectively, indicating greater sensitivity to yields. Altogether,
these results indicate that the ability of vegetation indices to inform crop management decisions
depends on the index and the measurement platform used. Both NDVIGS and NDREUAS produced
measurements sensitive enough to inform N fertilizer management in this system, whereas NDVIUAS

was more limited.

Keywords: rice; nitrogen; precision management; grain yield; panicle initiation; canopy reflectance;
Sufficiency-Index; NDVI; NDRE; UAS; GreenSeeker

1. Introduction

Remote sensing has emerged as a powerful technology to inform sustainable agro-
nomic management by providing an accurate and timely assessment of the status of
developing crops [1]. Agricultural remote sensing is based on the collection of crop canopy
reflectance spectra at specific wavelengths in the electromagnetic spectrum, usually cor-
responding to regions where the canopy experiences strong absorption or reflectance of
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incoming radiation [2]. A common method to interpret canopy reflectance data is to use
the wavelengths to develop a vegetation index (VI), which is a mathematical combination
of wavelengths related to specific biophysical characteristics of the plant [3]. Over the
past decade, sensors have developed rapidly with higher spatial and spectral resolution.
Similarly, better platforms are available that can carry such sensors and easily maneuver
over large areas, which has led to a significant broadening of remote sensing applications
in many fields including agriculture [4]. Some of the current applications of remotely
sensed data in agriculture include biomass estimation, assessing crop nutritional status,
detecting plant stress, identifying disease incidence, scouting for weeds, and predicting
potential yield.

Some important applications of remote sensing in rice (Oryza sativa L.) are the assess-
ment of crop nitrogen (N) status and prediction of grain yield. Nitrogen is an essential
element for plant growth, and an adequate supply of N is fundamental to maximizing rice
grain yield and quality [5]. However, overapplication of N fertilizer in rice and other crops
has been associated with reduced yields and lodging [6], as well as harmful impacts on the
environment through nitrate leaching [7], greenhouse gas emissions [8], or eutrophication
of downstream aquifers [9]. The most accurate method to assess plant N status is by plant
tissue analysis, but this technique is time consuming and lab results are often received past
the time when decisions need to be made [10]. Alternative methods to assess N status in
rice include using the Soil Plant Analysis Development (SPAD) chlorophyll meter [11] or
the Leaf Color Chart [12]. While these tools are useful, they are limited by their single leaf
sampling method, thus making it difficult to utilize these tools to accurately assess crop N
status over large areas [10,13]. The development of remote sensing techniques provides a
promising alternative to address this issue.

Remote sensing data can be collected using different platforms, including proximal
handheld sensors or aerial sensors mounted to airplanes, satellites, or unmanned aerial vehi-
cles (UAV; sensor mounted to a UAV is referred to as an unmanned aircraft system, UAS) [4].
Over the past two decades, most agricultural remote sensing research has focused on the
use of proximal sensors, especially those that utilize an active light source [13]. However,
with the recent expansion of compact aerial sensors that can be easily mounted to a UAV,
an increasing number of studies have shifted toward utilizing UAS-based platforms [14].
Relative to proximal and UAS-based remote sensing, airplane and satellite-based mea-
surements are less frequently used in agricultural applications due to the high complexity
and costs of operating an airplane and insufficient spatial and temporal resolution often
experienced with satellite imagery [15]. However, despite being more convenient than
airplane and satellite-based remote sensing, both proximal and UAS-based remote sensing
also come with their own unique advantages and disadvantages.

Among proximal sensors, the GreenSeeker (GS) HandHeld (Trimble Inc., Sunnyvale,
CA, USA) has been one of the most commonly used in agricultural research. It is an active
canopy sensor, which permits the collection of reflectance data at any time of day, regardless
of ambient light conditions or cloud cover [13]. The GS measures canopy reflectance at
specific bands in the red (670 nm) and near infrared (780 nm) spectral regions and displays
the Normalized Difference Vegetation Index (NDVI), which is a useful measure of plant
productivity and is among the most commonly measured indices in agricultural remote
sensing applications [16,17]. Studies have tested the utility of GS NDVI (NDVIGS) as an
N management tool in rice systems and reported strong correlations between NDVIGS
and aboveground biomass, total N uptake (NUP), and grain yields [18–20]. Others have
reported similar results for wheat (Triticum aestivum) [21] and maize (Zea mays) [22,23].
However, despite showing good utility in these crops, a key disadvantage of the GS is that
it only measures NDVI, which loses sensitivity (i.e., saturates) once crop biomass exceeds a
certain threshold [17].

