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Abstract: Accurate and effective mapping of forest aboveground biomass (AGB) in heterogeneous 

mountainous regions is a huge challenge but an urgent demand for resource managements and 

carbon storage monitoring. Conventional studies have related the plot-measured or LiDAR-based 

biomass to remote sensing data using pixel-based approaches. The object-based relationship 

between AGB and multi-source data from LiDAR, multi-frequency radar, and optical sensors were 

insufficiently studied. It deserves the further exploration that maps forest AGB using the object-

based approach and combines LiDAR data with multi-sensor images, which has the smaller 

uncertainty of positional discrepancy and local heterogeneity, in heterogeneous mountainous 

regions. To address the improvement of mapping accuracy, satellite LiDAR data from GEDI and 

ICEsat-2, and images of ALOS-2 yearly mosaic L band SAR (Synthetic Aperture Radar), Sentinel-1 

C band SAR, Sentinel-2 MSI, and ALOS-1 DSM were combined for pixel- and object-based forest 

AGB mapping in a vital heterogeneous mountainous forest. For the object-based approach, 

optimized objects during a multiresolution segmentation were acquired by the ESP (Estimation of 

the Scale Parameter) tool, and suitable predictors were selected using an algorithm named VSURF 

(Variable Selection Using Random Forests). The LiDAR variables at the footprint-level were 

extracted to connect field plots to the multi-sensor objects as a linear bridge. It was shown that 

forests’ AGB values varied by elevations with a mean value of 142.58 Mg/ha, ranging from 12.61 to 

514.28 Mg/ha. The north slope with the lowest elevation (<1100 m) had the largest mean AGB, while 

the smallest mean AGB was located in the south slope with the altitude above 2000 m. Using 

independent validation samples, it was indicated by the accuracy comparison that the object-based 

approach performed better on the precision with relative improvement based on root-mean-square 

errors (RIRMSE) of 4.46%. The object-based approach also selected more optimized predictors and 

markedly decreased the prediction time than the pixel-based analysis. Canopy cover and height 

explained forest AGB with their effects on biomass varying according to the elevation. The elevation 

from DSM and variables involved in red-edge bands from MSI were the most contributive 

predictors in heterogeneous temperate forests. This study is a pioneering exploration of object-

Citation: Chen, L.; Ren, C.; Bao, G.; 

Zhang, B.; Wang, Z.; Liu, M.; Man, 

W.; Liu, J. Improved Object-Based 

Estimation of Forest Aboveground 

Biomass by Integrating LiDAR Data 

from GEDI and ICESat-2 with 

Multi-Sensor Images in a  

Heterogeneous Mountainous  

Region. Remote Sens. 2022, 14, 2743. 

https://doi.org/10.3390/rs14122743 

Academic Editors: Bogdan Andrei 

Mihai and Mihai Nita 

Received: 1 May 2022 

Accepted: 6 June 2022 

Published: 7 June 2022 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Remote Sens. 2022, 14, 2743 2 of 23 
 

 

based AGB mapping by combining satellite data from LiDAR, MSI, and SAR, which offers an 

improved methodology for regional carbon mapping in the heterogeneous mountainous forests. 

Keywords: GEDI LiDAR; ICESAT-2 LiDAR; object-based approach; heterogeneous mountainous 

forests; forest aboveground biomass 

 

1. Introduction 

Forests hold an estimated 85% of the global terrestrial biomass, and the majority was 

stocked in the aboveground [1,2]. As an essential functional parameter of terrestrial 

ecosystems and climate changes, forest aboveground biomass (AGB) takes charge of the 

carbon exchange between the land and atmosphere [3–5]. Thus, accurate and efficient 

mapping of forest AGB is a critical need for comprehending carbon cycles and planning 

science-based forest managements. In spite of substantial efforts on improving AGB 

mapping, the large uncertainty still remains in heterogeneous mountainous regions [6,7]. 

Measured tree height and diameter from harvested trees, and species-sensitive 

allometric growth equations are traditionally used to accurately evaluate forest AGB [8]. 

However, this method is disruptive and spatially limited [9]. It has become a cost-effective 

and spatiotemporal comparable way to produce wall-to-wall forest AGB maps by 

combining sample measurements and satellite remote sensing data [10,11]. Optical remote 

sensing techniques were applied to AGB estimation at the earliest owing to the 

characteristic reflectance related to chlorophyll and water contents as well as horizontal 

structures [12,13]. However, limited by a poor penetration capacity, optical sensor-based 

AGB estimation has severe problems of cloud cover and saturation [14,15]. Signals from 

active microwave sensors penetrate canopies with a certain thickness and generate 

particular vertical information by various frequency bands and polarizations [16]. 

Thereinto, SAR (Synthetic Aperture Radar) earns the reputation for directly retrieval 

forest AGB mapping by the water-cloud family of models [17,18]. Yearly mosaic images 

from ALOS series (ALOS-1/2) L band SAR are globally free-access observations and 

provide comprehensive information on the geometry of different parts of tree within a 

pixel, which is particularly helpful for forest AGB mapping [19,20], whereas radar sensors 

are yet subject to signal saturation in case of AGB values above 150 Mg/ha in 

heterogeneous mountainous forests [21,22]. Namely, combining multi-sensor images 

from optical and SAR remote sensing is essential to improve accuracy of AGB estimation. 

Global Sentinel series images from C band SAR and multispectral instrument (MSI) 

combining active and passive sensors have been served as frequently-used data sources 

to map forest AGB with publicly accessibility [23,24]. Topographic indices from digital 

terrain models reflect the locally hydrothermal condition and are common predictors of 

forest AGB [25]. Among these digital terrain models, the digital surface model (DSM) from 

ALOS-1 L band interferometric SAR (InSAR) has higher precision, so that it is useful to 

extract the indices for forest AGB prediction [26]. Although abundant efforts on 

improving forest AGB by combining optical and SAR images as well as digital terrain 

models under a point–polygon framework, i.e., link sampling plots to polygon-level 

remote sensing indices, the saturation problem is still obvious in mountainous 

heterogeneous forests. Light Detection and Ranging (LiDAR) provides three-dimension 

structure features and reduces the saturation problems, which improves the result 

accuracy of forest AGB modeling [27,28]. Airborne LiDAR data remain primarily for forest 

AGB estimation, while because of a lack of space continuity, they are yet supplementary 

for large-scale AGB mapping. 

