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Abstract: Alpine meadow ecosystems are extremely vulnerable to climate change and serve an es-

sential function in terrestrial carbon sinks. Accurately estimating their gross primary productivity 

(GPP) is essential for understanding the global carbon cycle. Solar-induced chlorophyll fluorescence 

(SIF), as a companion product directly related to plant photosynthesis process, has become an at-

tractive pathway for estimating GPP accurately. To date, the quantitative SIF-GPP relationship in 

terrestrial ecosystems is not yet clear. Especially, red SIF and far-red SIF present differences in their 

ability to track GPP under different environmental conditions. In this study, we investigated the 

performance of SIF at both red and far-red band in monitoring the GPP of an alpine meadow eco-

system based on continuous tower-based observations in 2019 and 2020. The results show that the 

canopy red SIF (SIF���) and far-red SIF (SIF��������) were both strongly correlated with GPP. SIF��� 

was comparable to SIF������� for monitoring GPP based on comparisons of both half-hourly aver-

aged and daily averaged datasets. Moreover, the relationship between SIF��� and GPP was linearly 

correlated, while the relationship between SIF������� and GPP tended to be nonlinear. At a diurnal 

scale, dramatic changes in photosynthetically active radiation (PAR), air temperature (Ta), and va-

por pressure deficit (VPD) all had effects on the slope of the linear fitted line with zero intercept for 

SIF���-GPP and SIF�������-GPP, and the effect on the slope of the linear fitted line with zero inter-

cept for SIF�������-GPP was obviously stronger than that for SIF���-GPP. PAR was the dominant 

factor among the three environmental factors in determining the diurnal variation of the slope of 

SIF-GPP. At a seasonal scale, the SIF�������/GPP was susceptible to PAR, Ta, and VPD, while the 

SIF���/GPP remained relatively stable at different levels of Ta and VPD, and it was only weakly 

affected by PAR, suggesting that SIF��� was more consistent than SIF������� with GPP in response 

to seasonal variations in environmental factors. These results indicate that SIF��� has more poten-

tial than SIF������� for monitoring the GPP of alpine meadow ecosystems and can also assist re-

searchers in gaining a more comprehensive understanding of the diversity of SIF-GPP relationships 

in different ecosystems. 

Keywords: alpine meadow; solar-induced chlorophyll fluorescence (SIF); gross primary production 

(GPP); tower-based observation 

 

1. Introduction 

Alpine meadow is a typical alpine ecosystem found globally and consists of hardy 

perennial herbaceous communities, and such meadows are mainly distributed at high al-

titudes and covers about one-third of the Qinghai–Tibet Plateau (QTP). They have a cru-

cial role in the carbon cycle and serve as an essential ecological security barrier in alpine 
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regions [1–3]. Alpine meadows of the QTP are exposed to intensive and sufficient solar 

radiation throughout the year, including strong ultraviolet radiation [4]. Temperatures at 

the QTP usually undergo wide diurnal variation, and the temperature and rainfall here 

are severely influenced by latitude, topography, and atmospheric circulation, making the 

growing environment of alpine meadows extremely harsh [3]. Previous studies have 

demonstrated the vulnerability of alpine ecosystems to major changes in climate [3,5–7], 

which inevitably leads to changes in carbon fluxes in this ecosystem [4]. 

Gross primary productivity (GPP) is the sum of total organic carbon fixation through 

photosynthesis within the vegetation under natural light conditions, which is an im-

portant indicator of carbon fluxes [8–10]. Accurate estimations of the GPP of ecosystems 

is important for understanding the state of the ecosystem response to environmental var-

iations and changes in carbon balance [11,12]. Throughout recent decades, an increasing 

number of researchers have become accustomed to utilizing solar-induced chlorophyll 

fluorescence (SIF) as a promising approach on monitoring GPP [11,13,14]. SIF is an emis-

sion spectrum showing two emitting peaks in the red and far-red bands, which is a by-

product of the photosynthesis process [11,15–17]. Thereby, SIF is directly related to pho-

tosynthesis and could be treated as an indicator of GPP [15,18–21]. 

