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Abstract: To better predict and understand land–atmospheric interactions in the Tibetan Plateau (TP),
we used Moderate Resolution Imaging Spectroradiometer (MODIS)-based land-use data and the
MODIS-derived green vegetation fraction (GVF) to analyze the variation trend over the TP. The in situ
observations from six flux stations (“BJ” (the BJ site of Nagqu Station of Plateau Climate and Environ-
ment), “MAWORS” (the Muztagh Ata Westerly Observation and Research Station), “NADORS” (the
Ngari Desert Observation and Research Station), “NAMORS” (the Nam Co Monitoring and Research
Station for Multisphere Interactions), “QOMS” (the Qomolangma Atmospheric and Environmental
Observation and Research Station), and “SETORS” (the Southeast Tibet Observation and Research
Station for the Alpine Environment)) at the Chinese TP Scientific Data Center were used to study the
surface energy variation characteristics and energy distribution over different underlying surfaces.
Finally, we used observation data to verify the applicability of the ERA-5 land reanalysis data to
the TP. The results showed that the annual GVF steadily declined from the southeast parts to the
northwest parts of the TP, and the vegetation coverage rate was highest from June to September. The
sensible heat flux (H), latent heat flux (LE), net surface radiation (Rn), and four-component radiation
(solar downward shortwave radiation (Rsd), surface upward shortwave radiation (Rsu), atmospheric
downward longwave radiation (Rld), and surface upward longwave radiation (Rlu)) reached their
maxima in summer at each station. Rld did not change significantly with time; all other variables
increased during the day and decreased at night. The interannual variation in H and LE shows that
latent heat exchange was the dominant form of energy transfer in BJ, MAWORS, NAMORS, and
SETORS. By contrast, sensible heat exchange was the main form of energy transfer in NADORS and
QOMS. The Bowen ratio was generally low in summer, and some sites had a maximum in spring. The
surface albedo exhibited a “U” shape, decreasing in spring and summer, and increasing in autumn
and winter, and reaching the lowest value at noon. Except for SETORS, ERA-5 Land data and other
flux stations had high simulation accuracy and correlation. Regional surface energy changes were
mainly observed in the eastern and western parts of the TP, except for the maximum of H in spring;
the maximum values of other heat fluxes were concentrated in summer.

Keywords: Tibetan Plateau; ERA-5 reanalysis data; surface energy; land–atmospheric interaction;
different underlying surfaces

1. Introduction

The Tibetan Plateau (TP) is the highest plateau in the world and the largest plateau in
western China, known as the “roof of the world” and “the third pole of the earth,” with an
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elevation between 3000 to 5000 m [1]. The plateau’s high and towering terrain and complex
underlying surface features significantly impact the plateau monsoon, water vapor cycle, and
atmospheric vertical circulation, affecting climate change in East Asia [2–6]. In the 1970s, the
first Scientific Expedition and Research on the Tibetan Plateau began. The main goal was
to elucidate the history of geological development and the causes of plateau uplifting, to
study the effects of uplifting on the ecological environment and human activities on local
climate, and to look into the characteristics of natural conditions and resources, as well as
the directions and routes for their exploitation and modification [7,8]. The Second Tibetan
Plateau Scientific Expedition and Research will be based on the First Tibetan Plateau Scientific
Expedition and Research, highlighting the change as the theme of investigation and research,
to determine the law of change, evaluate and predict the future trend of change, and carry
out ten scientific expeditions and research missions [7]. The study of the westerly monsoon
synergy’s evolution law, variation characteristics, and driving mechanism, as well as greater
knowledge of the land–atmospheric interactions, precipitation efficiency, and the impact on
the Sichuan Basin and its climate effect are all essential for revealing environmental changes
on the TP [9–12]. Land–atmospheric interactions and local climate effects are the primary
focus of this study. Specifically, the transfer and exchange of heat, momentum, water
vapor, and carbon dioxide fluxes between the land surface and atmosphere are essential
components of atmospheric interactions [13,14]. Energy and material transport are essential
forcing fields for the development of convection in the atmospheric boundary layer. The
thermodynamic and dynamical effects of the TP on the atmosphere are mainly influenced
by the free air flow through the near-layer and boundary layer of the TP [15–18]. Land
surface parameters such as green vegetation, soil texture, and soil moisture are essential
factors that affect changes in surface energy flux over the TP. Moreover, owing to the wide
area, complex vegetation types, and high altitude, the underlying surface characteristics
significantly affect the water–energy cycle between the land surface and atmosphere. The
scarce distribution of meteorological observation stations on the TP could pose a challenge
to understanding the effects of the above-mentioned factors [19–21].