When collecting canopy reflectance data aerially, typically a passive multispectral
sensor is mounted to a UAV and flown in a grid-style pattern over the field or experimental
area. This facilitates the assessment of larger areas and enables the identification of spatial
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variability that is often present within a field [24–26]. An example of one such multispectral
sensor frequently used in agricultural applications is the MicaSense Red-Edge M (MicaS-
ense, Inc., Seattle, WA, USA). This is a passive sensor that collects canopy reflectance across
five spectral bands (blue, green, red, red-edge, and near infrared) [27]. The additional
bands included in multispectral sensors such as the MicaSense sensor, provide an important
advantage over proximal sensors like the GS in that they permit the calculation of a range
of indices, including red-edge-based indices, among which the Normalized Difference Red-
Edge Index (NDRE) is the most common [28]. The NDRE is based on a similar calculation
to the NDVI, but incorporates a red-edge band in place of red, which allows the NDRE to
be more resistant to the saturation problem inherent with NDVI [29,30]. Additionally, data
collected with aerial multispectral sensors permit the use of more complex non-index-based
classification techniques, such as spectral mixture models, texture analysis, or machine
learning algorithms [31–33], which can also be used in combination with VIs to improve
crop N status assessments by reducing saturation [34,35]. However, aerial-based remote
sensing also has its own limitations, including the narrow timeframe around solar noon
during which data are best collected, the high cost of UAS platforms, and the technical
issues that UAS platforms can experience mid-air, such as loss of power or an engine
breakdown [36,37].

Among studies that only used aerial sensors to assess N status in rice, Dunn et al.
(2016) [28] reported strong correlations between NDVI and NDRE and NUP, but found
that NDRE saturated less than NDVI. Wang et al. (2021) [34] reported stronger correla-
tions between NDRE and Red-Edge Chlorophyll Index when estimating N-index (ratio
of N concentration between fertilized and non-fertilized plants), relative to NDVI, and
Zheng et al. (2019) [38] reported that Red-Edge Chlorophyll Index correlated better with
rice aboveground biomass than NDVI. In similar experiments on other crops, Walsh et al.
(2018) [39] found that the red-edge-based indices exhibited a higher correlation with wheat
N concentration than red-based indices. Becker et al. (2020) [40] did not evaluate NDVI but
reported a stronger correlation between NDRE and grain yield than Green Leaf Index and
Blue Reflectance Index in maize.

Although numerous studies have demonstrated the ability of NDVI and NDRE to
assess crop N status and predict yields using either a proximal sensor or an aerial sensor,
few studies have directly compared proximal and aerial sensors side-by-side. Among the
few studies that have, Zheng et al. (2018) [41] reported that proximal NDVI (measured
using a passive hyperspectral sensor) was better correlated with rice N concentration than
aerial NDVI. Sumner et al. (2021) [42] measured NDVI and NDRE in maize and found
that proximal NDVI and aerial NDRE were both more sensitive to changes in N fertilizer
rate than aerial NDVI. In wheat, Hassan et al. (2018) [43] and Duan et al. (2017) [44] both
found proximal and aerial NDVI measurements to be well-correlated to each other across
a wide range of growth stages, though Duan et al. (2017) [44] reported that aerial NDVI
measurements were confined to a narrower range than proximal NDVI.

Given the interest and promise of canopy reflectance technology along with the lack
of studies comparing platforms and sensors, the objective of this study was to compare the
sensitivity of aerially sensed NDVI and NDRE to proximally sensed NDVI for assessing N
status and predicting grain yield of rice at panicle initiation (PI) growth stage. Specifically,
the level at which each index saturated relative to total N uptake at PI (PI-NUP) was
quantified and examined relative to important thresholds for fertilizer N management in
this system. Additionally, the relative sensitivity of each index to predict grain yield at
PI was quantified as the slope of the resulting linear relationship. This was accomplished
through field studies over a 3-year period at 10 locations throughout the Sacramento Valley
rice growing region of California (CA), USA.
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2. Materials and Methods
2.1. Site Description

Ten replicated N response trials (nine on-farm; one on-station) were established during
the 2017 to 2019 rice growing seasons (referred to by proximity to nearest town or station
and study year) throughout the Sacramento Valley rice growing region of CA (Figure 1,
Table 1). The on-station site was established at the CA Rice Experiment Station (RES) near
Biggs. The Sacramento Valley has a Mediterranean climate characterized by warm and dry
conditions during the growing season (May to October). The average air temperature and
precipitation during the three years of this study were 23.2 ◦C and 5.9 mm, respectively [45].
Pre-season soil samples were collected from the plow layer (approximately 0–15 cm) after
tillage and prior to fertilizer application at each site and analyzed for pH, particle size,
organic carbon, and total N. The soil properties at each site were typical for rice soils in this
region (Table 1).
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Figure 1. A map of N response trial sites established during the 2017 to 2019 growing seasons
throughout the Sacramento Valley rice growing area of California, USA.