Most current studies on the association of SIF and GPP have focused on cropland, 

forest, grassland, and wetland ecosystems, and SIF-based GPP monitoring has demon-

strated a strong ability to track changes in all of these ecosystems. Canopy far-red SIF 

(SIF�������) follows likeness seasonal and diurnal pattern of variation to GPP, which have 

been observed in crops [14,22–25], forests [26–28], and coastal salt marsh ecosystems [29]. 

In crop ecosystems such as wheat, maize, rice, and soybean, many studies have found that 

SIF������� showed an obvious linear relationship with GPP [24,25,30,31], but this linear 

relationship is highly variable depending on the type of crop photosynthetic pathway [24]. 

Additionally, studies on grassland ecosystems based on the GOME-2 terrestrial chloro-

phyll fluorescence data product and FLUXNET GPP data have shown good linear rela-

tionships between SIF������� and GPP in multi-year data on monthly time scales but also 

variations in the correlations between SIF������� and GPP due to differences in the types 

of photosynthetic pathways of grasslands [32,33]. Several studies on evergreen coniferous 

[26], evergreen broadleaf [34], and deciduous broadleaf forests [35] have shown that, un-

der normal growth conditions, SIF�������  exhibited a positive linear relationship with 

GPP at different time scales, although the coefficient of determination (R2) of this linear 

relationship varied obviously depending on the observed time scale. More recently, a 

study on coastal salt marsh ecosystems also reported that SIF������� had an obvious lin-

ear correlation with GPP in coastal salt marsh ecosystems, and the linearity strengthened 

with increasing time scale [29]. However, other studies have also revealed that SIF������� 

and GPP have a nonlinear relationship. For example, Chen et al. [23] found a hyperbolic 

relationship between maize SIF������� and GPP. The results from a study on evergreen 

coniferous forests showed a strong nonlinear relationship between SIF������� and GPP 

on both diurnal and seasonal scales, mainly because the GPP was saturated with increas-

ing absorbed photosynthetically active radiation (APAR), while SIF������� was not [36]. 

Another study demonstrated that the linear correlation for SIF������� with GPP shifted 

from positive to negative when the trees were subjected to extreme weather conditions 

(e.g., heat waves) in evergreen broadleaf forests, thus showing an overall nonlinear corre-

lation [34]. This is mainly due to a change in internal plant energy allocation as an ever-

green broadleaf forest experiences nonphotochemical quenching (NPQ) saturation and 

continuous photoinhibition during heat waves [34]. 

Notably, researchers prefer to use SIF������� to study the dynamics of GPP in vari-

ous ecosystems [14], owing to the fact that fluorescence in the red band is strongly influ-

enced by reabsorption, and that accurate retrieval of SIF is easier in the far-red than the 

red band. Benefiting from the improvement of signal-to-noise ratio and spectral resolution 

of spectral measurement instruments, as well as the development of fluorescence inver-

sion algorithms, researchers have also explored the relationship between canopy red SIF 
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(SIF���) and GPP [37]. For instance, through downscaling from the observed canopy level 

SIF to the photosystem level in maize, Liu et al. [38] investigated the relationship between 

photosystem level SIF and GPP in maize. As compared to canopy-level red SIF, the corre-

lation between photosystem-level red SIF and GPP was found to be greatly enhanced and 

even better than that between photosystem-level far-red SIF and GPP. During the wheat 

canopy growth stage, the correlation between SIF�������  and GPP was found to be 

stronger than that between SIF��� and GPP [14]. When the growing stage reached a stable 

state, SIF������� was slightly weakened in relation to GPP, while SIF��� was strength-

ened in relation to GPP, thereby causing the correlations between SIF��� and GPP and 

between SIF������� and GPP to be comparable [14]. Magney et al. [26] studied on an ev-

ergreen coniferous forest and stated that the expected increase in SIF��� did not occur as 

a consequence of the absence of a significant increase in chlorophyll concentration, and 

that SIF��� was capable of closely tracking the seasonal changes in GPP in this evergreen 

coniferous forest. 