Ma et al. first analyzed the radiation characteristics of the period before and after
the monsoon in the Nagqu area using radiation observations from the 1998 Intensification
Observation Period (IOP). Observations were then compared with parameterized remote
sensing results [22–24]. Li et al. found that sensible heat flux (H) is the primary energy
source providing heat from the land surface to the atmosphere before the monsoon’s
outbreak, whereas latent heat flux (LE) is the main source of atmospheric warming during
the monsoon season [25]. Studies have found that climate change in the TP exhibits a
consistent warming trend at different timescales, and grasslands in semi-arid areas are
highly sensitive to temperature and precipitation changes [26]. Studies have found that
the H on the interannual variability of the TP shows a trend of weakening and falling at a
rate of 2% per decade, with climate change and reduced wind speed over the TP identified
as the causes of this phenomenon. However, the plateau’s warming rate is higher than
at the same latitude in eastern China, which remains unexplained [27–30]. Except for the
Yarlung Zangbo River Basin, the LE was found to increase on the TP. This may be due
to the increase in the net surface radiation (Rn) from the wetter forest cover underlying
surface and the high soil moisture content caused by agricultural irrigation [31,32].

Studies have shown that diurnal variations in surface upward shortwave radiation
(Rsu) and soil heat flux in alpine meadows are larger than those in banana plantations [33].
Net longwave radiation can affect soil-water freezing and its duration [34], the near-surface
soil freeze–thaw process, heat storage, and melting of snow. Vegetation growth and
non-growth periods affect surface energy non-closure [35,36]. The surface energy flux of
Qomolangma has clear diurnal and seasonal variation trends that are greatly affected by
the southwest monsoon. The response of the surface albedo to changes in rainfall has a lag
effect. In winter, the vegetation cover in most areas of the TP is reduced, snow is present
on the surface, and the surface albedo is often at the annual highest value [37,38]. Based
on the analysis of the surface radiation observation data from the BJ site of Nagqu Station
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of Plateau Climate and Environment, Muztagh Ata Westerly Observation and Research
Station (MAWORS), Ngari Desert Observation and Research Station (NADORS), Nam Co
Monitoring and Research Station for Multisphere Interactions (NAMORS), Qomolangma
Atmospheric and Environmental Observation and Research Station (QOMS), and Southeast
Tibet Observation and Research Station for the Alpine Environment (SETORS), it was found
that the Rsu and surface albedo of all stations decreased on the whole. The atmospheric
downward longwave radiation (Rld), surface upward longwave radiation (Rlu), net surface
radiation (Rn), ground surface temperature, and air temperature at most observation
stations showed an upward trend at the interannual scale. The amplitude of Rlu was more
significant than that of the downward long-wave radiation. Rn often reaches a maximum
in late spring and early summer in the Ngari area [24,39]. The variation in characteristics of
the surface energy flux with time at each station has been analyzed in detail; however, the
surface energy distribution has yet to be discussed further.

The above studies considered the surface energy variation characteristics of the TP in
numerous ways. However, the majority of these studies focused on the TP’s eastern part,
with only a few addressing the western part. In addition, the majority of these studies used
short-term or limited-period data, with only a few studies studying the long-term changes
in land surface energy and heat fluxes. In this study, we used Normalized Difference
Vegetation Index (NDVI) data from MODIS, ERA-5 Land reanalysis data, and long-term
flux observation station data from six sites (BJ, MAWORS, NADORS, NAMORS, QOMS,
and SETORS) in the TP of the Second Tibetan Plateau Scientific Expedition and Research to
examine the long-time series variation characteristics and energy distribution differences
of the surface energy fluxes on different underlying surfaces over the TP.

2. Data and Methods
2.1. Data
2.1.1. Observation Data

In this study, the observed data regarding hourly integrated land–atmospheric interac-
tions on the TP from 2005 to 2016 were obtained from the Chinese Science Data Center of
the TP, which integrates the following six stations: MAWORS, NADORS, BJ, NAMORS,
QOMS, and SETORS. Specifically, the following were obtained: hourly meteorological,
solar radiation, eddy covariance (EC), and soil moisture, and heat data from the six field
sites from 2005 to 2016, including multi-layer gradient observation data composed of wind
direction, wind speed, air temperature, relative humidity, precipitation, air pressure, multi-
layer soil temperature and moisture data, soil heat flux data, four-component radiation,
EC turbulent flux data composed of LE and H, and carbon dioxide flux data [40]. In this
study, the data used for analysis were the LE, H, and solar radiation components. The H
and LE data were collected using an EC system for observation. The EC systems comprise
a sonic anemometer (Campbell, CSAT3) and a fast-response gas analyzer (Li-COR, Li-7500)
and were installed at 3.02 m, 2.3 m, 2.75 m, 3.06 m, 3.25 m, and 3.04 m above the ground of
BJ, MAWORS, NADORS, NAMORS, QOMS, and SETORS, respectively. The CNR1 and
NR01 (Kipp&Zonen) four-component radiation observation systems were used to collect
radiation measurements at QOMS, SETORS, NADORS, and MAWORS. The NR01 (Vaisala)
four-component radiation observation system was used to measure the Namco station,
and the error range was within ±10%. A solar radiation measurement system (CM21,
Kipp&Zonen, and PIR, Eppley) was used to measure the surface radiation component; this
system can measure shortwave radiation from the surface and longwave radiation from the
atmosphere, with error ranges of ±2% and ±5 W/m2, respectively. Local time was used in
this study (UTC+8) [40]. The data from 2005 were not included in this study because of
discontinuity caused by many missing readings from this year.

