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Abstract: Accurate semantic segmentation results of the overhead catenary system (OCS) are sig-
nificant for OCS component extraction and geometric parameter detection. Actually, the scenes of
OCS are complex, and the density of point cloud data obtained through Light Detection and Ranging
(LiDAR) scanning is uneven due to the character difference of OCS components. However, due
to the inconsistent component points, it is challenging to complete better semantic segmentation
of the OCS point cloud with the existing deep learning methods. Therefore, this paper proposes a
point cloud multi-scale feature fusion refinement structure neural network (PMFR-Net) for semantic
segmentation of the OCS point cloud. The PMFR-Net includes a prediction module and a refinement
module. The innovations of the prediction module include the double efficient channel attention
module (DECA) and the serial hybrid domain attention (SHDA) structure. The point cloud refine-
ment module (PCRM) is used as the refinement module of the network. DECA focuses on detail
features; SHDA strengthens the connection of contextual semantic information; PCRM further refines
the segmentation results of the prediction module. In addition, this paper created and released a
new dataset of the OCS point cloud. Based on this dataset, the overall accuracy (OA), F1-score, and
mean intersection over union (MIoU) of PMFR-Net reached 95.77%, 93.24%, and 87.62%, respectively.
Compared with four state-of-the-art (SOTA) point cloud deep learning methods, the comparative
experimental results showed that PMFR-Net achieved the highest accuracy and the shortest training
time. At the same time, PMFR-Net segmentation performance on S3DIS public dataset is better than
the other four SOTA segmentation methods. In addition, the effectiveness of DECA, SHDA structure,
and PCRM was verified in the ablation experiment. The experimental results show that this network
could be applied to practical applications.

Keywords: overhead catenary system point cloud; point cloud semantic segmentation; attention
mechanism; multi-scale feature fusion; OCS point cloud dataset

1. Introduction

As an emerging mode of transportation, high-speed railways have been favored
by more and more people because of their speed, stability, and high safety [1–3]. The
OCS is an essential part of the railway system and plays a critical role in the train power
supply. Still, influenced by uncertain factors, such as birds, strong winds, heavy rain, etc.,
the components of the OCS could become loose and even damaged. Consequently, the
geometric parameters of the OCS would change, directly leading to an accident during the
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operation of the train [4–6]. Therefore, to ensure the safety and reliability of the railway
system, regular maintenance of the OCS is essential [7]. However, the traditional OCS
geometric parameters are detected with manual portable measuring equipment along the
track. This method relies on high human and time costs, and manual detection errors
frequently occur [8]. Many researchers explored more intelligent detection methods to
improve work efficiency and reduce cost. Installing cameras or Light Detection and Ranging
(LiDAR) systems on the railway mobile transportation device to collect the OCS information
is one of the mainstream methods. However, the photographs obtained by cameras hardly
contain all the spatial information of the OCS, which are unable to restore the whole actual
scene. Comparatively, the point cloud data of the OCS scanned by LiDAR reflect the spatial
information in the actual scene more accurately [9,10]. These data help classify the OCS
components for measuring geometric parameters effectively. Therefore, based on the point
cloud data, it is of great significance to study the automatic segmentation of the OCS
point cloud.

The automatic segmentation methods for point cloud data can be divided into
two categories: traditional rules-based segmentation methods and statistical-based meth-
ods. Traditional rule-based segmentation principles include edge-based [11], region grow-
ing, model fitting [12], unsupervised clustering-based, etc. These methods are based on
strict manual-designed features from geometric constraints, and they do not require su-
pervised prior knowledge. However, they also have disadvantages. For example, the
region-growing method is computation-intensive and requires a trade-off between accu-
racy and efficiency [13]. In terms of the statistics-based methods, machine learning methods
are the most representative ones. “Regular” machine learning methods based on super-
vised classification operate on manually selected features with different classifiers, such as
support vector machines (SVM) [14], random forest (RF) [15], maximum likelihood classi-
fier (MLC) [16], and conditional random fields of statistical context models (CRF) [17,18],
associative and non-associative Markov networks [19], etc. Prior knowledge is required for
the initial sample and feature designs. The classification results are affected by the perfor-
mance of the classifiers and the features. Recently, deep learning, also an important part of
machine learning, has attracted the attention of researchers for its capability to obtain and
combine multi-level features. Deep learning methods for point cloud segmentation mainly
include multi-view-based [20], voxel-based [21], and raw-point-cloud-based methods. The
multi-view-based method utilizes a dimensionality reduction strategy by converting 3D
point cloud data to multi-view 2D images. The results are next restored to 3D after process-
ing. Multi-view convolutional neural network (MVCNN) [22] is one of the most influential
methods for multi-view [20]. However, the conversion between 2D and 3D leads to a loss of
semantic features. Voxel-based points are voxelized and then processed by 3D convolution,
which solves both unordered and unstructured problems of the raw point cloud. Voxelized
data can be further processed by 3D convolution. Voxelization causes a certain loss of
contour information. By increasing the resolution of voxels, the lost information can be
reduced. However, the memory requirement would increase cubically [23].