Satellite GEDI and ICESat-2 collect global photon counting LiDAR data, which have 

been processed to produce open-access land topography and vegetation variables for 

AGB estimation since April of 2019 and September of 2018, respectively [29–32]. 

Specifically, canopy cover with a linear linkage to diameter at breast height (DBH) and 
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forest height directly related to tree height have contributed greatly to AGB mapping 

[29,33]. Restricted to the coverage, the application of LiDAR data on a full-cover AGB 

mapping at a finer resolution still faces hardships without an assistance from remote 

sensing images. 

The above-mentioned remotely sensed data have been adopted to forest AGB 

mapping at various scales and each has pros and cons [15,34]. To advance 

spatiotemporally uniform AGB estimation, progress has been achieved by combining 

LiDAR data with remote sensing imagers [35–37]. Ground samples, LiDAR footprint data, 

and full-cover images are generally combined by a point-line-polygon framework and has 

yielded accurate AGB maps: modeling measured AGB points by LiDAR variables—then 

modeling LiDAR-based AGB by predictors from images [38,39]. The relationship between 

the LiDAR-based AGB and image predictors is mainly modeled based on a pixel size, 

while notable accuracy improvements were reported in object-based studies which shows 

some advantages such as the smaller uncertainty of positional discrepancy and local 

heterogeneity [9,40]. It is insufficiently studied how a pixel- or object-based mapping 

influences uncertainties of forest AGB estimation when integrating satellite LiDAR data 

with MSI and SAR images. Meanwhile, the roles of multi-sensor data including LiDAR, L 

and C bands SAR, and MSI on AGB estimation were insufficiently studied. Therefore, the 

development and comparison of pixel and object-based approaches by modeling 

relationships between forest AGB with multi-source data specifically for using datasets 

from GEDI, ICESat-2, ALOS, and Sentinel series facilitate the generation of finer-

resolution accurate AGB maps. 

This study aims to develop and compare pixel- and object-based mapping by 

integrating multi-sensor satellite data from LiDAR, SAR, and MSI to improve full-cover 

forest AGB estimation in a heterogeneous mountainous area. The Changbai Mountain 

National Nature Reserve (CMNNR) supports numerous endemic plant species and 

biodiversity of northeast Asia [41,42]. Taking this vital ecoregion with typical 

heterogeneous mountainous forests as the study area, the integration of GEDI and ICESat-

2 data with images from ALOS and Sentinel series was conducted in this study. Specific 

goals were to: determine the relations of forest AGB to features from LiDAR, multi-

frequency SAR, and MSI; compare pixel- and object-based AGB estimation by combining 

LiDAR data and images from SAR and MSI; and mapping forest AGB in mountainous 

heterogeneous forests. 

2. Materials and Methods 

2.1. The Study Area 

Established in 1961, the CMNNR occupies an area of 195,852 ha with the latitude 

from 41°42′ to 42°25′N and longitude from 127°42′ to 128°17′E in Jilin Province, 

northeastern China (Figure 1). It is capped by the Tianchi, a crater lake, dividing the 

border of China and North Korea. This site was featured by significant vertical zonation 

of climate and vegetation. The mean annual precipitation is 700–1400 mm, and average 

annual temperature is −7 to 3 °C [43]. This area has the largest protected temperate forests 

covering 177,082 ha (90.4%), and are divided into core, buffer, and experimental functional 

management zones. The human disturbances are prevented in the core area, while eco-

tourism and foundations for natural resource propagation are established in the 

experimental area [44]. From the foot to the peak of the CMNNR, vegetation distributions 

include forests of mixed broadleaf-conifer with altitudes below 1100 m, dark-coniferous 

spruce-fir with elevations from 1100 to 1700 m and Ermans birch (1700–2000 m), as well 

as alpine tundra [45]. 
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Figure 1. The CMNNR, field plots (a) and multi-sensor dataset of filtered GEDI LiDAR L2B products 

(b), ICEsat-2 LiDAR ATL08 products (c), a yearly mosaic image of 2019 from ALOS-2 SAR (Synthetic 

Aperture Radar) (A2) (d), mosaic images during May to October of 2019 from Sentinel-1 SAR (S1) 

(e), Sentinel-2MSI (S2) L2A (f), and ALOS-1 (A1) DSM data (AW3D30) (g). 

2.2. Data 

2.2.1. Field Data 

The field measurements started from May to October of 2019 across the CMNNR, 

using a stratified sampling design, i.e., randomly generated samples by masking out non-

forest areas, while the unavailable plots were substituted by the nearest homogeneous 

sites. A total of 1000 25 × 25 m samples were measured as shown in Figure 1a. Limited by 

the dense tree cover and poor labor, it has great uncertainty to measure tree height in the 

study area. Thus, field-observed point-level AGB was calculated by the measured DBH 

and allometric equations as listed in Table 1 [46]. Specifically, the observed value of forest 

AGB at a point was the biomass sum of trunks, branches, and leaves of all trees. 
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Table 1. The allometric growth equation for calculating forest aboveground biomass (AGB) by 

diameter at breast height (DBH). 

Tree Species/Family/Types Trunk Branch Leaf 

Betula platyphylla Suk. 0.1951 × DBH2.2398 0.0228 × DBH2.2723 0.0111 × DBH1.9708 

Tilia tuan Szyszyl. 0.1286 × DBH2.2255 0.0445 × DBH1.9516 0.0197 × DBH1.6667 

Betula costata Trautv. 0.1555 × DBH2.2273 0.0134 × DBH2.4932 0.0092 × DBH2.0967 

Populus L. 0.2538 × DBH1.1815 0.0470 × DBH1.9739 0.0222 × DBH2.1885 

Ulmus pumila L. 0.0971 × DBH2.3253 0.0278 × DBH2.3540 0.0239 × DBH2.0051 

Quercus L. 0.1030 × DBH2.2950 0.0160 × DBH2.6080 0.0110 × DBH2.2170 

Pinus koraiensis Sieb. et Zucc. 0.0418 × DBH2.5919 0.0208 × DBH1.9612 0.0873 × DBH1.3480 

Abies fabri (Mast.) Craib 0.0543 × DBH2.4242 0.0255 × DBH2.0726 0.0773 × DBH1.5761 