2.2. Experimental Design

Each N response trial was arranged as a randomized complete block design with four
replicates. Treatments were pre-plant N fertilizer rates. In 2017, pre-plant N fertilizer was
applied as urea at rates ranging from 0 to 225 kg N ha−1, and in 2018 and 2019 pre-plant N
fertilizer was applied as aqua-ammonia at rates ranging from 0 to 235 kg N ha−1. Potassium
(K) and phosphorus (P) fertilizers were broadcast across all plots at rates of 50 kg K2O ha−1

as sulfate of potash and 45 kg P2O5 ha−1 as triple superphosphate to ensure these nutrients
did not limit crop growth. The rice crop was established using water-seeding at all sites,
which is the common practice in CA [46]. In this case, the fields are fertilized following
seedbed preparation, flooded, and then soaked seed is broadcast onto the field by airplane.
The medium grain rice variety M-206, which is commonly grown in CA, was planted at all
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sites. Herbicide and irrigation management followed common grower practice and was
either managed by the growers (on-farm sites) or researchers (on-station site). The fields
remained continuously flooded until three weeks before harvest when they were drained
to prepare for harvest.

Table 1. Soil descriptions and selected properties of each N response trial site-year located throughout
the Sacramento Valley, California.

Site-Year Soil Series Taxonomic
Classification

Texture (%) Organic
Carbon (%)

Total
Nitrogen (%)

pH
Sand Silt Clay

Nicolaus-17 Capay Fine, smectitic, thermic
Typic Haploxererts 19 36 45 1.51 0.12 5.5

Williams-17 Willows Fine, smectitic, thermic
Sodic Endoaquerts 21 39 40 1.75 0.15 5.0

Arbuckle-18 Clear Lake Fine, smectitic, thermic
Xeric Endoaquerts 30 21 49 1.95 0.16 6.3

Biggs-18 Eastbiggs
Fine, mixed, active,
thermic Abruptic
Durixeralfs

50 30 20 1.60 0.12 4.9

Marysville-18 San Joaquin
Fine, mixed, active,
thermic Abruptic
Durixeralfs

39 39 22 1.64 0.13 4.6

Nicolaus-18 Capay Fine, smectitic, thermic
Typic Haploxererts 22 36 42 1.67 0.14 4.8

Arbuckle-19 Clear Lake Fine, smectitic, thermic
Xeric Endoaquerts 8 38 55 1.99 0.16 6.3

Davis-19 Sycamore
Fine-silty, mixed, super
active, nonacid, thermic
Mollic Endoaquepts

9 38 53 1.98 0.18 6.3

Marysville-19 San Joaquin
Fine, mixed, active,
thermic Abruptic
Durixeralfs

35 41 24 1.54 0.12 4.7

RES-19 Esquon-
Neerdobe

Fine, smectitic, thermic
Xeric Epiaquerts 30 26 44 1.38 0.11 5.3

2.3. Plant Sampling and Analysis

Biomass was collected at PI after canopy reflectance measurements (see below) by
pulling all rice plants within a 0.5 m2 quadrat from every plot. Within 24 h of collecting the
samples, the biomass was washed to remove any residual soil, the roots were removed, and
the aboveground shoots were oven dried to constant weight at 60 ◦C. Samples were then
ground to pass a 4-mm sieve and ball-milled. Plant material was analyzed for total N using
an elemental analyzer interfaced to a continuous flow isotope ratio mass spectrometer
(EA-IRMS) [47]. From these samples, PI-NUP was quantified as the product of aboveground
biomass and N concentration. Rehman et al. (2019) [19] previously reported that NDVIGS
best assessed PI rice N status when quantified as PI-NUP, rather than plant N concentration
or aboveground biomass. Thus, PI-NUP was selected as the N status parameter for the basis
of comparison across the indices in this study.

Grain yield was determined at physiological maturity by harvesting all plants from a
1.0 m2 quadrat. Grains were removed from panicles, cleaned using a seed blower, dried to
constant moisture at 60 ◦C, and then weighed. Grain yields are reported at 14% moisture.

2.4. Measuring Canopy Reflectance
2.4.1. Sensors Used for Measuring NDVI and NDRE

The NDVI and NDRE were measured for each plot at PI using a proximal and/or aerial
sensor (Table 2). The proximal sensor used in this study was the GreenSeeker (GS) handheld
crop sensor (Trimble Inc., Sunnyvale, CA, USA). The GS is an active sensor and measures
canopy reflectance at two specific spectral wavelengths (red and near infrared) and then
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automatically calculates and displays the NDVI. The GS NDVI (NDVIGS) measurements
were taken while walking steadily along the edges of each plot and holding the sensor in
the nadir position at a constant height of 1.0 m above the crop canopy and extended 90 cm
from the edge of the plot. For each plot, the final NDVIGS value represented the average
of four NDVIGS readings. Canopy closure was achieved by PI in all plots that received N
fertilizer, thus the effect of background water or soil on canopy reflectance measurements
was considered negligible in those plots.

Table 2. Summary of the proximal and aerial sensors used to measure the Normalized Difference
Vegetative Index (NDVI) and the Normalized Difference Red Edge (NDRE) at the panicle initiation
(PI) rice growth stage.