2.1.2. ERA-5 Reanalysis Data

The ERA-5 reanalysis data are the fifth generation of global climate atmospheric reanal-
ysis data from the European Center for Medium-Range Weather Forecasts (ECMWF) [41].
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ERA-5 combines vast amounts of historical observations into global estimates using ad-
vanced modeling and data assimilation systems. The data cover the Earth on a 30 km
grid and resolve the atmosphere using 137 levels from the surface up to a height of 80 km.
The ERA-5 Land dataset used in this study was a replay of the land component forced by
meteorological fields and offers great improvements in precision for land applications [42].
ERA-5 Land dataset coverage was from 1950 to the present time, and was regridded to a
spatial resolution of 0.1◦ × 0.1◦. The monthly averaged LE, H, downward and upward
radiation, surface albedo, and net radiation from 2006 to 2016 were used in this study.

2.1.3. Land-Use Type Data and GVF Data

Land-use type data obtained by MODIS (Terra and Aqua) were also used in this
study to assess the underlying surfaces of the TP. The complete MODIS land-use database
contains five different land-use datasets: the IGBP dataset [43], the University of Maryland
Data Set (UMD) of 14 classes [44], 10 types of MODIS LAI/FPAR algorithm dataset [45],
8 biological datasets [46] and 12 types of plant functional classifications [47,48]. The MODIS
data used in this study were obtained from a 21-category IGBP database with a resolution
of 5 km.

The GVF was calculated by using MOD13A3 Level 3 monthly 1 km Vegetation Indices
data (https://appeears.earthdatacloud.nasa.gov/task/area, accessed on 30 September
2021) and also upscaling to 5 km resolution. The GVF is obtained using the relationship by
Gutman and Ignatov (1998) [49]:

NDVI = (NDVI−NDVImin)/(NDVImax −NDVImin) (1)

where NDVImin and NDVImax are bare soil without vegetation (LAI→0) and dense vegetation
(LAI→∞), which contain the minimum and maximum NDVI values over the TP, respectively.

2.2. Analysis Method

The Formula calculation of Rn was as follows:

Rn = (Rsd + Rld)− (Rsu + Rlu) (2)

In formula (2), the Rsd is the downward solar radiation, Rsu is the upward radiation,
Rld is the atmospheric downward longwave radiation, and Rlu is the upward longwave
radiation (W/m2).

In the error analysis of the ERA-5 data and observation data, as the temporal and
spatial resolution of the radiation flux observation data of each station was different
from that of the ERA-5, a monthly average processing method was adopted to unify the
temporal resolution of all data. Bilinear interpolation was used to interpolate the ERA-5 to
the positions of the observation stations. ERA-5 data for the six field sites were obtained
using this method. As the ERA-5 monthly mean data are in J/m2 and the cumulative
period is 24 h, dividing by the cumulative period expressed in seconds converts the units
to W/m2 following the observed data. The formulas for calculating the shortwave and
longwave radiation from the land surface upward in the ERA-5 data are as follows:

Rsu = Rsd× f al (3)

Rlu = Rld− str (4)

where fal is surface albedo and str is surface net thermal radiation.
Three error measures were selected to validate the ERA-5 data: the correlation coeffi-

cient (R), bias, and root mean square error (RMSE).
R is a statistical indicator that reflects the closeness of the correlation between the

variables. The value of R is between −1 and 1. If the coefficient is positive, then the two

https://appeears.earthdatacloud.nasa.gov/task/area
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variables are positively correlated. If the coefficient is negative, then the correlation is
negative. The greater the absolute value, the stronger the correlation.

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(5)

The bias describes the difference between the simulated and actual values. In this
study, a positive deviation means that the reanalysis data overestimate the observed value,
and a negative deviation means that the reanalysis data underestimate the observed value.
The calculation formula is as follows:

Bias = ∑n
i=1(yi − xi)

n
(6)

The RMSE is extremely sensitive to the maximum or minimum error response in a
set of measurements, so it can better reflect the measurement accuracy. A smaller value
indicates a higher accuracy. The calculation formula is as follows:

RMSE =

√
∑n

i=1(yi − xi)
2

n
(7)

where yi is the predicted value of the reanalysis data, xi is the observed value, and n is the
number of measurements.
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Figure 1. Analysis process flow chart.