Picea asperata Mast. 0.0562 × DBH2.4608 0.1298 × DBH1.8070 0.1436 × DBH1.6729 

Pinus sylvestris var. mongolica 

Litv. 
0.1790 × DBH2.0310 0.0844 × DBH1.7692 0.0732 × DBH1.6675 

Larix gmelinii (Rupr.) Kuzen. 0.0526 × DBH2.5257 0.0085 × DBH2.4815 0.0168 × DBH2.0026 

Other broad-leaved trees 0.2266 × DBH2.1699 0.0121 × DBH2.5685 0.0229 × DBH1.9485 

Other coniferous trees 0.0425 × DBH2.5971 0.0177 × DBH2.0585 0.0618 × DBH1.4771 

2.2.2. LiDAR Data and Pre-Processing 

It was confirmed in previous research that LiDAR-estimated canopy cover and 

height had a generalized linear relationship with forest AGB as [27,47,48]. GEDI L2B data 

collected in accordance with the period of field campaign as listed in Table 2 were 

downloaded from Land Processes Distributed Active Archive Center, which were 

retrieved from the directional gap probability profile of original waveforms. Then, valid 

canopy cover and height (Figures 1b and 2) were extracted by the rGEDI R Package from 

downloaded L2B data [49,50]. Totally 35,819 pairs were obtained. 

Table 2. The downloaded LiDAR dataset from GEDI and ICESat-2. 

Source Level Spatial Resolution Date Elements 

GEDI 2B 25 m 

20190503, 0505, 0510, 0517, 0524, 

0530, 0608. 0614, 0619, 0630, 0709, 

0714, 0720, 0804, 0813, 0818, 0828, 

0831, 0910, 0915, 0919, 0929, 1012, 

1016, 1025 

T1602, 2593, 1296, 1143, 2260, 

5439, 1449, 4628, 2413, 0531, 4781, 

3683, 3863, 1476, 4448, 4322, 3530, 

0026, 0512, 3377, 2566, 1170, 0684, 

4142, 2899 

ICESat-2 ATL08 100 m 20190514, 0912, 0915, 1011, 1014 
07040306, 11690402, 12070406, 

02240502, 02620506 

Limited by the coverage of GEDI products during the time phase of field samples, 

ICEsat-2 LiDAR data were also added with GEDI as a linear bridge to acquire substantial 

AGB training inputs for random forests (RF) modeling. Similarly, ICEsat-2 LiDAR ATL08 

products from May to October of 2019 were downloaded from National Snow and Ice 

Data Center to extract canopy cover and height (Figures 1c and 2). The canopy height as 

h_canopy was the 98% height (RH98), retrieving from a cumulative distribution of all 

canopy photons within each 100 m laser footprint [51]. The canopy_openness was the 

standard deviation of photons classified as canopies within the segment [52]. In total, 6937 

valid pairs were picked out from ICESat-2 ATL08 using the Python software.  

The sampling sites within the coverage of the valid LiDAR data were set as training 

points (n = 670) to establish the pixel- and object-based models, while the remaining 330 

samples were validation points for examining pixel- and object-based model 

performances (Figure 1). 
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Figure 2. Overall workflow of object-based mapping of forest AGB by integrating LiDAR data with 

MSI and SAR images. 

2.2.3. Optical and SAR Images and Pre-Processing 

The adopted images from ALOS and Sentinel series were listed in Table 3. The mosaic 

images were pre-processed of topological corrections and acquired in the Google Earth 

Engine (GEE) platform (Figure 2). The ALOS-2 yearly mosaic images of 2019 (Figure 1d) 

were masked and converted to a normalized backscatter coefficient. In keeping with the 

period of field campaign, the mosaic images (Figure 1e) were produced from 47 Sentinel-

1 C band SAR images by filtering, converting, and mosaicking [53]. Median values of 

multispectral bands of 219 Sentinel-2A L2A images were composited as the S2 mosaic 

(Figure 1f) after the cloud and noise removal [54]. To calculate topographic indicators, the 

DSM products from ALOS-1 (Figure 1g) were downloaded from the Japan Aerospace 
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Exploration Agency (Figure 2). All pre-processed remote sensing images were re-

projected into the same projection and re-sampled into 10 m spatial resolution. 

Table 3. The adopted images from A2, S1, S2, and A1 DSM. 

Source Level Spatial Resolution Date Elements 

A2 Yearly mosaic  25 m 2019 N42E127, N42E128, N43E127, N43E128 

S1 

Ground Range 

Detected (GRD) 

scenes 

10 m 

20190504, 0511, 0523, 

0604, 0616, 0628, 0710, 

0722, 0803, 0815, 0827, 

0901, 0908, 0913, 0920, 

1002, 1014, 1026 

S1A_030CEC_4C1D, 3104D_C272, 

315C5_F0B1, 31B36_F05C, 3207F_6155, 

325B7_927A, 32B0B_9904, 33052_2FEE, 

335A7_2036, 33B72_710E, 34189_6AF3, 

34415_3340, 3479D_8BE2, 34A27_DC13, 

34DA7_D875, 353AB_F55C, 359B8_7567, 

35FB6_A688 

20190503, 0508, 0515, 

0520, 0527, 0601, 0608, 

0613, 0620, 0625, 0702, 

0714, 0719, 0726, 0731, 

0807, 0812, 0819, 0831, 

0905, 0912, 0917, 0924, 

0929, 1006, 1011, 1018, 

1023, 1030 

S1B_1E41C_F791, 1E671_C1F2, 

1E9A3_E18A, 1EBD2_89DA, 

1EEFF_9395, 1F128_5411, 1F438_AF2E, 

1F65C_F904, 1F96F_3C04, 1FB87_96B7, 

1FE9A_9303, 203C2_5BAE, 205CF_E75B, 

208D7_5F71, 20B01_D973, 20E22_7E43, 

2105F_D04A, 21398_0C46, 21909_5957, 

21B40_2E33, 21E81_62C0, 220BA_841B, 

223E8_0AF8, 2261D_DA49, 2296A_F309, 

22B9B_574C, 22ECA_6BF5, 230F2_5472, 

2343E_D938 

S2 

2A, orthorectified 

atmospherically 

corrected surface 

reflectance 

10 m 

20190503, 0506, 0513, 

0516, 0518, 0523, 0526, 

0602, 0605, 0612, 0615, 

0622, 0625, 0702, 0705, 

0712, 0715, 0722, 0725, 

0801, 0804, 0811, 0814, 

0821, 0824, 0831, 0903, 

0910, 0913, 0920, 0923, 

0930, 1003, 1010, 1013, 

1020, 1023, 1030     

There are three images on each date as 

S2A_T52TCM, T52TDM, and T52TDN. 