Across various environmental conditions, the relationship is by no means invariant 

between SIF and GPP. Previously, an investigation on mangroves showed that VPD neg-

atively affected the strength of the SIF-GPP relationship in mangroves, and that the SIF-

GPP correlation did not consistently get stronger as PAR and air temperature increased. 

The strength of the SIF-GPP relationship in mangroves was most strongly correlated at 

moderate PAR and air temperature. Thereby high PAR, air temperature, and VPD would 

weaken the correlation between SIF-GPP in mangrove ecosystem [39]. Yang et al. [25] ex-

hibited that variations in relative humidity and temperature had obvious effects on the 

ratio of GPP to SIF�������  for rice. At the same humidity level, the ratio of GPP to 

SIF������� diminished with elevated temperature, while at the same temperature level, the 

ratio of GPP to SIF������� showed an increase with elevated relative humidity. In a sub-

alpine coniferous forest ecosystem, Yang et al. [40] found that there were differences in 

the relative importance of environmental factors driving changes in GPP and SIF��� from 

spring to winter. Moreover, SIF��� responded to light earlier than GPP after winter dor-

mancy ends, potentially making it challenging to capture the onset of the photosynthetic 

season using SIF���. Regarding a coastal salt marsh ecosystem, tidal inundation had a 

negative effect on the relationship between SIF������� and GPP, mainly due to its differ-

ent degrees of effects on the light use efficiency (LUE), fluorescence escape probability, 

and fluorescence quantum yield of vegetation in coastal salt marshes, which affected the 

performance of SIF������� in accurately estimating GPP [29]. Across global scales, Chen 

et al. [41] showed that moisture availability had a remarkable moderating effect on the 

SIF-GPP relationship and that the most important environmental factors influencing the 

SIF-GPP relationship differed in diverse climatic zones. Furthermore, Chen et al. [42] fo-

cused on the Northern Hemisphere SIF-GPP relationship and found that the seasonal var-

iation in the SIF-GPP relationship was strongest in regions of moderate temperature and 

precipitation. Evidently, the effects of environmental factors on the SIF-GPP relationship 

display different patterns in different regions, making it very essential to consider the 

transformation of the SIF-GPP relationship at different levels of various environmental 

factors. 

Although advances have been made in the SIF-GPP relationship and its response to 

environmental factors in some ecosystems, apparently the SIF-GPP relationship varies 

with ecosystem shifts. Even in the same ecosystem, the SIF-GPP relationship varies sig-

nificantly due to the different stages of vegetation growth and the effects of changes in 

different environmental factors on vegetation. The SIF-GPP relationship in the whole ter-

restrial ecosystem is not clarified, therefore, it is necessary to investigate the SIF-GPP re-

lationship under different ecosystems and the influence of environment on this relation-

ship. However, for some special ecosystems, such as alpine meadow, there has rarely been 

research on how SIF and GPP relate to each other and the effects of environmental factors 

on their relationships. Furthermore, since researchers investigated the relationship be-

tween SIF������� and GPP much more frequently than the relationship between SIF��� 
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and GPP in various ecosystems, this has resulted in the scarcity of information on diurnal 

and seasonal variations of SIF��� and SIF���-GPP relationships in various ecosystems. 

However, SIF���, mainly generated from photosystem II, reveals more information re-

lated to plant physiological changes than SIF������� and, therefore, has theoretically more 

potential for the accurate monitoring of GPP [14,15,20,43]. 

We are aware of still no research on the use of tower-based continuous observations 

to study SIF–GPP relationships for alpine meadow ecosystems. Hence, in this study, we 

collected canopy reflectance spectral data, SIF spectral data, meteorological variables data, 

and carbon flux data of alpine meadows for two growing seasons using a continuous au-

tomatic tower-based observation system. Based on the above observations, our main re-

search objectives are to investigate that for alpine meadow ecosystem, (1) whether SIF at 

red and far-red bands could track variations of GPP over diurnal and seasonal scales; (2) 

what is the effect of environmental factors upon the SIF-GPP relationship for different 

bands; and (3) whether the SIF-GPP relationship and its environmental effects are wave-

length-dependent and which band is better for GPP estimation. 