Vegetation Index Sensor Type Year Sensor Light
Source

Spectral
Band

Central
Wavelength (nm)

Bandwidth †

(nm) Formula Reference

NDVI

Proximal 2017–2019 GreenSeeker Active
Red 670 10

(Near IR−Red)
(Near IR+Red) [48]

Near
Infrared 780 10

Aerial

2017 SlantRange 3P Passive
Red 650 40
Near

Infrared 850 100

2018 & 2019
MicaSense

RedEdge-M Passive
Red 668 10
Near

Infrared 840 40

NDRE Aerial

2017 SlantRange 3P Passive
Red Edge 710 20

(Near IR−Red Edge)
(Near IR+Red Edge) [49]

Near
Infrared 850 100

2018 & 2019
MicaSense Red

Edge-M Passive
Red Edge 717 10

Near
Infrared 840 40

† full width at half maximum.

Two different aerial sensors were used in this study (Table 2). In 2017, canopy re-
flectance was measured using a SlantRange 3P (SlantRange Inc., San Diego, CA, USA)
passive multispectral sensor. The autonomous flight mission was loaded onto the UAS
using the DroneDeploy mobile app and images were captured at a height of 117 m above
ground level (AGL) with 55% forward and side overlap. SlantView software (version 2.16.0)
was used to process the multispectral imagery into a georeferenced orthomosaic with an
average ground sampling distance of 4.8 cm pixel−1. The SlantView software was also used
to extract plot level canopy reflectance values for each of the spectral bands.

In 2018 and 2019, a MicaSense Red-Edge M (MicaSense Inc., Seattle, WA, USA) passive
multispectral sensor was used to capture aerial imagery. The mobile app Pix4Dcapture was
used to upload the flight mission onto the UAS, and images were captured at a height of
50 m AGL with 85% forward and side overlap. The software Pix4DMapper (version 4.2.27)
was used to process the imagery into a georeferenced orthomosaic with an average ground
sampling distance of 3.5 cm pixel−1. Plot level reflectance values were extracted from the
orthomosaic image using the recommended method of Haghighattalab et al. (2016) [50] as
modified by Nelsen and Lundy (2021) [51].

All canopy reflectance measurements (proximal and aerial) occurred within 1 h of
solar noon. In all years, the aerial sensor was mounted to a Matrice 100 UAV (DJI, Shenzhen,
China). Before beginning each flight, images of a calibrated reflectance panel were taken
to adjust for ambient light conditions. There was also an upwelling light sensor onboard
the UAS that calibrated for incoming irradiance. Plot-level canopy reflectance values were
converted into NDVI (NDVIUAS) and NDRE (NDREUAS) using the formulas provided in
Table 2.

2.4.2. Normalizing the Raw Vegetation Indices Using Sufficiency-Index

In order to directly compare the ability of each VI to quantify PI-NUP and grain yield,
the raw reflectance values from the three VIs were normalized by calculating the Sufficiency-
Index (SI). The SI permits direct comparisons across VIs and measurement platforms on an
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equivalent numerical scale so that comparisons of statistical measures (e.g., range, slope)
are not confounded by inconsistent units among the VIs being compared. In addition, the
SI produces a site-relative value such that VI values measured across multiple seasons with
non-identical tools are normalized across the experiment. The SI is calculated by dividing
the VI of the area of interest by the VI of an area where N was non-limiting (measured
at the same location on the same day) [52]. The resulting SI values will typically range
between 0 and 1, with higher values indicating a more N-sufficient crop and thus less likely
to respond to additional N inputs [53–55]. In this experiment, the SI was calculated for each
site by dividing the raw VI of each experimental unit by the mean VI of the experimental
unit that received the highest pre-plant N application rate (using the mean VI of the highest
N rate resulted in some experimental units to have a SI greater than 1.00) [56,57].

2.5. Data Analysis

Data analysis was performed using the statistical program R [58]. The degree of
saturation for each index (raw VI and SI) was quantified using univariate kernel density
distributions developed from the geom_density() function in the package ggplot2 [59]. For
all linear regression models developed in this study, graphical and numerical summaries
were examined to ensure the resulting models satisfied the assumptions of linear regression.
Simple linear (quadratic) regression models were developed to quantify the relationship
between pre-plant N rate and both PI-NUP and grain yield at each site-year using the
function lm() from the stats package [58].

Quadratic-plateau linear regression models were developed using the nls() function
from the stats package [58] (following the method outlined by Mangiafico (2016) [60])
to quantify the relationships between: PI-NUP and each SI; PI-NUP and relative grain
yield; pre-plant N rate and relative grain yield; and pre-plant N rate and each SI. For
models that quantified the relationship between yield and PI-NUP and N rate, the effect
of site-year was initially modeled as a random effect in a mixed, nonlinear model using
the nlme package [61], but convergence was not achieved. Thus, site-normalization was
accomplished by expressing absolute grain yield values relative to the site-year maximum
and models were fit using nls(). For each of the quadratic-plateau models, the resulting
model coefficients were used to identify the mean value and associated standard error
range along the x-axis where each model reached a plateau. The function nagelkerke() from
the rcompanion package [62] was used to calculate a pseudo coefficient of determination
(R2) for each quadratic-plateau model [63].