20190501, 0508, 0511, 

0528, 0531, 0607, 0610, 

0617, 0620, 0627, 0630, 

0707, 0710, 0717, 0720, 

0727, 0730, 0806, 0809, 

0816, 0819, 0826, 0829, 

0905, 0908, 0915, 0918, 

0925, 0928, 1005, 1008, 

1015, 1018, 1025, 1028   

There are three images on each date as 

S2B_T52TCM, T52TDM, and T52TDN. 

A1 DSM 30 m 
Derived from A1 SAR 

data during 2006 to 2011 
N41E127, N41E128, N42E127, N42E128 

On the basis of related studies, 60 multi-sensor variables were chosen and calculated 

for AGB modeling, as listed in Table 4, with 4, 24, 26, and 6 indicators from A2, S1, S2, and 

A1, respectively [13,55,56]. Texture features from S1, and normalized backscatter 

coefficients as well as their calculations from A2 and S1 were extracted from mosaic SAR 

images in SNAP software due to the sensitivity to tree structure and insensitivity to 
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topography [23,56]. The reflectance and spectral indices from mosaic MSI images were 

calculated in SNAP software. Topographic indicators were calculated based on ALOS-1 

DSM in ArcGIS software. 

Table 4. Multi-sensor variables for AGB modeling. 

Images Variables Description 

A2 mosaic Backscatter 

HH 
Normalized backscatter coefficient of 

horizontal transmit-horizontal channel in dB 

HV 
Normalized backscatter coefficient of vertical 

transmit-vertical channel in dB 

RFDI 
Radar forest degradation index,  

(HH − HV)/(HH + HV) 

V/H_L HV/HH 

S1 mosaic 

Backscatter 

VV 
Normalized backscatter coefficient of vertical 

transmit-vertical channel in dB 

VH 
Normalized backscatter coefficient of vertical 

transmit-horizontal channel in dB 

NP 
Normalized polarization, (VH − VV)/(VH + 

VV)  

V/H_C VV/VH 

Texture 

VV/VH_CON Contrast 

VV/VH_DIS  Dissimilarity 

VV/VH_HOM Homogeneity 

VV/VH_ASM Angular second moment 

VV/VH_ENE Energy 

VV/VH_MAX Maximum probability 

VV/VH_ENT Entropy  

VV/VH_MEA 
Gray-level co-occurrence matrix (GLCM) 

mean 

VV/VH_VAR GLCM variance 

VV/VH_COR GLCM correlation 

S2 mosaic 

Multispectral 

bands 

B2 Blue, 490 nm 

B3 Green, 560 nm 

B4 Red, 665 nm 

B5 Red edge, 705 nm 

B6 Red edge, 749 nm 

B7 Red edge, 783 nm 

B8 Near infrared, 842 nm 

B8a Near infrared, 865 nm 

B11 Short-wave infrared, 1610 nm 

B12 Short-wave infrared, 2190 nm 

Vegetation 

indices 

RVI Ratio vegetation index, B8/B4 

DVI Difference vegetation index, B8 − B4 

NDVI 
Normalized difference vegetation index,  

(B8 − B4)/(B8 + B4) 

EVI 
Enhanced vegetation index, 

2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1) 

S2REP 
Sentinel-2 red-edge position index,  

705 + 35 × [(B4 + B7)/2 − B5] × (B6 − B5) 

REIP Red-edge infection point index,  
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700 + 40 × [(B4 + B7)/2 − B5]/(B6 − B5) 

SAVI 
Soil adjusted vegetation index,  

1.5 × (B8 − B4)/8 × (B8 + B4 + 0.5) 

MTCI 
Meris terrestrial chlorophyll index,  

(B6 − B5)/(B5 − B4) 

MCARI 
Modified chlorophyll absorption ratio index, 

[(B5 − B4) − 0.2 × (B5 − B3)] × (B5 − B4) 

NDVI45 
Normalized difference vegetation index with 

bands 4 and 5, (B5 − B4)/(B5 + B4) 

NDVI56 
Normalized difference vegetation index with 

bands 5 and 6, (B6 − B5)/(B6 + B5) 

NDVI57 
Normalized difference vegetation index with 

bands 5 and 7, (B7 − B5)/(B7 + B5) 

NDVI58a 
Normalized difference vegetation index with 

bands 5 and 8a, (B8a − B5)/(B8a + B5) 

NDVI67 
Normalized difference vegetation index with 

bands 6 and 7, (B7 − B6)/(B7 + B6) 

NDVI68a 
Normalized difference vegetation index with 

bands 6 and 8a, (B8a − B6)/(B8a + B6) 

NDVI78a 
Normalized difference vegetation index with 

bands 7 and 8a, (B8a − B7)/(B8a + B7) 

DSM 
Topographic 

indicators 

H Elevation 

β Slope 

A Aspect 

M Surface roughness, 1/cosβ 

TWI 

Topographic wetness index, Ln [Ac/tanβ], Ac 

is the catchment area directed to the vertical 

flow 

SPI Stream power index, Ln [Ac × tanβ × 100] 

2.3. Methods 

To improve the estimation of forest AGB by a comparison on pixel- and object-based 

mapping based on LiDAR data and images from MSI and SAR, the workflow contains 

three major sections as follows (Figure 2). Indeed, the pixel- and object-based approaches 

were just different in the variable extraction and mapping units. In the object-based 

approach, multi-sensor variable values were calculated as the mean values within optimal 

objects, and the final mapping unit was also the object. While in the pixel-based approach, 

values of multi-sensor variables and predicted AGB were the exact values within the pixel. 

2.3.1. Estimation of AGB Lines from GEDI and ICESAT-2 Data by GWR 

Studies had shown that forest AGB was linearly explained by LiDAR-estimated 

canopy cover and height to a large extent [38,57,58], but their generally linear relationship 

varied by location. Hence, this study adopted geographically weighted regression (GWR) 

to estimate AGB from LiDAR lines (Figure 3). 
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Figure 3. Illustration of AGB estimation from LiDAR lines by geographically weighted regression 

(GWR) modeling. W(u, v), a weight matrix, ensures measurements obeying a distance decay. 