2. Materials and Methods 

2.1. Experimental Site 

Long-term continuous in-situ spectral measurements based on tower-based observa-

tions were conducted in 2019 and 2020 at the Arou (AR) site, a grassland site (Figure 1) in 

the ChinaSpec network, a ground-based continuous SIF observation network of flux 

tower sites in China [44]. The AR site was also established for use in the Heihe Watershed 

Allied Telemetry Experimental Research (HiWATER) experiment [45]. The AR site is lo-

cated in Arou Township, Qilian County, Qinghai Province, Western China (100.4643E, 

38.0473N, altitude 3033 m), and in the hinterland of the middle Qilian Mountains in the 

northeastern region of the Qinghai–Tibet Plateau, with a typical plateau continental cli-

mate [5]. The average multi-year temperature is around 0.7 °C, the average yearly precip-

itation is 400 mm, and the yearly snowfall period reaches about 240–270 days, with ab-

sence of absolute frost-free period all year round. The underlying surface of the AR site is 

mainly alpine meadow. The grass can reach heights of 30 cm during the peak growing 

period in summer. With high atmospheric transparency, thin air, strong solar radiation, 

long illuminating hours, and abundant incoming radiation throughout the year, SIF and 

GPP relationship for alpine meadow may, to some extent, differ from those of other eco-

systems.  

 

Figure 1. AR’s observation tower and pictures of the alpine meadow in spring, summer, and autumn 

captured by the camera mounted above the tower. 
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2.2. Tower-Based Spectral Measurements 

An automated long term in-situ SIF observation system, SIFSpec, was installed on a 

tower-based platform about 17 m from the ground for continuous SIF spectral measure-

ments [44,46]. The main components of the SIF observation system include (1) a custom-

ized Ocean Optics QE65 Pro spectrometer (Ocean Optics, Dunedin, FL, USA) with a spec-

tral range of 649–805 nm, a spectral resolution of 0.34 nm, a sampling interval of 0.155 nm, 

and a signal-to-noise ratio (SNR) of >1000 [46]; (2) a computer storing the spectral data 

and information about the instrument operation status and a software control system con-

trolling the switching of instrument switches and electronic switches [46]; (3) a Y-shaped 

bifurcated optical fiber (CPATCH, Ocean Optics, Inc., Dunedin, FL, USA), two five meters 

long optical fibers (core diameter 1000 μm); (4) two inline TTL-driven electronic switches 

(Ocean Optics, Inc., Dunedin, FL, USA) [46]; (5) a bare optic fiber probe (field of view 

(FOV) of 20°) and a fiber optic probe (FOV of 180°) connected to the cosine corrector (CC3-

3-UV-S, Ocean Optics, Inc., Dunedin, FL, USA); and (6) an automatic radiator to maintain 

the temperature inside the instrument case [46]. The fiber optic probe with cosine correc-

tor and the bare fiber optic probe are used to collect the downlink solar incidence spec-

trum and the uplink feature canopy reflection spectrum, respectively, and the collected 

spectra are sequentially passed through the long fiber and electronic switch connected to 

the corresponding probes to form two spectral channels, which reach the bifurcated end 

of the Y-shaped bifurcated fiber and finally arrive inside the QE65 Pro spectrometer. 

The SIF observation system uses a “sandwich” mode to collect spectral data [47]. A 

dataset consists of three spectral acquisitions, the downlinked solar incidence spectrum, 

the uplinked feature canopy reflection spectrum, and the downwelling solar incidence 

spectrum, which are acquired by controlling the alternate opening and closing of two elec-

tronic switches [46]. Since the mismatch of time between measurements of downwelling 

and upwelling introduces errors due to weather variations, the downwelling solar inci-

dence spectrum is represented by the average of the two measured downwelling solar 

incidence spectra. Before acquisition of each spectrum, the spectrometer optimally deter-

mines the integration time based on the received spectral signal and records the dark cur-

rent [46]. Under normal conditions, a complete set of data acquisition takes about 15 sec-

onds during midday, and about two minutes during sunrise and sunset. 