Linear mixed-effects regression models were developed to quantify the sensitivity of
each SI for predicting grain yield using the function lme() in the nlme package [61]. The
models contained a fixed-effect for SI and random-effects of site-year slope and intercept.
The response variable was grain yield. A pseudo R2 was calculated for each mixed-
effects model using the function r.squaredGLMM() in the MuMIn package [64], with the
conditional R2 representing the variability explained by the entire model (fixed and random
effects), the marginal R2 representing the variability explained only by the fixed-effects,
and the portion of variability explained by the random-effects represented as the difference
in conditional and marginal R2.

3. Results
3.1. PI Total N Uptake and Grain Yield

At all sites, PI-NUP was lowest in the 0N treatment and ranged from 14 (Arbuckle-18)
to 75 kg N ha−1 (Nicolaus-17) (Figure 2, left axis). At each site, PI-NUP increased with
increasing pre-plant N rate. However, the magnitude of increase varied considerably across
sites with maximum PI-NUP ranging from 94 (Davis-19) up to 209 kg N ha−1 (Nicolaus-17).
In most cases, PI-NUP did not plateau with increasing N rate but continued to increase
within the range of N rates used in this study.
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Figure 2. The relationship between pre-plant N rate and panicle initiation N uptake (PI-NUP) (left axis)
and grain yield (right axis) as described by quadratic linear regression models.

Similarly, at every site, grain yield was lowest in the 0N treatment, ranging from 3.1
(Arbuckle-18) up to 10.6 Mg ha−1 (Nicolaus-17) (Figure 2, right axis). Across all sites, yields
increased with increasing pre-plant N rate up to a maximum and either plateaued or de-
creased at the highest N rates (with the exception of Arbuckle-18). Maximum yields ranged
from 9.1 (RES-19) to 13.3 Mg ha−1 (Nicolaus-18). Based on the quadratic-plateau linear
regression model, across sites maximum yields were achieved with an average pre-plant N
rate of 183 kg N ha−1 (±18 kg N ha−1) (Figure S1). Using a similar model, maximum yields
were achieved across sites when PI-NUP was ≥109 kg N ha−1 (±4 kg N ha−1) (Figure 3).
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3.2. Canopy Reflectance Data

There were differences in the kernel density distributions among the three indices in
this study, both in terms of raw VI and SI (Figure 4). With respect to raw VI, NDVIUAS
exhibited the strongest saturation, as seen by the relatively high and narrow peak of
NDVIUAS VI observations centered around 0.90 (Figure 4a). The NDREUAS exhibited the
least amount of saturation as the peak of NDREUAS VI values was lower and broader than
the other two indices. The NDVIGS was more saturated than NDREUAS, as seen by the
higher and narrower peak of NDVIGS VI observations. However, the NDVIGS did detect
lower values and was thus spread over a greater range than NDREUAS.
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Similarly, with respect to SI, the NDVIUAS was the most saturated with 92% of the
observations being ≥0.85 and having the narrowest range (0.63 to 1.04) (Figure 4b). The
NDVIGS had a larger range of SI observations (0.20 to 1.13) than NDREUAS (0.49 to 1.10);
but both were similarly saturated as illustrated by the proportion of NDVIGS (73%) and
NDREUAS (74%) observations that were ≥0.85.

3.3. Relationship between N Rate and PI-NUP and Sufficiency-Index

To determine if the differences in saturation affected the ability of each index to
accurately quantify the N status of the crop, quadratic-plateau linear regression models
were developed to describe the relationship between PI-NUP and each SI (Figure 5). In
each case, SI increased with increasing PI-NUP up to a threshold where it reached a plateau.
The R2 values (0.75 to 0.82) were similar for the different indices; however, the NDVIUAS
was the least sensitive to changes in PI-NUP, as it plateaued (i.e., saturated) at the lowest
PI-NUP (96 kg N ha−1) and had the narrowest range of observations along the y-axis (0.63
to 0.99) prior to its point of saturation (Figure 5c). In contrast, the NDVIGS and NDREUAS
were more sensitive to changes in PI-NUP as illustrated by saturation at higher PI-NUP
values (111 and 130 kg N ha−1, respectively). In addition, they had broader ranges of
SI observations along the y-axis (0.20 to 0.97 and 0.49 to 0.97, respectively) prior to their
respective points of saturation (Figure 5a,b). Similarly, quadratic-plateau linear regression
models were developed to quantify the relationship between SI and pre-plant N rate and
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determine at what pre-plant N rates the different indices saturated. Each SI increased with
increasing pre-plant N rate until a plateau was reached (Figure 6). The NDVIUAS saturated
at the lowest N rate (166 ± 14 kg N ha−1), followed by NDVIGS (207 ± 14 kg N ha−1) and
NDREUAS (240 kg N ha−1 ± 15 kg N ha−1).
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3.4. Relationship between SI Measured at PI and Grain Yield