Relied on the locally smooth idea, GWR simulated local relationships of forest AGB 

with LiDAR-estimated canopy cover and height by individually calculating parameters 

that obeyed a distance decay [59,60]. Namely, the greater weight was assigned when the 

location of a measurement was closer [61]. The least squares method weighted by 

locations of field-measured AGB was used [62]. A GWR model was established for 

LiDAR-based AGB using GWR4 software and training samples by quantifying 

parameters, i.e., model type, kernel of Gaussian or bi-square types, fixed or adaptive 

bandwidth selection method and criteria [63,64]. 

2.3.2. Filtering Predictors Based on Pixel- or Object-Based Analysis 

Pixel- and object-based correlation analysis were tested, respectively, and then 

compared with each other. For a pixel-based analysis, the variable was extracted at the 

locations of field-measured AGB plots. In the object-based process, the variable value was 

the average within the object that related to a plot-level AGB. To acquire the objects, the 

multiresolution segmentation algorithm on the eCognition software was applied by 

setting three parameters of shape as 0.1, compactness as 0.5, and scale to control the shape, 

size, and spectral variation of a segmented S2 mosaic image with all multispectral bands 

(Figure 2) [40,65]. The suitable scale parameter was estimated by ESP (Estimation of the 

Scale Parameter) tool, and the first steep peak of the ROC curve in Figure 4 corresponding 

to a scale level of 45 was set for the segmentation [66]. Finally, the study area was 

segmented into 147,108 objects. 

 

Figure 4. Local variance and rate of change of different values of scale calculated by the ESP tool 

with a shape of 0.1 and compactness of 0.5. 

Pairwise Pearson’s correlation analysis in SPSS software was conducted to determine 

predictor variables for AGB estimation and the candidate was selected as the significantly 

related variables (p < 0.05). The VSURF (Variable Selection Using Random Forests) 
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algorithm gained fame for optimized variable selection [67]. By mean variable importance 

values of random forest modeling, the VSURF algorithm filtered out unconsidered 

predictors. After that, the most suitable variables were selected by an iterative 

optimization for field-measured AGB prediction to fit the model with a high possibility 

[68]. The VSURF package of R software was used to filter the candidate for the optimized 

predictor variables for prediction accuracy of forest AGB. 

2.3.3. Mapping AGB Polygons from AGB Lines and Multi-Sensor Predictors by Random 

Forests 

RF was less sensitive to noise in training samples and had extensive improved 

applications on remote sensing-based AGB mapping [15,38,69]. An RF model was 

determined by two parameters as the number of features to split nodes and number of 

trees for optimization [56]. Calculating the mean variance decrease, the variable 

importance of a RF model was identified [70]. Two units of predictors were imported in 

WEKA software as shown in Figure 5 for the pixel- and object-based RF modeling, 

respectively, and the accuracy comparison was made according to the 330 independent 

validation points by calculating root-mean-square errors (RMSE), mean errors (ME), 

coefficient of determination (R2), and the relative improvement (RI) [56]. Predicted AGB 

estimation was the mean of all trees. The wall-to-wall forest AGB was illustrated by the 

object-based RF modeling. 

 

Figure 5. Delineation of random forests (RF) mapping of forest AGB based on LiDAR lines and 

multi-sensor images. 

3. Results 

3.1. The GWR Model and LiDAR-Based AGB Lines 

The measured forest AGB values were between 0.46 and 686.13 Mg/ha with the 

majority below 250 Mg/ha (Figure 6a). For visual display, the accuracy of the final AGB 

map, the measured values were split into five levels with the same frequency (Figure 6a). 

The mean was 152.62 Mg/ha and the median was 88.59 Mg/ha with the standard deviation 

(SD) value of 152.18 Mg/ha (Figure 6b). Along three vertical vegetation zones, the mean 

AGB values increased to the peak of 102.45 Mg/ha in the mixed coniferous and broad-

leaved forests (<1100 m), and then decreased to the bottom of 74.16 Mg/ha in Ermans birch 

forest (1700–2000 m). 

The canopy cover from GEDI and ICESat-2 ranged from 0.002 to 11.61, the values 

above 1 were belonging to ICESat-2 products, as the SD of classified canopy photons 

(Table 5). The canopy height from GEDI and ICESat-2 was 1.76 to 45.91 m. Based on 

canopy cover and height from GEDI and ICESat-2 as well as training samples of measured 

AGB, the GWR model was built by a Gaussian approach and a fixed Gaussian kernel as 

the weight function with the smaller RMSE value of 38.64 Mg/ha compared to adaptive 
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bandwidth. The golden selection method and small sample bias corrected Akaike 

information criterion (AICc) determined the optimal bandwidth as 104.33. The AGB 

values extracted from GWR modeling based on 42,756 pairs of canopy cover and height 

ranged from 0.39 to 684.09 Mg/ha. The median of LiDAR-based AGB was 151.48 Mg/ha, 

and, for SD values, it was 117.99 Mg/ha (Table 5).  

  

Figure 6. The AGB profiles of forest measured samples from Plot 1 to 1000 (a) and value distribution 

along different altitudinal gradients (b). The boxes denote values within the range of the mean ± 

standard deviation (SD), lines in boxes are medians, and squares depict means with the dash as the 

whisker of 5–95%, as well as crosses as the minimum and maximum values. 

Table 5. Statistical descriptions of the LiDAR-derived canopy cover (C) and height (Ht) as well as AGB. 

Variables Minimum Maximum Mean Medium SD 

C 0.002 11.61 1.78 0.61 2.68 

Ht (m) 1.76 45.91 22.84 24.45 7.55 

AGB (Mg/ha) 0.39 684.09 179.50 151.48 117.99 

3.2. Predictor Variables 

In the object-based process, 47 variables had significant correlations with measured 

forest AGB (Table 6), as four from L band SAR, 15 from C band SAR, 24 from MSI, and 

four from DSM. However, HV from A2, VV_DIS, and VH_DIS from S1, A, and TWI from 

DSM did not correlate significantly with AGB in the pixel-based process. With forest AGB 

increasing, variables from the pixel- and object-based processes had the same trend. 

Overall, remote sensing indices were better connected to AGB in the object-based process 

with the larger r values than the pixel-based analysis. 

Table 6. The filtering result of predictor variables from remote sensing indices which were 

significantly related to measured AGB with a mark * as the p-value of the t-test being below 0.05 

and ** as a p-value below 0.01. 