2.3. Meteorological Variables and Flux Observations 

An automatic weather station (AWS) was utilized to observe meteorological varia-

bles, which was mounted on the AR site flux tower platform and could observe several 

meteorological variables including air temperature (Ta), barometric pressure (p), relative 

humidity (Rh), precipitation, wind speed/direction, and photosynthetically active radia-

tion (PAR); measurements were recorded every 10 min [48]. Half-hourly averaged mete-

orological data were obtained by averaging multiple 10-min data over a half-hour period, 

and daily averaged meteorological data were obtained by re-averaging daily half-hourly 

averaged data. 

Alpine meadow and atmospheric exchange of energy, carbon dioxide, and water 

were measured by an eddy covariance (EC) system, which was also mounted on the 

tower-based platform around three meters from the ground [48]. The EC system includes 

a three-dimensional acoustic anemometer (CSAT3, Campbell Scientific Inc., Logan, UT, 

USA) and an open path gas analyzer (Li-7500, Li-Cor, Lincoln, NE, USA) [48,49]. The data 

sampling frequency is 10 Hz. We filled in the gaps in the data with the online resource 

tool (http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/ (accessed on 24 September 

2021)) supplied by the Max Planck Institute for Biogeochemistry (MPI-BGC). Based on 

data for the measured CO2 net ecosystem exchange flux (NEE) and meteorological varia-

bles, a division of inter-day NEE into GPP and ecosystem respiration was performed us-

ing the inter-day division method proposed by Lasslop et al. [50]. The final separation was 
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obtained for half-hourly GPP data. The daily averaged GPP data were obtained by re-

averaging daily half-hourly averaged data. 

2.4. Canopy SIF Retrieval 

Canopy SIF (SIF���, SIF�������) for red and far-red bands were retrieved with spectral 

fitting method (SFM). The prerequisite assumption for extracting SIF from the reflected 

radiance spectrum of surface vegetation is that reflectance and fluorescence emission obey 

Lambert's cosine law, whereby the upwelling radiance of vegetation is coupled by two 

components: the solar flux reflected, and the fluorescence emitted [51,52]. SFM supposes 

that reflectance spectra and fluorescence spectra in chosen spectral intervals are functions 

of wavelengths that can be described by mathematical functions rather than that they are 

spectrally constant [52]. Here, the reflectance and fluorescence spectra were fitted sepa-

rately with quadratic functions: 

�(�) =  
�(�)�(�)

�
+ �(�) =

(��� + �� + �)�(�)

�
+ (��� + �� + �) (1) 

where � is wavelength, �(�) is the radiance upwelling from vegetation, �(�) is the re-

flectance (without the emission component), �(�) is the incoming total solar irradiance 

to the target, �(�) is the solar-induced fluorescence, and �, �, �, �, �, and � are the 

spectral fitting coefficients, respectively.  

2.5. Statistical Analysis and ModelFitted 

To reduce the confounding due to backgrounds, such as soil, and the effect of scat-

tered light ratios from direct light, only spectral data with NDVI > 0.5 and SZA < 80° were 

used. 

���� =  
���� − ����

���� + ����
 (2) 

where ����  and ����  represent the reflectance at near-infrared (NIR) and red bands. 

Here, the average reflectance of 780–800 nm and 681–685 nm was used to stand for the 

NIR and red band reflectance, respectively. 

The existence of coupling between SIF and GPP has been illustrated in a variety of 

studies on various platforms, scales, and ecosystems, but whether the link between SIF 

and GPP is linear or nonlinear remains inconclusive [28,53]. Previous studies indicated 

that the SIF-GPP relationship is linear [26,30], but mounting studies have shown that the 

SIF-GPP relationship tends to be more nonlinear as the data temporal resolution improves 

[54–56]. Because of this, two fitted models, linear and nonlinear, were used to depict the 

SIF-GPP relationship for the 30-min averaged data, while for the daily averaged data, only 

the linear fitted model was used. 