The sensitivity of each SI for predicting grain yield was quantified using the slope
of linear mixed-effects models where yield was the response variable and SI was the
independent variable. The greater (or steeper) the slope, the less sensitive the index is
in determining grain yield. The slope of NDVIUAS (2.4 Mg ha−1 per 0.1 SI) was more
than double than that for NDVIGS (0.9 Mg ha−1 per 0.1 SI) and NDREUAS (1.1 Mg ha−1

per 0.1 SI) (Figure 7). In addition, 87% of experimental units measured using NDVIUAS
had SI ≥ 0.90 compared to 62% and 66% for NDREUAS and NDVIGS, respectively. With
many more undifferentiated SI observations, the variability around the yield outcomes
for the NDVIUAS observations was greater as well. Specifically, the standard deviation
for site-relative grain yield was 10% for SI observations ≥0.90 measured via NDVIUAS,
compared to 6% and 7% for NDREUAS and NDVIGS, respectively (data not shown). This
indicates that for the same experimental unit, N status at PI was measured with greater
sensitivity via NDREUAS and NDVIGS than by NDVIUAS, and therefore yield differentiation
was less variable for the former two indices than for NDVIUAS.
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4. Discussion
4.1. Crop Response to N Fertilizer

Maximum grain yields ranged from 10.7 Mg ha−1 to 13.3 Mg ha−1 (Figure 2), which
is within 75% of the maximum yield potential for this region [65], suggesting that the
sites were not limited for other nutrients besides N and were not significantly affected by
diseases or pests. The RES-19 site had lower maximum yields (9.1 Mg ha−1), but this may
be due to planting in June, which was later than the other sites and later than the typical
planting time for rice in CA [46]. Grain yield plateaued in response to pre-plant N rate at
all but one site (Arbuckle-18), which confirms that the highest N rate was not N limited
and thus served as a valid non-N-limiting plot to calculate the SI.

The fertilizer N rate required to achieve maximum yields across sites ranged from
165 kg N ha−1 up to 201 kg N ha−1 and averaged 183 kg N ha−1 (Figure S1), which is
similar to the optimal N requirement reported by others for rice in CA [7,66].

Observed variability in N fertilizer response across sites in this study might be ex-
pected, given that trials were established over a 3-year period at varying locations with
differing soils, management practices, and micro-climates. Similarly, there were large
differences in the indigenous N supply of the soil as indicated by the wide range of PI-NUP
(14 to 75 kg N ha−1) and yields (3.1 to 10.6 Mg ha−1) in the 0N treatments across sites
(Figure 2). Such variation in indigenous N supply across rice fields is common, yet it is
difficult to predict and can have a large impact on optimal N fertilizer rates [67]. Across all
sites, maximum PI-NUP ranged from 94 kg N ha−1 to 209 kg N ha−1 (Figure 2, left axis).
Unlike yields, PI-NUP did not plateau at most sites, illustrating the ability of rice to take
up large and even luxury amounts of N by PI as has also been shown by others [68]. The
variability in indigenous N supply and N response seen in this study highlight the need to
develop tools (such as canopy reflectance measurements) that can determine crop N status
and help to optimize field- and year-specific N fertilizer management.

4.2. Index Saturation

Among the three indices evaluated in this study, NDVIUAS exhibited the greatest
degree of saturation, while the NDVIGS and NDREUAS were less saturated (Figure 4). This
was seen in both the raw VI (Figure 4a) and SI (Figure 4b) data. Saturation of red-based
two-band indices, such as NDVI, is a well-documented problem [17,69], and a growing
body of research has reported that red-edge-based indices, such as the NDRE, are less
affected by saturation and can provide a better estimation of crop N status than NDVI,
especially at higher levels of crop biomass [29,30,70]. Saturation of NDVI is attributed to
the crop reaching 100% canopy cover but crop biomass beneath the canopy continuing
to increase [17,71]. Once the crop reaches 100% canopy cover, near infrared reflectance
continues to rise, but red reflectance remains relatively constant due to strong absorption by
chlorophyll at the top of the canopy, thus resulting in a minimal change in the overall ratio
(i.e., the denominator will have a greater impact on the ratio than the numerator) [19,72].
Red-edge radiation can penetrate deeper into the crop canopy due to relatively lower
chlorophyll absorption, causing it to be more sensitive to chlorophyll content within the
entire canopy, especially at higher biomass levels [29,73]. Given this greater sensitivity to
total chlorophyll content within the canopy, red-edge-based indices are able to partially
overcome the saturation problem inherent to NDVI [74,75].