Given the drawbacks of the aforementioned methods, many scholars have carried
out further work based on directly processing raw point cloud data. PointNet [24] was
the first deep learning network to process point cloud data directly. It could extract the
semantic feature information of objects and solve the point cloud sorting invariance through
multi-layer perceptron (MLP) and max-pooling. However, local features were always
ignored, resulting in low prediction accuracy in some complex scenarios. PointNet++ [25],
an upgraded version of PointNet [24], could enhance local feature extraction through
sampling and grouping methods. In addition, the whole network structure was converted
into the encoder–decoder style, using skipping connections to fuse the features extracted
in the encoding and decoding stages. It could enhance the communication of contextual
information. However, PointNet++ had a poor effect on the sparse point cloud. As
a result, some linear components of the OCS, for example, the catenary wire and the
contact wire, could not be detected effectively. A recently proposed network, MFF-A [26],
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placed pyramidal pooling modules at the end of the network as an optimized structure
for prediction. In this module, pooling windows of different sizes were used to extract
multi-scale features, which improved the accuracy to a certain extent. Excessive semantic
information could not be sensed yet due to continuous pooling operation. Further, an edge
convolution (Edge Conv) structure was proposed by the dynamic graph convolutional
neural network (DGCNN) [27]. This structure extracted local features by constructing
the local domain of each point, computing edge features with the graph structure and
assigning new features to its center points. However, due to the K-nearest neighbors
(KNN) algorithm, the computing power requirements for the computer have increased.
The PointSIFT [28] network used the encoder–decoder structure and introduced the scale
invariant feature transform (SIFT) operator. Consequently, feature information could be
described in eight directions to strengthen the extraction of local features. However, the
training time of this network was extended due to the SIFT algorithm, resulting in low
efficiency. A brand new convolution operation was proposed in the KPConv [29] network,
which determined multiple core points within the sphere center range by taking one point
as the sphere center. Further, the core points had their weight matrix to calculate the
features of other points within the sphere and, finally, all features were fused as the features
of the center point. The network used different matrices to update point features according
to the various positions of each point. However, the method divided the whole point cloud
into small point cloud blocks and then trained the small point cloud blocks, which affected
the geometric feature extraction of large objects. As for the OCS point cloud segmentation,
Lin et al. [5] proposed an OCS point cloud dataset. The original data of this dataset were
collected by the SICK LiDAR system and artificially labeled about 16 km of point cloud
data. They proposed a deep learning method for semantic segmentation of small scenes.
This method had high requirements for data preprocessing and needed to extract the scene
in a single frame. Chen et al. [6] also proposed their own catenary point cloud dataset.
This dataset divided the data into two groups: 50 m and 100 m for experiments. They
proposed a clustering point cloud classification method, which could extract the contact
wire and catenary wire with high accuracy. However, this method was only for linear OCS
components and could not complete the extraction task of other OCS components. The two
datasets of the OCS point cloud were not publicly published.

This paper proposes a point multi-scale feature fusion refinement network (PMFR-Net)
to achieve effective semantic segmentation of the OCS point cloud. Compared with other
networks, the proposed PMFR-Net includes double efficient channel attention (DECA),
serial hybrid domain attention (SHDA) structure, and point cloud refinement module
(PCRM) for multi-scale feature extraction and fusion. Based on efficient channel attention
(ECA) [30], DECA has made an adaptive improvement for point cloud data, which can
effectively filter complex semantic information and improve the representation ability of
the model. In addition, the features obtained in the encoding stage were filtered through the
SHDA before being fused with the features extracted in the decoding stage, strengthening
the connection of contextual semantic information. At the end of the prediction module, an
improved PCRM based on atrous spatial pyramid pooling (ASPP) [31] was connected. The
PCRM extracts multi-scale features through multi-layer dilated convolution with different
dilation rates. Moreover, the model fuses the feature maps of each level in turn, so that
the semantic features of the point cloud can be better integrated. In this study, under the
premise of ensuring the robustness of the network, the network complexity is controlled so
that it can achieve high accuracy.

The main contributions of this paper are summarized as follows:

1. In this paper, the PMFR-Net is proposed for semantic segmentation of the OCS point
cloud. The network integrates the DECA, SHDA, and PCRM. PMFR-Net is superior
to the other four SOTA methods in visual discrimination and quantitative evaluation.

2. A point cloud refinement module (PCRM) is designed to achieve multi-scale feature
extraction through multi-layer dilated convolution channels with different dilation
rates. A multi-level feature fusion structure is created. This module is beneficial
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for extracting the semantic features of the same component at different scales and
strengthens the extraction of local features.

3. A new manual-labeled OCS point cloud dataset is established in this paper. This
dataset contains 88 separate scenes, including two kinds of structure: single-arm and
double-arm scenarios. The point cloud is subdivided into nine categories for labeling.

The rest of the paper is organized as follows: Section 2 discusses the implementa-
tion details of PMFR-Net. Section 3 presents the OCS point cloud dataset, experimental
environment, and comparative experiments. Section 4 demonstrates the effectiveness of
each innovative module in the network. The significance of this paper is summarized in
Section 5.

2. Methods

This section mainly introduces the method proposed in this paper. First, the overall
framework of PMFR-Net is outlined in Section 2.1. Second, the prediction module is
presented in Section 2.2. Then, the SHDA structure and DECA structure are introduced in
Sections 2.2.1 and 2.2.2, respectively. The PCRM proposed in this paper is introduced in the
last section.

2.1. Overall Framework

In order to better solve the problems of the low accuracy and efficiency of the OCS
point cloud segmentation, this paper proposes a deep learning neural network, PMFR-Net,
as shown in Figure 1.
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The PMFR-Net network is divided into the prediction module and the refinement
module. The prediction module drives the overall network by the convolution of multiple
shared weights to extract the point cloud features, denoted as PointSimpleNet. On this
basis, the DECA module is inserted twice in the encoding and decoding stages, respectively,
to realize cross-channel interaction and improve the representation ability of the network.
The features extracted by the convolution using N × 128, N × 256, and N × 1024 in the
encoding stage are filtered through the SHDA structure and then fused with the features
obtained by N × 256, N × 512, and max-pooling in the decoding stage. It strengthens the
communication of context semantic information. Then, the refinement module uses the
PCRM to further optimize the feature map obtained by the prediction module. This module
aggregates multi-scale semantic information through dilated convolution to enhance the
grasp of overall and detailed features. The network realizes high-precision semantic
segmentation for the OCS point cloud.

2.2. The Prediction Module

The prediction module extracts semantic information of point cloud by convolution
operation, and the SHDA structure and DECA mechanism are added. The SHDA structure
strengthens the integration of contextual semantic information, and the DECA mechanism
can boost the communication and fusion of semantic information in a cross-channel manner.