��������� = � × ��� (3) 

������������ =  
�� × ��� + ��

��� + ��
 (4) 

where ���������  stands for the fitted results of SIF with the linear model, ������������ 

stands for the fitted results of SIF with the nonlinear model, and �, ��, ��, and �� stand 

for the fitted parameters of the models. 

The merits of the fitted models were then evaluated using R2 and the root mean 

square error (RMSE) for a comprehensive evaluation. 

3. Results 

3.1. Seasonal Patterns of SIF and GPP and Their Relationship 

Due to instrument failures, there were some data gaps for alpine meadow spectral 

and flux data in both the 2019 and 2020 growing seasons, but the available data could 

cover most growing stages of alpine meadow. Figure 2 illustrates the seasonal variations 

of SIF���, SIF�������, GPP, and NDVI. At the seasonal scale, they show consistent and 
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obvious “single-peaked” seasonal patterns. NDVI reaches its maximum value for the 

whole growing season at about 205–220 days of day of year (DOY), and the corresponding 

SIF���, SIF�������, and GPP also reach their maximum values during the same period. 

There is relatively small variation in the seasonality of photosynthetically active radiation 

(PAR), with generally high PAR values over the entire growing season. 

 

Figure 2. Seasonal patterns of (a) the canopy solar-induced chlorophyll fluorescence at the far-red 

band (SIF�������), (b) the canopy solar-induced chlorophyll fluorescence at the red band (SIF���), (c) 

gross primary productivity (GPP), (d) photosynthetically active radiation (PAR), (e) normalized dif-

ference vegetation index (NDVI) at AR site in the growing seasons in 2019 (left) and 2020 (right). 

The dark large dots represent daily averaged data, and the light small dots represent half-hourly 

averaged data. 
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The relationships between SIF��� and SIF������� with GPP in alpine meadows were 

analyzed with half-hourly and daily averaged datasets. Both a linear function model (� =

��), with the intercept of the linear function set to zero, and a nonlinear function model 

(� = (��� + ��)/(� + ��)) were adopted to fit SIF and GPP relationship (Table 1). The dif-

ferences in R2 between the nonlinear and linear fitted function models for the SIF���–GPP 

relationship are small with regard to both half-hourly and daily averaged data and are 

larger for the SIF�������–GPP relationship, especially concerning the half-hourly averaged 

data, where the R2 of the fitted results of the nonlinear function model is 12.86% higher 

than that of the linear function model. The difference in RMSE between the nonlinear and 

linear fitted function models for both SIF���–GPP and SIF�������–GPP is obvious; for the 

half-hourly data, the RMSE of the linear fitted results for SIF���–GPP and SIF�������–GPP 

are 31.49% and 59.44% higher than the corresponding nonlinear fitted results, respec-

tively, and for the daily averaged data, 24.89% and 64.93% higher, respectively. Although 

for both SIF���–GPP and SIF�������–GPP, the RMSE of the linear fitted results are higher 

than the nonlinear fitted results for both the half-hourly and daily averaged data, consid-

ering the R2 of the fitted results and the scatter plot distribution of the data together (Fig-

ure 3), the SIF���–GPP relationship tends to be more linear than the SIF�������–GPP rela-

tionship. The R2 of the linear fitted SIF���–GPP relationship and that of the nonlinear fit-

ted SIF�������–GPP relationship are also close. These results indicate that the performance 

of SIF��� and SIF������� were comparable for monitoring GPP in an alpine meadow.  

 

Figure 3. The relationship between SIF���, SIF�������, and GPP at the seasonal scale at the AR site, 

large green dots represent daily averaged data, small gray dots represent half-hourly averaged data, 

the dashed lines represent linear fit lines, the solid lines represent non-linear fit lines, and the green 

and gray lines represent the daily averaged data fit lines and the half-hourly averaged data fit lines 

of SIF and GPP, respectively. 

Table 1. Statistical results of linear and nonlinear fitting for SIF��� and SIF������� with GPP. 