A difference in saturation was also observed between the two NDVI-based indices,
with the NDVIUAS saturating more than NDVIGS (Figure 4). Similarly, Duan et al. (2017) [44]
reported from a wheat trial that NDVIUAS was strongly correlated with NDVIGS, but the
NDVIUAS readings were offset by about 0.2 units higher and were more compressed. A
likely explanation for this difference could be that compared to the NDVIGS, which is
measured using an active sensor close to the canopy, the passive multispectral sensor used
to measure NDVIUAS cannot sample the small amount of background noise from a higher
altitude due to lower spatial resolution, which results in a higher NDVIUAS value with a
smaller range [44].
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Interestingly, NDVIGS and NDREUAS both exhibited a similar degree of saturation
(Figure 4). Given the lack of comparable studies, it is difficult to be certain what may
be the explanation for this result. A possible explanation could be that despite being a
red-based index, the closer proximity and active light of the NDVIGS allows it to overcome
saturation to such a degree that it exhibits a similar level of saturation as the red-edge-based
NDREUAS. It is also worth mentioning that NDVIGS had a larger range of observations
than NDREUAS. Given this, it could be argued that NDVIGS is a more sensitive index.
However, upon closer examination, the larger range of NDVIGS is attributable to relatively
few observations that were measured in the unfertilized N treatment at a single site. The
combination of the sparse stand at that site and the smaller sampling area of the NDVIGS
compared to NDREUAS may have magnified the noise-to-signal ratio in the NDVIGS, which
led to unusually low NDVIGS measurements [76]. Given that all other metrics of index
sensitivity are functionally equivalent or favor NDREUAS, this difference in range should
not be over-interpreted.

4.3. Practical Implications of Index Saturation
4.3.1. Approaches for Comparing Indices

A unique aspect of this study is the quantitative approach used to assess the sensitivity
of the indices. For example, each VI was normalized by calculating the SI, which allows for
the comparison across the different indices on an equivalent numeric scale [57]. Moreover,
the sensitivity of each index was assessed with respect to where each SI saturated and was
then related to relevant thresholds for N management within this system. This approach is
in contrast to most previous agronomic studies in which the utility of an index is based on
raw VI values and the R2 of the regressions [39,77,78]. If such an approach were applied to
this study, NDVIUAS would have been identified as the best index in the two cases examined,
given its higher R2 for PI-NUP (Figure 5) and yield (Figure 7). However, when the point of
saturation was quantified in relationship to where information was critical to making an
informed management decision (i.e., for a mid-season N status assessment), the NDVIUAS
performed the poorest. Similarly, the approach used for yield assessment quantified the
sensitivity of the index to predict grain yield based on the slope of the relationship, and
again the NDVIUAS was the least sensitive index. Therefore, more nuanced approaches are
required when comparing across indices to understand the practical value of these tools to
crop management.

4.3.2. Assessing Crop N Status and Predicting Grain Yield at PI

Assessing crop N status and predicting potential grain yield early in the season is of
interest to farmers and agricultural stakeholders for a number of reasons, including refining
N management, planning harvest, forecasting milling and storage needs, and directing mar-
keting strategies. Refining N management requires an understanding of crop N status and
the likelihood of the crop to respond to additional N inputs. In addition, this understanding
must be gained early enough in the growing season so that subsequent N management
decisions can still improve yields. Panicle initiation is an optimal and important stage for
assessing N status and predicting grain yield in rice for several reasons. For example, PI
marks the physiological shift from plant vegetative to reproductive growth [5], N appli-
cations later than PI are less efficiently utilized to affect yield outcomes [79], and in CA
rice systems, most (if not all) pre-plant N fertilizer has been taken up by this stage [80,81].
Additionally, PI is an optimal time to collect canopy reflectance data, as measurements
taken much earlier than PI can often experience a strong influence of background water
and soil [76], while measurements taken after PI typically saturate or are obscured by
panicle emergence causing interference in the spectral signal [18,82]. Importantly, while PI
may be the best time with the sensors currently available, PI occurs roughly 45 to 55 days
after planting, whereas the time to harvest is usually 130 to 150 days. This leaves almost
two-thirds of the growing season in which multiple factors (biological, climate, etc.) can
also impact the final yields. Thus, precision of sensor-based measurements taken at PI
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will be higher under circumstances in which such factors do not limit crop growth post-PI.
However, across 10 site-years, SI measurements taken at PI explained over half of the total
variation in absolute grain yields (Figure 7) and more than two-thirds of the variation in
site-relative yields (data not shown).

In terms of making midseason N management decisions, a key question is whether
or not the indices saturate at a level that renders them useful. This was evaluated using
two approaches. First, it was determined that, on average, a rice crop would respond to
additional N fertilizer if PI-NUP was below 109 kg N ha−1 (±4 kg N ha−1) (Figure 3). The
NDVIUAS saturated at a PI-NUP of 96 kg N ha−1 (Figure 5) (below 109 kg N ha−1), compared
to the saturation points for NDVIGS and NDREUAS at 111 and 130 kg N ha−1, respectively.
These data indicate that the NDVIUAS is the least useful for assessing midseason crop N
status as it saturates at a level of PI-NUP that is less than the crop would need to ensure
sufficiency and maximize yield on average. It also suggests that the NDREUAS may be the
most sensitive index given its relatively high saturation point with respect to PI-NUP.