The data analysis and processing in this study were conducted as follows: first,
ERA-5 reanalysis data, MODIS land-use and NDVI data, and flux site observation data
were collected, and the data over different underlying surfaces were pre-processed. The
underlying surface of the TP was then divided into four main types: Grasslands; Barren
or Sparsely Vegetated Lands; Open Shrublands; Deciduous Broadleaf Forest and Mixed
Forests. Based on the feedback effect of energy and water on the atmosphere, we analyzed
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the monthly variation characteristics of radiation, surface energy flux, the Bowen ratio
(β), and surface albedo parameters, and calculated the RMSE and bias error. Finally,
the distribution characteristics of the ERA-5 data over the TP were obtained, and the
applicability of this data was verified. The flow chart of the analysis process is shown in
Figure 1, and a schematic diagram of the land-use types, site locations, and elevation on
the TP is shown in Figure 2.
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3. Results and Analysis
3.1. Monthly Variation Characteristics of GVF

GVF is an important land surface parameter in land–atmospheric interaction processes
and is defined as a part of photosynthetically active green canopy intercepting a midday
downward solar grid cell [50]. In the Noah land surface model (LSM), the seasonal variation
of GVF also defines the variation of other surface physical characteristics, such as LAI,
albedo, roughness length, and surface emissivity [51]. The vegetation distribution is
related to precipitation and temperature, and humid and warm areas are conducive to
vegetation growth [52]. The annual distribution of GVF gradually decreased from southeast
to northwest over the TP. Due to sufficient precipitation and higher temperature in the
southeast than in the west TP, vegetation coverage is higher throughout the year. Vegetation
is sparse in the northwestern region of the TP. GVF showed an obvious seasonal variation
trend, rising in May and gradually decreasing in September (Figure 3e–i). From June to
September, the vegetation coverage rate of the TP reached 40−60% (Figure 3f–i).

Of the six sites studied in this paper, MAWORS and NADORS are distributed in the
northwest of the TP (Figure 2a), and because of their geographical location, the underlying
surface of the two stations is predominantly barren or sparsely vegetated (Table 1), and
the GVF is low (Figure 3). The QOMS is located in the south of the TP, and the under-
lying surface is dominated by barren or sparsely vegetated land (Figure 2a and Table 1).
NAMORS and BJ are located in the middle of the TP and the underlying surface is mainly
grassland [40]. (Figure 2a and Table 1). As can be seen from Figure 3, their GVF is high from
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June to September but low in other months (Figure 3f–i). SETORS is located in the area
with the highest annual GVF in the TP (Figures 2a and 3). The underlying surface types are
broadleaf forests and mixed forests, which have little influence on seasonal changes.
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3.2. Variation Characteristics of Surface Energy
3.2.1. Seasonal Variation Characteristics of Surface Energy

The monthly energy variation characteristics of the six stations were different, but also
had some similarities. In this study, the four seasons were divided as follows: spring from
March to May, summer from June to August, autumn from September to November, and
winter from December to the following January. The highest values of H were observed
in the spring, decreased in summer, increased to varying degrees in the autumn, and
decreased again in winter. After each station’s H achieved its maximum value in spring,
the time at which it started decreasing varied, with the SETORS station being the earliest.
The LE showed a unimodal change. Before the outbreak of the southeast monsoon on the
TP, the LE value was minimal. Precipitation rose in summer, soil moisture increased, latent
heat exchange was intense, and LE increased rapidly, with the maximum value exceeding
100 W/m2 (Figure 4a). In autumn, it gradually decreased and reached a minimum value
during winter. The difference between H and LE at NADORS and QOMS stations in
summer was smaller than for the other four stations (Figure 4c,e). The four-component
radiation data showed a single-peak variation, and the solar shortwave downward ra-
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diation began to decrease in summer. The Rsu values at BJ, QOMS, and NAMORS in
spring and winter increased with different amplitudes (Figure 4a,d,e). Longwave radiation
increased in spring and summer and decreased in autumn and winter. Rn increased in
spring, reached a maximum in summer, and decreased in autumn and winter. Possible
errors were observed in the longwave radiation values at SETORS, meaning these data
were not taken into consideration in analysis.

Table 1. Description of geographic features of six sites.

Site Latitude, Longitude Elevation (m) Land Cover Initial Observation Time of the
Instrument (Radiations/EC)

BJ 31.37◦ N, 91.90◦ E 4509 Grasslands 2006

MAWORS 38.41◦ N, 75.04◦ E 3668 Barren or Sparsely Vegetated
and Open Shrublands 2010

NADORS 33.39◦ N, 79.70◦ E 4270 Barren or Sparsely Vegetated 2009/2005

NAMORS 30.77◦ N, 90.99◦ E 4730 Grasslands 2005

QOMS 28.21◦ N, 86.56◦ E 4298 Barren or Sparsely Vegetated 2005/2007

SETORS 29.77◦ N, 94.73◦ E 3327 Deciduous Broadleaf Forest
and Mixed Forests 2007
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3.2.2. Diurnal Variation Characteristics of Surface Energy