2.2.1. The Serial Hybrid Domain Attention Structure

Classical networks with skip connection structures include U-Net [32] and a series of
networks based on U-Net. This paper uses a serial hybrid domain attention structure based
on skip connections. In this structure, the features of the encoding stage are filtered by the
SHDA to retain the geometric information and reduce interference information. Then they
are integrated into the features in the decoding stage. The addition of geometric features
can effectively deal with the boundary of catenary components, thereby improving the
segmentation accuracy of the overall network.

Based on the CBAM [33], the attention module is driven bi-directionally through the
channel and spatial attention models. It can effectively filter the interference information
and highlight the geometric information features. The channel attention module com-
presses the spatial dimension of the feature map through max-pooling and average-pooling,
respectively, and then inputs the obtained results into the spatial attention mechanism.
Average-pooling and max-pooling are performed in the channel dimension in the spatial
attention module. Then the two pooling results are superimposed together, and finally,
the convolution operation is used on the spliced feature map to generate the final spatial
attention feature map. It can effectively filter the interference information and highlight
the geometric information features. Equation (1) shows the channel attention module, as
shown in the blue box in Figure 2. The spatial attention module is shown in Equation (2),
as shown in the purple box in Figure 2.

Mc(F) = σ(MLP(MaxPool(F)) + MLP(AvgPool(F))), (1)

where F represents the feature map, σ is the sigmoid function, Mc(F) represents the features
obtained by the channel attention module, MLP represents the multi-layer perceptron
operation, MaxPool represents max-pooling, and Avgpool represents average-pooling.

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

, (2)

where σ is the sigmoid function, f represents the convolution, 7× 7 represents the size of the
convolution kernel, F represents the feature map, Ms(F) represents the features obtained
by the spatial attention module. MaxPool represents max-pooling, Avgpool represents
average-pooling, and [AvgPool(F); MaxPool(F)] represents the result of average-pooling
superimposed on the result of max-pooling.
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2.2.2. Double Efficient Channel Attention

In recent years, attention mechanism has been widely applied in various networks
by researchers, among which the classic ones are SE-Net [34], ECA-Net [30], and DA-
Net [35]. This paper designs an improvement on ECA-Net, denoted as the DECA module,
as shown in Figure 3. This module can aggregate the convolution features using global
average-pooling and global max-pooling without dimensionality reduction and perform
local cross-channel interactions. As shown in Equation (3), K represents the coverage of
local cross-channel exchange. Channel interaction is realized through conv1d, as shown in
Equation (4). The result FDECA in DECA can be calculated using Equation (5).

K =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣
odd

, (3)

where |t| odd is the nearest odd number to t and C is the number of channels, γ = 2, b = 1,
respectively.

ωi = σ

(
K

∑
j=1

wj
iy

j
i

)
, yj

i ∈ ΩK
i (4)

where ωi is the result of channel interaction, wj
i the represented the weight of the channel

feature, yi denotes adjacent characteristic channel in one-dimensional space. K is the result
calculated by Equation (3), i represents the number of channels, and j ∈ K, σ is the sigmoid
activation function.

FDECA = F
⊗

σ(Conv1d(GMP(F)) + Conv1d(GAP(F))) (5)

where F represents the input feature map, σ is the sigmoid activation function,
⊗

is the
element-wise product, GAP stands for global average-pooling, GMP stands for global
max-pooling, and conv1d represents one-dimensional convolution.

Global average-pooling (GAP) and global max-pooling (GMP) are used to aggregate
semantic features simultaneously. Global average-pooling is suitable for extracting the
overall global features. Still, the grasp of details is slightly lacking, so a layer of global
max-pooling is performed in parallel to enhance the ability to detect details. For example,
the aggregation of information at the connections between different OCS components can
improve segmentation accuracy. These two pooling methods complement each other and
play a positive guiding role in the overall model information extraction ability, significantly
strengthening the extraction of local semantic features.
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1 
 

 

Figure 3. Double efficient channel attention (DECA) module diagram. GAP stands for global
average-pooling and GMP stands for global max-pooling.

2.3. Point Cloud Refinement Module

The extraction and fusion of multi-scale features are essential in complex scenes, con-
sidering the feature extraction of objects of different sizes. The OCS structure comprises
multiple components with various features, and the scene is more complicated. To fur-
ther improve the representation ability of the model, this paper proposed a point cloud
refinement module called PCRM, as shown in Figure 4. PCRM uses a dilated convolution
structure and is located at the end of the prediction module network. Different receptive
fields are obtained through dilated convolution with varying dilation rates, which improves
the accuracy of the large segmentation objects. The elastic catenary wire, contact wire, and
catenary wire of the OCS point cloud data are relatively larger than other parts. In the case
of the small receptive domain, it is difficult to perceive the whole object, which will lead to
the incomplete extraction of object features and low precision of semantic segmentation.
Thus, multi-layer dilated convolution is used to obtain relatively complete overall features
at different scales. Through n parallel convolution operations with varying dilation rates, n
feature maps CFi (i ≤ n) of different scales are obtained. The feature maps of each level are
fused in turn and activated by convolution and then merged into the initial input result
of the module to get the refined result. The different layers are combined in sequence to
obtain the fused feature map MFj (j < n), defined in Equation (6). Then the fused feature
map MFj and the feature map CFi with a total of n feature maps are fused to obtain OF
according to Equation (7). Finally, the result of a convolution operation and the result
obtained by the prediction module are fused to get the final segmentation result Osem, as
shown in Equation (8).