The second approach used to assess relative saturation of the indices and their practical
value was to examine where each SI saturated based on the preseason N rate applied.
The recommended N management strategy for CA rice farmers is to apply the average
seasonal N requirement before flooding and planting, and then assess crop N status at PI
to determine if additional fertilizer N inputs are needed [6,66]. A similar recommendation
is made for direct seeded rice systems in the Mid-South USA and Australia [83–86]. In
CA, typical pre-plant N rates range from 150 to 200 kg N ha−1, and data from this study
generally support that range with N rates required for maximum yields ranging between
165 and 201 kg N ha−1 (Figure S1). The average pre-plant N rate at which NDVIUAS
saturated was 166 kg N ha−1, compared to 207 and 240 kg N ha−1 for NDVIGS and
NDREUAS SI, respectively (Figure 6). This suggests that for the pre-plant N rates typically
used in this system, the NDREUAS promises the most utility as it is sensitive across a
much wider range of pre-plant N rates, including those that exceed the upper limit of the
recommended range. In contrast, NDVIUAS appears to saturate before the relevant range
of measurement. Importantly, both approaches used to determine index saturation and
practical utility arrive at the same conclusion.

To our knowledge, this is the first study to evaluate the comparative ability of NDVIGS,
NDVIUAS, and NDREUAS for assessing crop N status or predicting grain yield in any
major cereal crop. Previous studies comparing aerial and proximal sensors generally
agree with the results presented here. For example, Zheng et al. (2018) [41] reported that
proximal NDVI (measured with a hyperspectral sensor) was better correlated with rice N
concentration than NDVIUAS, a finding they attributed to less saturation of the proximal
NDVI. In another study, Sumner et al. (2021) [42] reported that proximal NDVI (measured
with a Yara N-Sensor) and NDREUAS were more sensitive to changes in N fertilizer rate
than NDVIUAS in maize. Among studies that only used aerial sensors to assess crop N
status, the results of the current study agree with the findings of Dunn et al. (2016) [28],
who also found that NDVIUAS and NDREUAS both correlate well with rice PI-NUP but that
NDREUAS saturated less than NDVIUAS and provided a better basis for assessment.

In addition to the approaches mentioned above for N status assessment, the sensitivity
of each index to predict grain yield at PI was quantified as the slope of the relationship
between each SI and yield. The greater (or steeper) the slope, the less sensitive the index is
in determining grain yield. As was the case when assessing N status, the NDVIUAS was also
the least sensitive index for predicting yields, with SI values being confined to a narrower
range of SI and thus having a higher slope (Figure 7). Both the NDVIGS and NDREUAS
were more sensitive to changes in yields and had a slope less than half of NDVIUAS. These
data indicate that NDVIGS and NDREUAS have improved sensitivity for predicting grain
yields over NDVIUAS at PI, which aligns with our findings regarding the relative sensitivity
of each index for assessing crop N status. Although Zhou et al. (2017) [87] based their
comparisons on R2, which is different from the approach used in the current study, the
conclusions of both studies are similar, as they also found that NDREUAS (R2 = 0.75) was



Remote Sens. 2022, 14, 2770 15 of 18

better for predicting rice grain yield than NDVIUAS (R2 = 0.66) when compared at the
booting stage (a few weeks after PI). Overall, the findings presented here can improve
precision N management in this system by allowing farmers to utilize those indices that
have suitable sensitivity for assessing crop N status and predicting yield at PI over those
that lack the required sensitivity.

5. Conclusions

A unique approach was used to quantitatively assess the sensitivity of different VIs on
a common numeric scale. Results indicated that both the NDREUAS and NDVIGS measured
rice crop N status and grain yield at PI with similar sensitivity. This is despite the fact that
the former was measured using an aerial sensor at least 50 m above the crop while the
latter was measured using an active proximal sensor within 1 m of the crop canopy. The
ability to assess crop status effectively across different sensors provides a unique advantage
for end-users as it allows flexibility to choose the sensor most suitable for their goals. In
contrast, the NDVIUAS had much less utility for the purposes examined in this paper. These
findings should improve fertilizer management in these systems by identifying indices that
serve as a better basis for the development of precision N management strategies. Given
the relatively small number of studies that have explored this topic, additional studies are
required to better understand how these results may be affected by the choice of rice variety,
growth stage, biophysical parameter, or crop. Furthermore, with the rapid development
of new sensors (both aerial and spaceborne) with higher spatial and spectral resolution,
future research in this area should also explore how the findings presented here may be
affected by the use of different platforms, sensors, or VIs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14122770/s1, Figure S1. The relationship between pre-plant N
rate and relative rice grain yield as described by a quadratic-plateau linear regression model. The
vertical dashed line at 183 kg N ha−1 represents the N rate where the relationship reaches a plateau,
and the error bar around the line represents the standard error.
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