To illustrate the diurnal variation of surface energy fluxes in different regions of the
TP, Figures 5 and 6 show the diurnal variation of H, LE, Rn, and four-component radiation
at the six stations in summer and winter. As shown in Figure 5, all three variables reached
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their peak values at approximately 14:00. Sunshine is highest when the solar altitude is
high, and the surface obtains more energy. In summer, Rn increased gradually from 7:00
to 9:00, peaked at approximately 14:00, and decreased to its lowest value in a day at 23:00.
The peak value of Rn in summer was more significant than that in winter, with a difference
of approximately 250 W/m2. The variation in H and LE was the same as that of Rn, and
the maximum LE could be more than 200 W/m2. The diurnal variations of H and LE
increased at sunrise and decreased at sunset. The LE was generally greater than H in the
summer. However, the opposite was true for NADORS and QOMS (Figure 5c,e) because
the underlying surface of the two stations comprises barren or sparsely vegetated land,
meaning the latent heat exchange is not intense, resulting in an LE that is lower than H.
The maximum difference in H and LE between BJ and SETORS could reach more than
100 W/m2 (Figure 5a,f) because the underlying surface of both stations is covered by dense
vegetation, with high precipitation and high soil moisture. The diurnal variation trend of
each variable at each station in winter was the same as that in summer, but the peak values
at all three stations were lower than those in summer. H was higher than LE in winter
because the plateau area was in the non-growing period, and vegetation was reduced.
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Figure 6 shows the diurnal variation of the four-component radiation at the six stations
in summer and winter. It can be observed from Figure 6 that the variation trends of the
four-component radiation in summer and winter were the same. While Rld did not vary
significantly with time during summer, the other three variables all increased at sunrise
and reached a peak at approximately 14:00, then gradually decreased and reached their
lowest levels at 23:00. The surface heat was mainly obtained from Rsd, reaching a maximum
of 900 W/m2 or more at noon. There was a significant difference between Rsd and Rsu
in the summer, with a maximum of approximately 700 W/m2 (Figure 6e). However, the
difference decreased in winter, with a maximum of approximately 600 W/m2, due to the
reduced solar radiation in winter. The difference between Rlu and Rld was smaller than
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that for shortwave radiation, about 100 W/m2, while the difference was approximately
200 W/m2 at SETORS (Figure 6f).
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3.3. Surface Energy Budget and Distribution
3.3.1. Land Surface Albedo

Land surface albedo is an essential factor affecting the surface energy budget and
distribution, and is mainly determined by two factors: the underlying surface conditions
and solar altitude. The albedo was calculated using observational data from 8:00 to 20:00 LT.
As shown in Figure 7, the variation of the surface albedo presents as a “U” shaped curve,
and was higher in the morning and evening and lower at noon. The solar altitude angle was
higher at noon and the surface reflected a minor level of Rsd. When the solar altitude angle
is low, longwave radiation makes up a major part of the solar radiation that reaches the
earth surface. The land surface is highly reflective of longwave radiation. The lowest value
varied between 0.2 and 0.4 at each station, and the albedo change at each station differed
with the season. Whereas, at NADORS and SETORS, the seasonal variation was relatively
insignificant (Figure 7c,f), the surface albedo at the other stations gradually decreased
from January to May, reaching the lowest values in July or August, and then gradually
increased. The main reason for this is that the albedo rises in winter due to heavy snow
cover but falls in spring and summer when the snow melts and vegetation grows, resulting
in a decreased albedo. For MAWORS and QOMS (Figure 7b), the underlying surface is
barren or sparsely vegetated and the surface albedo should be high. However, there was
still sparse vegetation growth in summer, which may be the reason for the decrease in the
surface albedo of these two stations in summer. SETORS maintains a low surface albedo
throughout the year because of the lush vegetation coverage and little influence of seasonal
variation on the station (Figure 7f).



Remote Sens. 2022, 14, 2751 11 of 20
Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

 

Figure 7. Diurnal variation of monthly mean surface albedo at six sites. 

3.3.2. Surface Energy Distribution 

To further illustrate the effects of the different routes of energy transfer on the differ-

ent underlying surfaces, Figures 8 and 9 show the distribution of the surface energy. As 

can be seen from Figure 8, latent heat played a leading role in energy exchange in BJ, 

MAWORS, NAMORS, and SETORS (Figure 8a,b,d,f), while sensible heat was the domi-

nant source of surface energy exchange in NADORS and QOMS (Figure 8c,e). Since the 

underlying surface of BJ and SETORS has dense vegetation, the transpiration of plants 

was more notable than the soil heat source effect, and latent heat was the main source of 

energy transfer [53]. For some years, the primary route of energy transfer at NAMORS 

was sensible heat, and plant transpiration was less than the soil heat source effect, result-

ing in a weaker latent heat exchange versus sensible heat exchange. 

The Bowen ratio (β) is defined as the ratio of H to LE at the surface. A higher value 

of β indicates greater sensible heat exchange; otherwise, the latent heat exchange is higher. 