MFj = CFi−1 + CFi, (1 < i ≤ n), (6)

OF =

(
n

∑
j=1

MFj

)
+ CFi, (7)

Osem = Conv2d(OF) + Finput, (8)

where Finput is the feature map of the input refinement module, CFi (i ≤ n) is the feature
map of dilated convolution, MFj (j < n) is the fused feature map, and n is the number of
dilated convolutions.
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In Equation (6), n was 6, and i took 1. The structure diagram of the refinement module
is shown in Figure 4. Different colors represent different channels, and the change in color
depth shows the degree of feature information extraction. Compared with the previous
simple series fusion, this method can be changed into layers and integrated with sequence,
effectively reducing the omission of features and improving the semantic information of
the OCS components as much as possible.

3. Experiment and Result Analysis

In this section, an experimental evaluation of the effectiveness of PMFR-Net is pre-
sented and compared with four other SOTA methods. Section 3.1 introduces the proposed
OCS point cloud dataset. Section 3.2 describes experimental settings and evaluation indica-
tors. Lastly, Section 3.3 presents experimental results, analysis, and comparison.

3.1. Experimental Data

In recent years, to promote the research on point cloud recognition, some large datasets
have been established, such as S3DIS [36], ShapeNet [37], and ScanNet [38]. Most of the
public point cloud datasets are for indoor scenes of buildings, individual objects, and
outdoor scenes. Datasets for railway scenes are rare. Therefore, we built a new OCS point
cloud dataset for our experiments by annotating semantic information manually and we
will make the created OCS dataset open access for further public study.

The dataset is collected from the actual point cloud data of some sections of the high-
speed railway from Nantong to Yancheng. The point cloud along the railway was scanned
by LiDAR using Optech Lynx HS 600 VMMS. Each point covered seven attributes (X, Y,
Z, R, G, B, I). Before making the dataset, the original high-speed railway point cloud data
were preprocessed to remove the non-OCS point cloud. As shown in Figure 5, the red
point marks the OCS data, which are extracted for subsequent manual labeling work. The
entire OCS scene is about 4 km and it consists of 88 separate scenes. Each scene is 40–50 m
long, nearly 10 m wide, and about 1.5 m high. The adjacent scenes are continuous. Each
scene is subdivided into nine classes: catenary wire, steady arm, oblique cantilever, straight
cantilever, elastic catenary wire, registration arm, others, dropper, and contact wire. The
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88 separate scenes can be divided into single-arm and double-arm OCS scenes, as shown
in Figure 6. The number of points in the entire dataset scene is around 50,000,000. Among
them, the point number of the single-arm scene is about 520,000, and the point number
of the double-arm scene is about 700,000. The detailed OCS dataset data information is
shown in Table 1. There are 15 scenes in the validation set, 17% of the total dataset. The
proportion of the single-arm and double-arm in the validation set is similar to that in the
training set, which is almost 3:1. At the same time, three scenes are randomly selected in
the dataset for testing, including one double-arm scene and two single-arm scenes. The
dataset is be available at https://github.com/Waynexutao/DatasetAccess.git, (accessed on
4 May 2022) to assist other researchers in conducting relevant research.
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Table 1. Data distribution introduction in the OCS dataset.

Single-Arm Double-Arm
Training Validation Testing

Single-Arm Double-Arm Single-Arm Double-Arm Single-Arm Double-Arm

The number
of scenes 68 20 55 15 11 4 2 1

The number
of points 3.54 × 107 1.4 × 107 2.9 × 107 1.1 × 107 5.7 × 106 2.8 × 106 1.04 × 106 7 × 105

Except for the proposed OCS dataset in this paper, the S3DIS dataset [36] is also tested
to validate the performance of the proposed network. S3DIS dataset is a multi-region
indoor point cloud dataset covering six large-scale indoor areas and 272 rooms. The point
number is over 215 million points and the area is over 6000 m2. It is an RGB-D point cloud
dataset with pixel-level semantic markers. The point cloud can be divided into 13 classes:
ceiling, floor, wall, beam, column, window, door, table, chair, sofa, bookcase, board, and
sundries. The data distribution of the S3DIS is shown in Table 2. The whole Area 6 with
48 rooms is used as the validation set in our experiment. Among them, seven different

https://github.com/Waynexutao/DatasetAccess.git
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types of rooms are randomly selected as the test set in the whole dataset. The S3DIS dataset
is shown in Figure 7.

Table 2. Distribution of the number of rooms for the S3DIS dataset.

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6
Total

Training Validation Testing

The number of
rooms 44 40 23 49 68 48 217 48 7
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The similarity between these data and the OCS dataset proposed in this paper are:

1. Both datasets contain multiple objects of different scales. For example, walls and
ceilings in the S3DIS dataset belong to large-scale categories, while tables, chairs, etc.,
belong to small-scale categories. The OCS dataset has the most obvious difference in
scale between conductors, tension cables, and hanging strings.

2. Both datasets contain objects with similar geometric features. For example, the walls,
ceilings, and floors in the S3DIS dataset are all dense surface features, while the wires
and bearing cables in the OCS dataset are similar linear features.

3.2. Experimental Settings and Evaluation Indicators
3.2.1. Experimental Settings

All experiments in this article were conducted on Windows 10 (64-bit) workstations.
The workstation configuration is Intel(R) Core (TM) i7-9700 KCPU @ 3.60 GHz, 32 GB
memory, and a GPU of NVIDIA GeForce RTX 2080Ti with an 11 GB RAM. All networks
were implemented on TensorFlow 1.14 and Keras 2.2.4.

In our experiment, every point is represented by an 8D vector P = {X, Y, Z, R, G,
B, I, T}, where X, Y, and Z represent 3D coordinates; R, G, and B represent the color
information; I means the intensity information; T denotes the class value. Because the
intensity information difference between each class is not obvious, it is not used in this
paper. We used the information of (X, Y, Z, R, G, B, T) for the experiment. The training and
verification samples of the network are hierarchical data format (HDF5) point cloud data
and the num point was 4096. The batch size of HDF5 was 1000. In the training stage, the
batch size was 12, and the training epoch was set to 100. The learning rate was dynamic:
the initial learning rate was 0.0001 and the lowest was 0.00001 at the end of training.
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The proposed network adopts the Cross-Entropy Loss function [39], shown in Equation (9),
as the loss function.