Images Variables 
r VSURF-Selected Predictors 

Pixel-Based Object-Based Pixel-Based Object-Based 

A2 mosaic 

HH 0.12 ** 0.11 ** No No 

HV  0.17 **  Yes 

RFDI −0.08 * −0.12 ** No No 

V/H_L 0.09 ** 0.13 ** No No 

S1 mosaic 

VV_DIS  0.08 *  No 

VV_HOM −0.15 ** −0.17 ** No No 

VV_ASM −0.11 ** −0.11 ** No No 

VV_ENE −0.14 ** −0.15 ** No No 

VV_MAX −0.13 ** −0.14 ** No No 
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VV_ENT 0.15 ** 0.17 ** No No 

VV_MEA 0.11 ** 0.11 ** Yes Yes 

VV_COR 0.17 ** 0.19 ** Yes No 

VH_DIS  0.06 *  No 

VH_HOM −0.14 ** −0.16 ** Yes No 

VH_ASM −0.11 ** −0.11 ** No No 

VH_ENE −0.13 ** −0.14 ** No No 

VH_MAX −0.13 ** −0.14 ** No No 

VH_ENT 0.14 ** 0.16 ** No No 

VH_COR 0.11 ** 0.13 ** Yes No 

S2 mosaic 

B2 −0.11 ** −0.10 ** No No 

B3 −0.16 ** −0.17 ** No No 

B4 −0.17 ** −0.17 ** No No 

B5 −0.15 ** −0.15 ** Yes No 

B6 0.08 * 0.09 ** No No 

B7 0.11 ** 0.13 ** No No 

B8 0.09 ** 0.10 ** No No 

B8a 0.09 ** 0.10 ** No No 

RVI 0.23 ** 0.25 ** No No 

DVI 0.13 ** 0.15 ** No No 

NDVI 0.20 ** 0.21 ** No No 

EVI 0.15 ** 0.17 ** Yes Yes 

S2REP 0.21 ** 0.23 ** No No 

REIP 0.26 ** 0.30 ** No No 

SAVI 0.08 ** 0.10 ** No No 

MTCI 0.25 ** 0.30 ** No Yes 

MCARI 0.11 ** 0.12 ** No No 

NDVI45 0.12 ** 0.13 ** No Yes 

NDVI56 0.26 ** 0.30 ** No Yes 

NDVI57 0.27 ** 0.29 ** No Yes 

NDVI58a 0.26 ** 0.27 ** Yes No 

NDVI67 0.22 ** 0.29 ** No No 

NDVI68a 0.09 ** 0.07 * No No 

NDVI78a 0.15 ** 0.28 ** No Yes 

DSM 

H −0.43 ** −0.43 ** Yes Yes 

A  −0.11 **  No 

M 0.16 ** 0.21 ** No No 

TWI  0.22 **  Yes 

Normalized backscatter coefficients from L band SAR images had strongly 

significant relation to measured AGB, while that from C band SAR images had a weaker 

correlation without the significance. The calculation of backscatters from A2 was 

unhelpful to enhance the r values, especially for an object-based process, whereas the 

texture analysis was helpful with heightening the correlation of backscatters from S1 to 

AGB. The texture characteristics of VV backscatters were more related to AGB than that 

of the VH channel. In the object-based process, HV backscatters from A2 had the stronger 

relationship than HH backscatters, which was in contrasted with the pixel-based process. 

S1 texture features from the pixel- and object-based processes had similar relationships 

with AGB.  

All variables from MSI were significantly correlated with AGB. Vegetation indices 

had stronger correlation to AGB than original band reflectance, especially the variables 
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involved in red-edge bands. The top five of the object-based correlation were MTCI, REIP, 

NDVI57, NDVI56, and NDVI67, while that of the pixel-based relevant were NDVI57, 

NDVI56, NDVI58a, REIP, and MTCI. Elevation from A1 DSM showed the strongest 

relation to AGB among all remote sensing indices. The calculation of slope, e.g., M and 

TWI, was helpful with increasing the correlation than the original indicators. The 

indicator from the hydrologic process, TWI, was strongly related to AGB in the object-

based analysis but did not show the significance in the pixel-based analysis.  

Both in the pixel- and object-based processes, the elevation from DSM and variables 

involved in red-edge bands from MSI displayed the maximum correlation, and impacts 

of backscatters from C band SAR as well as their calculation were marginal. The 

correlation of variables from L band SAR was at the average level.  

After preliminary elimination and ranking, by the VSUPF trees fixed to 500 and 

features as the variable number/3 [67], the predictor variables were selected. In the pixel-

based process, eight predictors were chosen with the lowest out-of-bag (OOB) error, as 

marked “Yes” in Table 6, including VV_MEA, VV_COR, VH_COR, VH_HOM, B5, EVI, 

NDVI58a, and H. As for the object-based analysis, 10 predictors were selected, i.e., HV, 

VV_MEA, EVI, MTCI, NDVI45, NDVI56, NDVI57, NDVI78a, H, and TWI. On the whole, 

the object-based analysis mainly selected vegetation indices that involved red-edge bands 

from S2 MSI, but the pixel-based process chose texture features from C band SAR.  

3.3. Forest AGB in the CMNNR Mapped by RF Models 

According to the smallest RMSE values, 500 trees and five features were set to build 

the pixel-based RF model. Similarly, 500 trees and four features were set to build the 

object-based RF model. The results showed that predictors ranked by the attribute 

importance of the pixel-based RF model were H, NDVI58a, VV_COR, EVI, B5, VV_MEA, 

VH_COR, and VH_HOM. Predictors sorted by the attribute importance of the object-

based RF model were H, NDVI57, NDVI56, NDVI78a, TWI, NDVI45, VV_MEA, EVI, HV, 

and MTCI. Overall, the elevation, variables involved in red-edge bands, and texture 

features from VV backscatters were the most important predictors in RF modeling.  

Table 7 showed the accuracy of pixel- and object-based RF models based on 330 

validation samples. For further evaluating and comparing accuracy with related studies, 

the mean value of measured AGB was used to divide the ME and RMSE. ME values 

denoted that both approaches overestimated forest AGB. The accuracy demonstrated that 

the object-based approach outperformed pixel-based modeling (Figure 7). The object-

based modeling reduced RMSE values by 4.46% and improved accuracy of AGB modeling 

with a p-value of the t-test below 0.01.  