As shown in Figure 9, sensible heat exchange was the main form of energy transfer in 

winter at all stations except MAWORS. The main reason for this is that plants are in the 

non-growing phase in winter, resulting in a decline in vegetation and soil hydrothermal 

conditions [54]. The seasonal variation trends in BJ and SETORS were identical, decreas-

ing in spring and increasing in autumn. Latent heat was the main energy distribution pro-

cess in BJ in summer, whereas sensible heat was the main process during the other sea-

sons. The variation range at SETORS was smaller than that of BJ, and the energy distribu-

tion was mainly latent heat, except in winter. The heat exchange between the land surface 

and the atmosphere at MAWORS was dominated by latent heat exchange throughout the 

year, which is consistent with the comparison of the annual mean values of LE and H. β 

was less than 1 at NADORS during July and August only, and greater than 1 for all other 

months. The maximum value reached was 8.8, indicating that the energy transfer at 

NADORS occurred mainly via sensible heat exchange, which accounted for a large pro-

portion. The β levels were relatively seasonally balanced at NAMORS. The monthly vari-

ation of β at QOMS was the same as that at NADORS because the underlying surface is 

mainly desert with sparse vegetation and weak latent heat exchange. 

Figure 7. Diurnal variation of monthly mean surface albedo at six sites.

3.3.2. Surface Energy Distribution

To further illustrate the effects of the different routes of energy transfer on the different
underlying surfaces, Figures 8 and 9 show the distribution of the surface energy. As can be
seen from Figure 8, latent heat played a leading role in energy exchange in BJ, MAWORS,
NAMORS, and SETORS (Figure 8a,b,d,f), while sensible heat was the dominant source of
surface energy exchange in NADORS and QOMS (Figure 8c,e). Since the underlying surface
of BJ and SETORS has dense vegetation, the transpiration of plants was more notable than
the soil heat source effect, and latent heat was the main source of energy transfer [53]. For
some years, the primary route of energy transfer at NAMORS was sensible heat, and plant
transpiration was less than the soil heat source effect, resulting in a weaker latent heat
exchange versus sensible heat exchange.
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The Bowen ratio (β) is defined as the ratio of H to LE at the surface. A higher value of
β indicates greater sensible heat exchange; otherwise, the latent heat exchange is higher.
As shown in Figure 9, sensible heat exchange was the main form of energy transfer in
winter at all stations except MAWORS. The main reason for this is that plants are in the
non-growing phase in winter, resulting in a decline in vegetation and soil hydrothermal
conditions [54]. The seasonal variation trends in BJ and SETORS were identical, decreasing
in spring and increasing in autumn. Latent heat was the main energy distribution process
in BJ in summer, whereas sensible heat was the main process during the other seasons.
The variation range at SETORS was smaller than that of BJ, and the energy distribution
was mainly latent heat, except in winter. The heat exchange between the land surface and
the atmosphere at MAWORS was dominated by latent heat exchange throughout the year,
which is consistent with the comparison of the annual mean values of LE and H. β was less
than 1 at NADORS during July and August only, and greater than 1 for all other months.
The maximum value reached was 8.8, indicating that the energy transfer at NADORS
occurred mainly via sensible heat exchange, which accounted for a large proportion. The
β levels were relatively seasonally balanced at NAMORS. The monthly variation of β at
QOMS was the same as that at NADORS because the underlying surface is mainly desert
with sparse vegetation and weak latent heat exchange.

3.4. Error Analysis of ERA-5 Land Data and Observation Data

As the ERA-5 data are reanalysis data, they can be affected by many factors that may
cause them to deviate from actual observation values. Error analysis of the ERA-5 data
and the observation data from the six stations was carried out to determine whether the
ERA-5 data had a high degree of accuracy and could be used to study the surface energy
changes of the entire TP region.

Table 2 lists the R between the observed data from the six stations and the ERA-5 data.
We can see that, of all the variables, Rld has the highest correlations, almost all above 0.9,
followed by Rsd. H exhibits the lowest correlation, mostly under 0.5, followed by Rsu.
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Of all the stations, the correlation between the ERA-5 data and the observed values is
highest at MAWORS, and lowest at SETORS, and H is actually negatively correlated. The
low correlation may be attributed to underlying surface conditions. Actual underlying
surface conditions are more complex than those simulated by the ERA-5 data, leading to
uncertainty in the predicted values.

Table 2. R between ERA-5 data and observed values (* indicates a failure to pass the significance test).

Variable
Site BJ MAWORS NADORS NAMORS QOMS SETORS

Rsd 0.94 0.95 0.96 0.70 0.79 0.57
Rsu 0.39 0.52 0.44 0.31 0.60 0.26
Rld 0.94 0.98 0.98 0.97 0.98 0.41
Rlu 0.95 0.96 0.94 0.87 0.79 0.11 *
H 0.49 0.77 0.56 0.37 0.62 −0.50
LE 0.90 0.76 0.81 0.41 0.77 0.84
Rn 0.85 0.91 0.90 0.78 0.30 0.17 *

Surface heat flux is mainly limited by soil temperature and moisture (vegetation cover,
atmospheric conditions, and soil physical characteristics). Soil temperature and moisture
are greatly affected by precipitation, especially in arid regions [55–57]. Figure 10 shows
the monthly variation in the bias between the ERA-5 reanalysis data and observations.
It can be seen from the picture that the longwave radiation values of the ERA-5 data
underestimated the observed values (except for SETORS) (Figure 10c,d). The bias variation
ranges of H and Rld are relatively minimal, and the variation range is within 60 W/m2