Loss = − 1
N

N

∑
i=1

M

∑
c=1

yiclog2(pic), (9)

where N is the number of samples and M is the number of classes. yic is the label value
when the true class of sample i is equal to c, yic takes 1, otherwise it is 0. pic is the predicted
probability that sample i belongs to class c.

3.2.2. Evaluation Indicators

Five evaluation indexes commonly used in semantic segmentation evaluation were
selected to evaluate the performance. They are overall accuracy (OA), precision (P), recall
rate (R), F1-Score, and mean intersection over union (MIoU). OA refers to the proportion
of all points correctly classified to all points involved in evaluation calculation, and its
calculation equation is shown in Equation (10). The precision refers to the proportion
of positive samples correctly predicted among all the results predicted as positive, as
shown in Equation (11). The recall refers to the proportion of positive samples with correct
prediction in all positive samples, as shown in Equation (2). F1-Score refers to the harmonic
average of accuracy and recall rate, which is a comprehensive evaluation index, as shown in
Equation (13). The IoU is the intersection ratio of all predicted positive class points and real
positive class points over their union. MIoU is the average value of IoU and its calculation
equation is shown in Equation (14).

OA =
TP + TN

TP + TN + FP + FN
, (10)

P =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

F1− Score =
2× P× R

P + R
, (13)

MIoU =
∑c

i=1 IoUi

c
, (14)

where TP (true-positive) is the number of points that correctly identified positive samples.
TN (true-negative) is the number of points that are actually negative samples but are
identified as positive samples. FP (false-positive) is the number of points where negative
samples are correctly identified. FN (false-negative) is the number of points that are actually
positive samples but are identified as negative samples.

3.3. Experimental Results and Analysis

Section 3.3.1 shows and analyzes the quantitative and visual results of the seman-
tic segmentation results obtained by the PMFR-Net on the OCS point cloud dataset. In
Section 3.3.2, three typical semantic segmentation methods of point cloud and one method
especially for the segmentation of OCS point cloud were selected for comparative exper-
iments. In Section 3.3.3, the experimental results of our approach and other methods on
the S3DIS public dataset will be compared. All the following accuracy evaluation metrics
come from the test set. The test set of the OCS dataset consists of three scenes (including
two single-arm scenes and one double-arm scene), and the S3DIS test set consists of seven
randomly selected different rooms.

3.3.1. Segmentation Results of PMFR-Net

The quantitative evaluation results of prediction accuracy are shown in Table 3. After
visualization, the predicted point cloud data are shown in Figure 8. As shown in Table 1, the



Remote Sens. 2022, 14, 2768 12 of 25

F1-Score of the contact wire is the highest, followed by the oblique cantilever and catenary
wire, and the steady arm. The precision of these four components is more than 95%, since
their spatial position and shape characteristics are apparent. For example, the contact wire
and catenary wire are parallel to each other. There is a certain angle between the oblique
cantilever and the straight cantilever. Therefore, a high segmentation accuracy can be
achieved. From four different evaluation results, it can be concluded that the segmentation
accuracy of the dropper is the worst. There may be two reasons for this phenomenon. First,
the dropper is small, and it is easy for it to be incompletely scanned, which leads to unclear
semantic features. As a result, it increases the difficulty of network learning. Second,
because the point number of the dropper is much less than other parts, the proportion of
the dropper to the whole OCS points is also tiny, which leads to an imbalance in semantic
network segmentation training.
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Figure 8. Prediction results of single-arm and double-arm. (a) is the true value, (b) is the semantic
segmentation result of PMFR-Net, (c) is the content in the green box in (b), and the red box is the
wrongly classified point cloud, (d) is the content in the green box in (c), and the red box is the wrongly
classified point cloud.
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Table 3. Precision evaluation comparison of the OCS dataset semantic segmentation. The overall
accuracy evaluation of the two scenes is shown in bold.

OA (%) F1-Score (%) MIoU (%)

Single-Arm Double-Arm Single-Arm Double-Arm Single-Arm Double-Arm

Catenary wire 94.61 96.34 94.41 96.39 89.43 93.03
Steady arm 97.81 94.66 95.04 93.84 90.55 88.39
Oblique cantilever 98.87 96.65 99.06 92.15 98.14 85.45
Straight cantilever 98.02 81.59 98.01 89.55 96.10 81.08
Elastic catenary wire 92.92 91.36 93.19 89.40 87.26 80.84
Registration arm 96.52 88.16 93.74 91.61 88.21 84.51
Dropper 91.69 68.13 90.72 73.19 83.02 57.71
Contact wire 99.53 98.92 99.67 97.79 99.35 95.68
average 95.77 93.24 87.68

The segmentation results in Figure 8 show that since the single-arm scene is relatively
simple, the segmentation results are better. There is only a tiny mis-segmentation between
the elastic catenary wire and catenary wire. In contrast, the double-arm scene is more
complex. The segmentation result has certain misclassifications, mainly at the border of
the elastic catenary wire and the catenary wire. However, other parts can be divided more
thoroughly, such as between the oblique cantilever and the straight cantilever. To sum up,
PMFR-Net has good segmentation ability for the OCS point cloud.

3.3.2. Comparative Experiment on the OCS Dataset

The comparative experiment selects the classical point cloud segmentation network
PointNet [24], PointNet++ [25], DGCNN [27], and OCS segmentation network MFF-A [26]
for comparative analysis with the proposed PMFR-Net, to further evaluate its effectiveness.
We did not make any changes to the network of the four comparison methods. To ensure the
fairness of the experiment, each group of experiments was set up and assessed following
the experimental setting and evaluation standards in Section 3.2.