 

Figure 7. Scatter diagrams of estimated AGB versus measured values. 
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Table 7. Accuracy comparison between pixel- and object-based approach for RF modeling by 

independent validation data. 

Modeling Approach 
ME  RMSE  

R2 RIRMSE (%) 
Mg/ha % Mg/ha % 

Pixel-based  –24.22 –15.87 54.47 35.69 0.96 0 

Object-based –23.44 –15.36 52.04 34.10 0.97 4.46 

Then, AGB distribution was mapped by abovementioned RF models. The object-

based approach decreased mapping time by requiring less outputs of the RF prediction. 

The number of outputs in a pixel-based RF model was the number of all pixels, which was 

nearly 200,000, while that in an object-based was 147,108. The object-based RF mapping 

of forest AGB was as in Figure 8a. The mapped values were displayed at five levels on the 

same frequency of field-measured AGB as shown in Figure 6a. Mapped values had similar 

distributions and were close to the field-measured AGB, which was depicted by the same 

pattern at each level. By integrating LiDAR data with multi-sensor images and object-

based RF modeling, estimated values of forest AGB were between 12.61 and 514.28 Mg/ha, 

with a mean of 142.58 Mg/ha and SD values as 90.21 Mg/ha (Figure 8b).  

  

Figure 8. The spatial distribution of estimated forest AGB (a) and the estimated AGB variations of 

different elevation gradients and management zones (b) using object-based RF modeling. 

The north slope with the lowest elevation (<1100 m) had the largest mean value of 

179.72 Mg/ha, with AGB values ranging from 12.61 to 514.28 Mg/ha (Figure 8). In the south 

slope of the CMNNR with the altitude above 2000 m, the smallest mean value was 67.04 

Mg/ha and AGB values were between 27.71 and 311.81 Mg/ha. Generally, the distribution 

of mapped values was approximate to the measured forest AGB (Figures 6b and 8b). The 

errors mainly generated by overestimations of small values (<68.60 Mg/ha) in the high-

altitude (≥1700 m) area and underestimations of large AGB (>269.02 Mg/ha) in the low-

elevation region. The core forests had the largest mean value of AGB as 168.75 Mg/ha, and 

that in buffer and experimental areas had approximate mean values as 124.63 and 137.41 

Mg/ha, respectively.  

4. Discussion 

4.1. Pixel- versus Object-Based RF Modeling 

The pixel- and object-based approaches mainly differed in variable extraction and 

the mapping unit. The variable filtered in the object-based approach was more consistent 
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with previous studies than the pixel-based results (Table 6): indeed, in Table 6, the object-

based r values demonstrated that HV backscatters were more sensitive to AGB than HH 

channel, and vegetation indices involved red-edge bands from S2 MSI had greater 

influence than texture features from S1 [56,71–73]. The object-based approach markedly 

decreased the prediction time, which merged homogeneous pixels into objects as the 

mapping unit. The assessment result of the object-based approach had higher accuracy 

than that of the pixel-based model (Table 7 and Figure 7). These comparisons revealed 

that the object-based approach improved forest AGB mapping by modeling the 

relationship at an object scale.  

The RMSE values of estimation by the pixel- and object-based approach were 35.69% 

and 34.10%, respectively, which were smaller than the most published regional maps of 

forest AGB using similar methods as RMSE values from 21% to 67% [40,74]. This can be 

explained by the advantages of integrating multi-sensor data, especially GEDI and 

ICESat-2 products, and higher resolution of Sentinel series. It implied that the integration 

of GEDI and ICESat-2 LiDAR data and series images from ALOS and Sentinel was suitable 

for large-scale forest AGB mapping. This improvement was possibly because AGB lines 

extracted from LiDAR data reduced the saturation problem and heterogeneity, better 

matching the predictors from multi-sensor images [54]. However, the RI values as listed 

in Table 7 demonstrated that the improvement of the object-based modeling in this study 

was less than the previous study which directly link field-measured AGB and image 

objects [40]. This inferred that the object-based modeling was more helpful to the 

traditional point–polygon approach than the point–line–polygon framework. It also 

meant that the integration of LiDAR data reduced known uncertainties related to the 

positional discrepancy between field data and imagery objects. Due to the coarser 

spatiotemporal resolution of LiDAR data than satellite images, it was difficult and had the 

large uncertainty to integrate all sensors using multi-sensor data fusion approach for AGB 

mapping [75], whereas the final object-based AGB map as Figure 8a by integrating LiDAR 

data with satellite images was patchy and striping. Namely, the progress of algorithms on 

AGB extraction from LiDAR lines and suitable segmented objects were crucial in future 

studies for a better linkage between measured points and imagery objects.  

This study concluded that the object-based mapping of forest AGB by the integration 

of GEDI and ICESat-2 LiDAR data with MSI and SAR images was a promising 

methodology. It should be emphasized that AGB lines extraction from LiDAR data and 

segmented objects were crucial for improving the precision.  

4.2. Contributions of Multi-Sensor Variables to AGB Modeling 

The location-specific coefficient values of canopy cover and height denoted the 

contributions of LiDAR variables to AGB modeling (Figure 9), which was firstly revealed 

by this study. According to results of the GWR modeling, absolute values of most canopy 

cover coefficients were larger. This revealed that spatial variations of forest AGB were 

more susceptible to canopy cover from LiDAR, especially in the low altitude experimental 

zones of the north slope of the CMNNR. In general, absolute values of cover canopy 

coefficients decreased by the increasing altitude, and the trend of canopy height was 

opposite. This may be resulted from forest changes in vertical zones along elevation 

gradients. In fact, the greater influence of canopy height on AGB accumulation with the 

increasing elevation was owing to decreasing tree density and dominating coniferous 

forests in the CMNNR [41,43]. 
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Figure 9. The location-specific coefficients of (a) canopy cover and (b) canopy height in the GWR 

model. 

The role of MSI and SAR variables on AGB modeling was indicated by correlation 

coefficients (Table 6) and the attribute importance of RF models. The elevation was a 

proxy of InSAR height and was of prime importance on AGB mapping in the CMNNR. 

Meanwhile, agreed with relevant studies on Changbai flora regions [56,76], forest AGB of 

the CMNNR showed spatial variations along elevation gradients (Figures 6 and 8). The 

forests AGB in the southeastern part had greater spatial variations because of relatively 

large elevation as well as its dramatic changes (Figures 1g and 8a). Due to a finer 

resolution in this highly heterogeneous landscape and drastic changes in altitude, the 

larger spatial variations of forest AGB compared to studies on nearby regions were shown 

[42,76]. This decreasing of forest AGB with increasing elevation was mainly because the 

reduction of moisture, temperature, and species richness, which affected biomass 

sequestration, changed remarkably along elevation gradients in the Changbai Mountain 

regions [77–79].  