(Figure 10c,e). All stations show the same variation in the shortwave radiation bias during
spring and summer, which becomes larger in spring and smaller in summer, indicating
that the predicted value gradually approaches the observed value in summer, and then
reaches a minimum in autumn and winter (Figure 10a,b). The bias of Rld did not change
significantly with time (except at SETORS). The bias values are approximately 50 W/m2

lower than the observed values at MAWORS and NADORS, while they are approximately
30 W/m2 lower at BJ, QOMS, and NAMORS, among which NAMORS shows the smallest
bias (Figure 10c). The bias of Rlu changes significantly in spring and summer, but little in
autumn and winter (Figure 10d). The bias of H was large in the first five months, reached
a maximum bias in March at most stations, and then gradually decreased (Figure 10e).
Precipitation uncertainty leads to a bias between the surface and soil moisture, leading to a
greater uncertainty regarding the LE levels in the ERA-5 data. The predicted LE is closest
to the observed value in summer because there is more precipitation and high soil moisture
on the TP at this time, and the uncertainty of the ERA-5 data is decreased (Figure 10f). Rn
showed a high underestimation to different degrees from January to June. There was little
change at other stations from July to December, except for QOMS, which had a relatively
high estimate in November (Figure 10g). As mentioned above, there are some errors in
the longwave radiation data from SETORS; these resulted in an abnormal bias fluctuation,
which will not be discussed here.

As RMSE can better reflect the accuracy of data, this study also used RMSE as an
index to evaluate the accuracy of the ERA-5 data. Figure 11 shows the monthly variation in
the RMSE of the ERA-5 data and the observed data. Generally speaking, the accuracy is
highest for BJ and lowest for MAWORS. As the MAWORS is located in a barren or sparsely
vegetated area, the precipitation is low, and the soil temperature and soil moisture are
greatly affected by precipitation, which adds more uncertainty to the ERA-5 data. The
accuracy is higher for summer and lower for spring at most of the stations. The RMSE of
Rld does not change significantly with time (Figure 11c), but the RMSE of LE and H do
(Figure 11e,f). The RMSE changes in shortwave radiation, Rlu, and Rn are the same, and
their accuracy is higher for summer (Figure 11a,b,d,g).
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3.5. Energy Variation Characteristics of Surface Area

The changes in surface energy over time at the six stations were analyzed in the
previous section. This section considers the changes in regional energy across the TP.
Figure 12 shows the seasonal variation in the surface energy of the TP. It can be seen that
the LE had an obvious seasonal variation, and the LE in the north and west of the plateau
could reach more than 60 W/m2 in spring and autumn. In most other locations, it was
20–40 W/m2 (Figure 12a,c). However, in summer, the area with the highest values of
LE was primarily located in the east of the plateau, where the maximum could exceed
80 W/m2 (Figure 12b). This is due to the onset of the summer monsoon, resulting in higher
precipitation and lush vegetation in the east of the plateau, and intense latent heat exchange
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between the surface and the atmosphere, which does not occur in winter. In spring and
summer, the area with the highest values of H was mainly concentrated in the west of
the plateau, with an average of 40–60 W/m2 (Figure 12e,f), indicating that the turbulent
movement in the west of the plateau was relatively strong at this time. Rn reached its peak
in summer (Figure 12j), and Rn in the north of the plateau was always higher than that in
the south, except in summer (Figure 12i,k,l). Generally, the LE was higher in the north and
east of the plateau, whereas the maximum H was mainly in the west of the plateau. The
energy value of H had a smaller variation range over time compared with that of LE. The
Rn value in the north of the plateau was higher than that in the south (except in summer).
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Figure 13 shows the seasonal variation in four-component radiation over the TP. As
shown in the figure, Rsd reached its maximum value in spring, and the high-value area
was mainly located in the western and central parts of the TP. At this time, the average Rsd
on the TP was approximately 300 W/m2 (Figure 13a). The high-value area was reduced
during the summer, during which time the Rsd of the plateau was approximately 250 W/m2

on average (Figure 13b). The radiation value gradually decreased in autumn and winter
(Figure 13c,d). However, the decrease in the west of the plateau was smaller than that
in the eastern part of the plateau. The Rsu value was relatively low throughout the year,
between 50 and 100 W/m2, while that in the north of the plateau was lower than 50 W/m2