Table 4 lists all evaluation metrics of the five comparison methods tested on the OCS
dataset. In contrast, the PMFR-Net proposed in this paper obtained the highest accuracy
values. The OA, MIoU, and F1-Score of PMFR-Net are higher than the following best
method, PointNet++ by a more noticeable improvement of about 1.6%, 2.5%, and 2.3%,
respectively. Moreover, the training time of PMFR-Net is 0.5 hours faster than that of
Pointnet++. In addition, as shown in Table 4, the accuracy of all methods for single-arm
scenes is higher than that for double-arm scenes. However, regarding the performance
difference in two segment scenes, PointNet++ shows the best balance ability, followed by
the PMFR-Net. Moreover, the F1-Score difference between the singe-arm and double-arm
scene of PointNet++ is only 0.5%, and PMFR-Net is about 5%. However, the accuracy of
PMFR-Net in single-arm scenes is higher than that of PointNet++ and the performance
difference between PMFR-Net and PointNet++ to segment double-arm scenes is tiny.
Therefore, the overall semantic segmentation effect of PMFR-Net is the highest.

As shown in Figure 9, the proposed method is superior to other methods, indicating
that PMFR-Net can effectively segment the scene of the OCS point cloud. PointNet obtained
the lowest accuracy. It takes the feature map with N × 1024 channels as a local feature and
the result of max-pooling as a global feature, which are fused to obtain a feature map with
the most abundant feature information. However, the max-pooling causes a significant loss
of features. Since the network represents each point through MLP, the ability to integrate
local structural information and connect contextual semantic information is weak. There are
many misclassifications in each category. PointNet++ used the encoder–decoder structure
as a whole in the network and utilized skip connection to strengthen the context semantic
information. However, the sparsity of the point cloud has a significant influence on the
performance of PointNet++. The OCS point cloud is relatively sparse in linear components,
so many misclassifications exist between the catenary wire and elastic catenary wire.
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Concerning the DGCNN, the most prominent feature can be extracted through Edge Conv.
The method constructs a K-nearest neighbors (K-NN) graph to represent the local features
through the features of each point. Because the K-NN algorithm needs to traverse every
point, the DGCNN requires high computing power. Regarding MFF-A, a pyramid pooling
module is added at the end of the network to form a multi-scale feature extractor. However,
the pooling operation caused a significant loss of semantic information, and it is challenging
to play a good role in optimization and refinement. In contrast, in the prediction module of
PMFR-Net, the features of the encoding stage are filtered through the SHDA in advance
and then integrated into the features of the decoding stage. This strategy enhanced the
context semantic information aggregation. The refinement module adopts the dilated
convolution pyramid to extract and fuse multi-scale features and optimizes the results
of the prediction module. Due to the combination of these two mechanisms, PMFR-Net
can effectively classify the OCS point cloud, especially the simple single-arm scene. The
segmentation result is more precise.

Table 4. Quantitative evaluation of the comparative methods on the OCS point cloud dataset (%).
The average is underlined and the best metrics are highlighted in bold.

Method Scene_Class OA Precision Recall MIoU F1-Score Time(h)

PointNet [24]
single-arm 86.24 86.53 79.23 71.06 82.06

5double-arm 88.50 75.79 82.46 65.37 77.74
average 87.37 81.16 80.84 68.22 79.90

PointNet++ [25]
single-arm 95.90 91.61 91.06 86.17 91.12

4.5double-arm 93.88 90.31 91.35 83.23 90.62
average 94.11 91.18 91.16 85.19 90.97

DGCNN [27]
single-arm 93.71 94.23 90.23 85.64 92.11

5double-arm 92.40 88.07 86.45 77.56 86.61
average 93.18 91.76 88.53 82.13 89.89

MFF-A [26]
single-arm 95.89 94.93 94.25 89.79 94.54

5.5double-arm 92.50 86.24 87.87 77.87 86.73
average 94.53 90.59 91.06 83.83 90.64

Ours
single-arm 96.58 96.25 94.76 91.51 95.48

4double-arm 94.57 89.48 91.92 83.34 90.49
average 95.77 92.97 93.54 87.62 93.24

3.3.3. Comparative Experiment on the S3DIS Dataset

This paper also uses the public dataset S3DIS for experiments to verify the generaliza-
tion of the model. Meanwhile, the four methods, including PointNet, PointNet++, DGCNN,
and MFF-A, are also compared with the proposed method. Area_1–Area_5 in the S3DIS
dataset are all selected as the training set data, and Area_6 is selected as the test set. Due to
a large amount of overall data, the epoch of PointNet++ is set to 32 and the epoch of other
methods is set to 100.

From comparing the accuracy in Table 5, the PMFR-Net got the highest among the five
accuracy evaluation indicators. Compared with PointNet, MIoU is increased by nearly 20%,
F1-Score value is increased by nearly 15%, and OA is increased by about 5%. Although
PMFR-Net takes 8 hours to train for 100 epochs, it is not the least amount of time, but it is
only slightly higher than PointNet. Thus, it can be concluded that PMFR-Net has a specific
generalization and can achieve good accuracy in different datasets.
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bottom, where A, B, and C are the ROI in the double-arm scene, and D, E, and F are the ROI in the 
single-arm scene. 
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Table 5. Quantitative evaluation (%) of comparative methods on the S3DIS point cloud dataset. The
best metric is highlighted in bold.

Method Precision Recall F1-Score OA MIoU Time(h)

PointNet [24] 83.29 81.33 80.69 92.36 70.69 7.5
PointNet++(32) [25] 90.59 91.56 90.78 95.45 79.69 33

DGCNN [27] 88.88 76.48 79.45 93.49 69.89 8
MMF-A [26] 93.99 92.76 93.28 96.65 87.96 9.5

Ours 96.42 94.94 95.63 97.72 91.84 8

4. Discussion

In this section, the ablation experiment explores the influence of the DECA module,
SHDA, and PCRM structure on network performance. The ablation experiment in this
section is divided into three parts. Section 4.1 studies the influence of the DECA module
on network performance. Section 4.2 discusses the influence of SHDA on network per-
formance. Section 4.3 examines the effectiveness of the PCRM structure on the network
and discusses the dilation rate setting. All experiments in this study are based on a basic
structure, PointSimpleNet, and the experimental data make up the OCS point cloud dataset
introduced in Section 3.1. All experiments also conform to the experimental settings in
Section 3.2.1 and will be evaluated using F1-Score, MIoU, and OA.