Sentinel-2 variables were powerful in vegetation type classification and horizontal 

structure retrieval such as estimations of canopy cover and DBH, especially the red-edge 

band indices reflecting chlorophyll contents [13,24,80]. Backscatters from SAR sensors 

were related to roughness and water content of vegetation [15,56]. Moreover, canopy cover 

estimated by MSI vegetation indices and backscatters from SAR were typical inputs in 

water-cloud models for AGB mapping [13,17]. However, subject to a coarse spatiotemporal 

resolution of ALOS-2 and the saturation problem of Sentinel-1 [81], the influence of 

backscatters from these SAR sensors on AGB mapping was marginal in this study compare 

with MSI variables. Texture features of Sentinel-1 images were more beneficial to AGB 

modeling than raw backscatters, particularly that of VV channel as shown in Table 6, 

owing to reducing impacts from the heterogeneity by textural analysis [56,82]. 

The comparison of roles of variables from four sources in AGB estimation revealed 

that LiDAR data outperformed images from other sensors (RMSELiDAR-lines = 38.64 Mg/ha, 

RMSEtraditional = 52.04 Mg/ha). This was because LiDAR directly measured the vegetation 

distribution along the vertical axis, which was sensitive to density variables as the most 

critical drivers of AGB increments [2,83]. These characteristics also caused a larger 

saturation value of LiDAR signals for precise assessment of biomass. Nevertheless, a 

coarse spatiotemporal resolution of LiDAR data results in a lack of coverage in the same 
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phenological phase (Figure 1b,c), and it is also the reason that multi-sensor images were 

integrated.  

In short, canopy cover and height from GEDI and ICESat-2 LiDAR, elevation from 

ALOS-1 DSM, and vegetation indices of red-edge bands from Sentinel-2 were 

recommended for large-scale AGB mapping in heterogeneous forests.  

4.3. Uncertainty and Management in a Heterogeneous Mountain Landscape 

The uncertainty is a crucial topic associated with remote sensing-based AGB, and 

was derived from field measurements, measured biomass calculation, predictors 

variables, and prediction algorithm [38,84]. In order to reduce the uncertainty, on-site 

measurements of tree height were abandoned and up-to-date allometric growth equations 

based on DBH values were adopted (Table 1).  

The uncertainty of multi-source predictor variables was lessened by approximate 

acquisition time among multi-sensor variables and with on-site measurements. 

Substantial variables articulated in previous papers (Table 3) were calculated and filtered 

by VSURF tool to find optimized predictors. The sampling size matched the spatial 

resolution of GEDI products but was inconsistent with the ICESat-2 and multi-sensor 

data. The suitable sampling size would be explored further.  

The modeling uncertainty was also considered. In the GWR modeling, three group 

of LiDAR variables were input, and the results were compared as Table 8. In other words, 

with the smallest RMSE values, GEDI and ICESat-2 products were combined in GWR 

modeling. The uncertainty of object-based modeling was also discussed as the predicted 

error in Part 4.2. The uncertainties related to the positional discrepancy and local 

heterogeneity were reduced by the OBA approach and taking LiDAR data as a linear bridge. 

It can be upgraded by suitable segmented objects and compared multiple algorithms.  

Table 8. The comparison among GWR models based on three data sources. 

Variable Source Bandwidth AICc RMSE (Mg/ha) 

GEDI  158.67 6560.47 41.67 

ICESat-2 147.84 1630.92 56.75 

Both 104.33 8099.31 38.64 

On the whole, the uncertainty is still a huge challenge for forest AGB mapping in a 

heterogeneous mountain landscape. It is limited by on-site measurements, the 

spatiotemporal discrepancy of multi-source data, variable selection, and modeling 

algorithms. There is a great demand for the further exploration of suitable sampling sizes 

and modeling algorithms for reducing the uncertainty.  

For the sustainable forestry, certain managements should be implemented according 

to the forest AGB map as well as coefficients of canopy cover and height (Figures 8 and 

9). It was showed that canopy cover positively contributed to forest AGB in the low 

altitude experimental zones of the northwest slope of the CMNNR. This indicated that 

these forests with high stand density should be thinned to increase space and resources. 

It was urgent for forests on the south slope of the CMNNR to be enclosed for cultivation. 

Experimental forests should be felled for increment. Overall, the core zone was well-

protected, while buffer and experimental areas need more attention. 

5. Conclusions 

To improve wall-to-wall forest AGB estimation in heterogeneous mountainous 

forests, this study developed a pioneering object-based approach by integrating GEDI and 

ICESat-2 data with images from Sentinel and ALOS series. This promising methodology 

was conducted in a vital ecoregion, the CMNNR in Northeast China, and efficiently 

acquired an AGB map of heterogeneous forests across elevation gradients, with the 

relative RMSE values of 34.10%. As the first exploration of object-based mapping of forest 
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AGB by the integration of satellite LiDAR data from GEDI and ICESat-2 with series 

images of ALOS and Sentinel, this study provided an improved methodology on regional 

carbon mapping to support decision makers for the suitable management of the CMNNR. 

According to the results, the following was concluded in this study: 

(1) The object-based approach accurately mapped AGB of heterogeneous forests in the 

CMNNR, and improved accuracy of 4.46% compared to the pixel-based process. The 

object-based approach also selected more optimized predictors and markedly 

decreased the prediction time compared to the pixel-based analysis.  

(2) Canopy cover and height explained forest AGB to a large extent (RMSE = 25.32%), 

and their effects on biomass varied by the elevation. The elevation from DSM and 

variables involved in red-edge bands from MSI were the most contributive 

predictors, and impacts of backscatters from C band SAR as well as their calculation 

were marginal. 

(3) The map illustrated that forest AGB of CMNNR varied along elevation gradients, 

with values from 12.61 to 514.28 Mg/ha. The north slope of the CMNNR with the 

lowest elevation (<1100 m) had the largest mean value, while forests in the south 

slope with the altitude above 2000 m had the smallest mean AGB. Forests in core 

areas had a much larger mean value of AGB than that in buffer and experimental 

zones. 
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