(Figure 13e–h). When combined with Figure 2a, it can be seen that the northern part of
the underlying plateau surface is complex, and Rsd is relatively low, which may be the
reason for the low value of Rsu in the north of the plateau. The value of longwave radiation
was generally larger than that of shortwave radiation on the plateau. For Rld, the seasonal
variation was obvious. It increased in spring and reached its maximum in summer, and
the radiation value varied between 250 and 300 W/m2 (Figure 13i,j), decreasing gradually
in autumn and winter (Figure 13k,l). The annual value of Rlu was greater than that of the
first three variables, and the seasonal variation was similar to that of Rld. It reached its
peak in summer, with levels of more than 350 W/m2 in most of the plateau and more than
450 W/m2 in the west of the plateau (Figure 13n). The Rlu value in the south of the plateau
was always lower than that in the north (Figure 13m–p).
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4. Discussion

In this paper, MODIS land-use data and NDVI data were used to acquire the under-
lying surface vegetation types and analyze the distribution of the seasonal variation of
GVF over the TP. The geographical location and underlying surface conditions had a great
impact on the exchange of surface energy flux. In general, during the vegetation growth pe-
riod on the TP, the three stations with a higher GVF (BJ, NAMORS, and SETORS), recorded
a lower surface albedo, resulting in a decrease in Rsu and an increase in Rn. The radiation
energy was absorbed by the large number of plants and by the soil. Moreover, evaporation
from the land surface and vegetation increased, resulting in intensive latent heat exchange.
The LE increased rapidly in summer, and played a leading role in surface energy transfer.
However, in the low GVF areas (NADORS and QOMS), the surface albedo was always high,
causing the surface energy exchange to be dominated by sensible heat. We also found that
the relationship between energy distribution and the underlying surface in the MAWORS
site area was different from the above mentioned. The MAWORS station is located in the
west of the TP, and the underlying vegetation is sparse, but the value of LE was always
higher than H throughout the year. The reasons for this phenomenon need further study.
After comparative analysis with the observational data, we found that the ERA-5 data
have good applicability in the TP. The discrepancy between the ERA-5 radiation data and
underlying surface energy flux data was higher in spring and lower in summer over the TP.
We preliminarily analyzed the surface radiation and energy variation characteristics of six
flux sites in different regions of the TP, and considered the impact of underlying vegetation
coverage and land-use types on the energy distribution. However, the contribution of
different regions’ energy transfer ratios needs to be further examined. The use of ERA-5
reanalysis data to analyze the differences in energy distribution in different regions of the
TP also requires further research.
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5. Conclusions

Based on the observational data from six stations (BJ, MAWORS, NADORS, NAMORS,
QOMS, and SETORS) on the TP, the surface energy variation and energy distribution were
studied. The ERA-5 Land data were used to study the regional energy changes of the TP
after error analysis, and the following results were obtained:

(1) The annual distribution of GVF gradually decreased from southeast to northwest over
the TP. Owing to the influence of precipitation and temperature, vegetation coverage
in the southeastern TP is relatively high throughout the year. From June to September,
the vegetation coverage rate of the TP reached 40−60%.

(2) Monthly variations in surface energy characteristics included the following. H in-
creased in spring and autumn and decreased in summer and winter. After H reached
its maximum value in spring, the decrease began at different times at each station,
and was earliest at the SETORS station. The LE increased rapidly in summer, with a
maximum value of more than 100 W/m2, and gradually decreased in autumn and
winter. In summer, the difference between H and LE at the NADORS and QOMS
stations was lower than that at the other four stations. The four-component surface
radiation increased during spring and summer, and decreased in autumn and winter.

(3) The diurnal variation in the surface energy obeyed the following trends. Except for
Rld, which changed insignificantly over time, these variables began to increase at
sunrise, reached their maximum values at noon, and decreased at sunset. LE was
generally greater than H in summer, but the opposite was true for NADORS and
QOMS. In winter, H was generally greater than LE. Longwave radiation differs from
shortwave radiation in that it is more susceptible to solar radiation.

(4) The surface albedo changed in a “U” shape curve, and was high in the morning and
evening, and low at noon. Except for NADORS and SETORS, where the surface albedo
changed insignificantly with the seasons, all stations showed a gradual decrease in
spring, reached their lowest values in summer, and gradually increased in autumn
and winter. The interannual variation in H and LE shows that latent heat exchange
is the main form of energy transfer in BJ, MAWORS, NAMORS, and SETORS. In
contrast, sensible heat played a leading role in surface energy transfer at NADORS
and QOMS. The Bowen ratio was generally low in summer, and some sites had a
maximum in spring.

(5) The Rld value of ERA-5 at each station had the highest correlation with the observed
value. The longwave radiation value of ERA-5 was lower than the observed value,
and the bias of the shortwave radiation increased in spring and decreased in summer.
Among the six stations, the highest precision was observed for BJ.

(6) The LE increased in spring and summer and decreased in autumn and winter, with
the highest levels mainly concentrated in the north and east of the plateau (during
summer). The high-value area of H was mainly in the west of the plateau. When Rn
varied with the season, the radiation value in the north of the plateau was always
higher than that in the south of the plateau (except in summer). The four components
varied significantly with the seasons. Rld in the east of the plateau was higher than
that in the west, and Rsd in the east of the plateau was lower than that in the west.
The maximum Rlu values were in the northwest and northeast of the plateau.
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