4.1. Ablation Experiment of Double Efficient Channel Attention Module

The original ECA module is compared with the DECA module in this paper.
Three comparative networks with different ECA were designed. The first was the pri-
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mary network, PointSimpleNet. The ECA and DECA are inserted behind the second and
eighth convolution twice on the PointSimpleNet to construct the PointSimpleNet-ECA and
the PointSimpleNet-DECA, respectively. The experimental results and semantic segmen-
tation results of the partial OCS point cloud are shown in Table 6 and Figure 10. Results
indicate that the attention mechanism helps improve the representation ability of the model.
The DECA model proposed in this paper has a better effect than the ECA module, which
proves the effectiveness of the DECA module.

Table 6. Quantitative evaluation of the DECA module through three groups of comparative experi-
ments (%) on the OCS point cloud dataset. The best metrics are highlighted in bold.

Method F1-Score MIoU OA

PointSimpleNet 89.89 82.91 93.66
PointSimpleNet -ECA 91.79 85.29 94.51
PointSimpleNet -DECA 92.13 85.68 95.22
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Figure 10. Comparison results of different attention mechanisms added to the basic frame. Column
(a1–a4) and column (b1–b4) are global maps of double-arm and single-arm scenes, respectively. The
range delineated in the red box is enlarged to present a more detailed visual comparison at the
bottom, where A, B, C, and D are the ROI in the double-arm scene, and E, F, and G are the ROI in the
single-arm scene.

By comparing the experimental results of PointSimpleNet, PointSimpleNet-ECA, and
PointSimpleNet-DECA networks, the model representation ability of the DECA attention
mechanism is the best. Compared with the basic framework, F1-Score, MIoU, and OA are
improved by 2.24%, 2.77%, and 1.56%, respectively, since the added DECA module can
filter redundant semantic information. As a result, the semantic information is more refined
and easier to extract. As shown in region G in Figure 10, the boundary between the elastic
catenary wire and the catenary wire in the single-arm scenes can be distinguished more
accurately. There are still some misclassifications in the dropper, catenary wire, and elastic
catenary wire. Compared to the basic framework, it has been significantly improved.

Compared with the original ECA, the DECA module is also improved to a certain
extent. F1-Score, MIoU, and OA are improved by 0.24%, 0.39%, and 0.71%, respectively.
Due to global max-pooling, certain information, such as boundaries, can be strengthened.
Although the segmentation result of the DECA model still has certain misclassifications,
as shown in Figure 9, it is superior to that of the original ECA model. Thus, it proves that
parallel global max-pooling has certain effectiveness.

4.2. Ablation Experiment of the Serial Hybrid Domain Attention Structure

This paper uses the SHDA structure to connect contextual semantic information based
on skip connections. Skip connections fuse the features of the encoding stage and decoding
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stage. The comparison between the PointSimpleNet and PointSimpleNet-skip connections
in Table 7 indicates that the skip connections can improve the accuracy to a certain degree.
As shown in region C in Figure 11, the network with the added skip connections structure
is more accurate than PointSimpleNet in processing the elastic sling boundary. From region
A in Figure 11, it can also be found that the dropper part is misclassified after adding skip
connections instead.

Table 7. Quantitative evaluation of SHDA structure through four groups of comparative experiments
(%) on the OCS point cloud dataset. The best metrics are highlighted in bold.

Methods F1-Score MIoU OA

PointSimpleNet 89.89 82.91 93.66
PointSimpleNet-skip connections 90.21 82.62 93.74
PointSimpleNet-skip connections-ECA 91.66 85.08 94.99
PointSimpleNet-skip
connections-SHDA 92.03 85.42 95.12
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[40] module and the PCRM are added as the refinement module to construct PointSim-
pleNet-ASPP and PointSimpleNet-PCRM, respectively. The ASPP module is a feature ex-
traction module based on dilated convolution for the multi-level receptive domain per-
ception of object features. The PCRM is a module that improves the feature fusion method 
based on the ASPP module. The experimental results show that both ASPP and PCRM 
improve the accuracy, since the refinement module strengthens the representation ability 
of the network. 

Figure 11. Comparison results between different connection methods added to the basic frame.
Columns (a1–a5) and column (b1–b5) are global maps of the double-arm scene and the single-arm
scene, respectively. The range delineated in the red box is enlarged to present a more detailed visual
comparison at the bottom, where A, B, C, and D are the ROI in the double-arm scene, and E, F, and G
are the ROI in the single-arm scene.

The SHDA can take the interaction between channels and the salient features in
space simultaneously. This paper selects the channel attention mechanism and the skip
connections structure as a comparison. Then, three connection structures are connected
to the same level, respectively. The 4th and 8th layer convolution, the 5th and 7th layer
convolution, and the 6th layer convolution and the max-pooling are fused, respectively.
It can be seen from Table 7 that the serial attention mechanism is effective for improving
the segmentation accuracy. Compared with only adding skip connection structures, the
F1-Score of the serial ECA mechanism increased by 1.35% and the F1-Score of the SHDA
mechanism increased by 1.82%. Compared with the channel attention structure (ECA
is used in this paper), the SHDA structure has a 0.37% increase in F1-Score, a 0.34%
increase in MIoU, and a 0.13% increase in OA. Therefore, the series mixed domain attention
mechanism is superior to series channel attention. As shown in Figure 11, the SHDA
structure effectively distinguishes the catenary wire and the elastic catenary wire. Thus, it
is the most accurate and has a significant improvement.
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4.3. Ablation Experiment of Point Cloud Refinement Module

The ablation experiment in this section is divided into two sections. Section 4.3.1
verifies the effectiveness of the PCRM proposed in this paper and Section 4.3.2 discusses
the setting of dilation rate combinations in the refinement module.

4.3.1. Ablation Experiment of Point Cloud Refinement Module Structure

In this group of ablation experiments, three groups of comparative experiments are
executed to prove the effectiveness of the PCRM. Based on PointSimapleNet, the ASPP [40]
module and the PCRM are added as the refinement module to construct PointSimpleNet-
ASPP and PointSimpleNet-PCRM, respectively. The ASPP module is a feature extraction
module based on dilated convolution for the multi-level receptive domain perception of
object features. The PCRM is a module that improves the feature fusion method based on
the ASPP module. The experimental results show that both ASPP and PCRM improve the
accuracy, since the refinement module strengthens the representation ability of the network.

As shown in Table 8, the PCRM has the highest semantic segmentation accuracy quan-
titatively. Compared with PointSimpleNet, the F1-Score, MIoU, and OA are increased by
1.25%, 2.97%, and 1.64%, respectively, proving that the PCRM can effectively optimize the
results of PointSimpleNet and improve the segmentation accuracy of the whole network.
As illustrated in Figure 12, the number of misclassified points was reduced using PCRM,
especially in the connecting parts among components. For example, in the single-arm scene,
many catenary wire points are identified as the elastic catenary wire points by PointSim-
pleNet. After adding the PCRM, nearly half of the points that were misclassified into elastic
catenary wire were successfully identified as catenary wire, and the misclassification was
corrected significantly.

Table 8. Quantitative evaluation of refinement module PCRM through three groups of comparative
experiments (%) on the OCS point cloud dataset. The best metrics are highlighted in bold.

Method F1-Score MIoU OA

PointSimpleNet 89.89 82.91 93.66
PointSimpleNet-ASPP 91.84 85.39 94.36
PointSimpleNet-PCRM 92.14 85.88 95.30
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acteristics of the same object at different scales can be obtained. Six comparative experi-
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lution. Based on the basic framework of PointSimpleNet, the optimal dilation rate combi-
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Figure 12. Comparison results of different refinement modules. Column (a1–a4) and column (b1–b4)
are global images of double-armed and single-armed structures, respectively. The range delineated
in the red box is enlarged to present a more detailed visual comparison at the bottom, where A, B, C,
and D are the ROI in the double-arm scene, and E, F, and G are the ROI in the single-arm scene.

Compared with the ASPP, the PCRM improved F1-Score, MIoU, and OA by 0.3%,
0.49%, and 0.94%, respectively. The fusion method of multi-layer features is changed from
simple unified fusion in ASPP to hierarchical sequential fusion in PCRM. The hierarchical
sequential fusion can strengthen the information retention of several levels with a lower
dilation rate and extract some details more accurately. Richer semantic information is better
for semantic segmentation.

4.3.2. Discussion on the Dilation Rate Setting

This section mainly discusses the dilation rate in dilated convolution. The receptive
fields of different sizes can be obtained by setting different dilation rates so that the
characteristics of the same object at different scales can be obtained. Six comparative
experiments were set up in this group. One was a reference experiment without dilated
convolution. Based on the basic framework of PointSimpleNet, the optimal dilation rate
combination is quantitatively analyzed by using different combinations of dilation rates.
As shown in Figure 13, when the dilation rate combination is (1, 2, 4, 8, 16, 32), the three
values of MIoU, F1-Score, and OA are the highest, reaching 85.88%, 92.14%, and 95.3%,
respectively, and the three scores of the dilation rate combination reached a peak. That
is because appropriate receptive fields can precisely contain training data and ensure
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the integrity of extracted features. Excessive receptive fields would make some detailed
features fuzzy and fail to provide accurate feature information. Therefore, the best dilation
rate combination is (1, 2, 4, 8, 16, 32), which provides the most appropriate receptive fields.
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5. Conclusions

In this paper, a deep learning network PMFR-Net was designed for semantic seg-
mentation of the OCS point cloud, consisting of a prediction module and a refinement
module. The prediction module inserted the DECA mechanism and the SHDA structure.
The DECA was used to strengthen the extraction of local semantic features. The SHDA was
used to filter cluttered semantic information of the features extracted in the encoding and
decoding stage for better fusion. The DECA and SHDA can both strengthen the extraction
of details to be adaptive for various OCS components. Then, the PCRM module formed
the multi-scale feature extraction fusion module through multi-layer dilated convolution
with different dilation rates. The original multi-level direct fusion mode was changed to
multi-level sequential fusion, which can effectively reduce the loss of semantic information.
The prediction module and refinement module complement each other and effectively
improve the segmentation precision of the OCS point cloud. Experiments were carried
out on the new OCS point cloud dataset proposed in this paper. The MIoU, OA, and
F1-Score of PMFR-Net were 87.62%, 95.77%, and 93.24%, respectively, and the time was
4 hours. PMFR-Net is superior to SOTA methods in visual interpretation and quantitative
evaluation compared with other comparison methods. Moreover, the S3DIS dataset is also
introduced for the test, and the performance of PMFR-Net is better than the comparison
methods. In addition, experiments were carried out on the setting of the dilation rate
in the PCRM. In view of the degree of accuracy improvement, the optimal combination
of dilation rates was (1, 2, 4, 8, 16, 32). MIoU and F1-Score could increase by 2.97% and
2.25%, respectively. At the same time, the effectiveness of the DECA mechanism, the SHDA
structure, and the PCRM were validated by the ablation experiment.

In the future, we will improve PMFR-Net and pay more attention to the boundary
processing between the components, especially the linear structure, to strengthen the
processing of the details of catenary characteristics. At the same time, we will acquire more
catenary point cloud data to expand the dataset and introduce data from different scenarios
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of other railway lines in the dataset to train a more robust model and promote the practical
application capability of the model.
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