Temporal Resolution Half-Hourly Daily 

Mathematical Function Model Linear Nonlinear Linear Nonlinear 

SIF��� 

Formula � = 57.23� � =
43.69� + 0.40

� + 0.45
 � = 62.52� � =

79.24� + 3.09

� + 1.23
 

R2 0.80 0.83 0.80 0.81 

RMSE 3.80 2.89 2.76 2.21 

SIF������� 

Formula � = 31.84� � =
29.99� + 0.37

� + 0.36
 � = 35.97� � =

33.46� + 1.05

� + 0.55
 

R2 0.70 0.79 0.79 0.82 

RMSE 5.15 3.23 3.48 2.11 
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3.2. Response of SIF and GPP to Environmental Factors 

The impact of environmental factors upon the SIF-to-GPP ratio was also analyzed. 

As shown in Figure 4, with increasing PAR values, SIF���/GPP values show a very slight 

increasing trend, while SIF�������/GPP values show an obvious increasing trend, with ob-

vious increases when PAR is higher than 400–600 μmol/m�/s. SIF���/GPP values remain 

almost constant across different changes in Ta without obvious variations, while those of 

SIF�������/GPP show an increasing trend, especially when the temperature increases to 15 

°C, where SIF�������/GPP shows a substantial increase. In addition, SIF���/GPP values 

did not show obvious variations across different changes in VPD, while SIF�������/GPP 

values showed an obvious increasing trend with increases in VPD. In general, for the same 

value of a given environmental factor, the SIF���/GPP values tended to be concentrated 

and have smaller variance, while those of SIF�������/GPP were dispersed and had larger 

variance. When there were changes in the value of the given environmental factor, the 

SIF���/GPP values tended to vary less in response and those of SIF�������/GPP vary more. 

This indicates that SIF��� and GPP tended to have a more consistent response to changes 

in environmental factors than SIF������� and GPP. 

At the diurnal scale, first, observations from two days with similar PAR but different 

Ta and VPD were selected to analyze the impacts of environmental factors on SIF-GPP 

relationship at red and far-red band for alpine meadow. The diurnal variations and values 

of PAR are similar for DOY220 and DOY227 as shown in Figure 5, while changes in Ta 

and VPD are obvious, i.e., the values of Ta and VPD for DOY220 are lower than those for 

DOY227. Due to the decrease in Ta and VPD, the R2 of the linear fitted with zero intercept 

of both SIF���–GPP and SIF�������–GPP underwent serious decrease and the RMSE un-

derwent dramatic increase in DOY220, with 29.63% and 40% decrease in R2 and about one 

and three times increase in RMSE for SIF���–GPP and SIF�������–GPP, respectively. Com-

paring the SIF–GPP relationship for these two days, we found that the slope of the linear 

fitted with zero intercept between SIF������� and GPP decreased obviously when there 

was an obvious decrease in Ta and VPD values, i.e., of 24.35%, while the slope of the linear 

fit between SIF��� and GPP did not show any obvious differences.  

Furthermore, we selected a typical sunny day and a cloudy day, between which there 

were obvious differences in the daily changes of PAR, Ta, and VPD. We analyzed the 

variations in the relationship of SIF��� and SIF������� with GPP separately for these two 

days. From the sunny day to the cloudy day, the R2 of the linear fitted with zero intercept 

for SIF���–GPP increased by 7.69% and the RMSE decreased appreciably, by 64.78%, with 

the scattered distribution of the data on the cloudy day being closer to the fitted line com-

pared to the sunny day, while the R2 of SIF�������–GPP decreased by 5.75% and the RMSE 

increased by 4.6%. As shown in Figure 6, the slopes of the linear fitted with zero intercept 

between SIF�������  and SIF���  with GPP are both obviously steeper under cloudy 

weather than those under sunny weather, though the degree of changes in the slopes dif-

fer. For SIF��� and GPP, the slope of the linear fitted is approximately 1.6 times higher 

under cloudy weather than those under sunny weather, while for SIF������� and GPP, it 

is approximately 2.5 times higher. 
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Figure 4. Boxplots show the variation of values of SIF���/GPP and SIF�������/GPP at different levels 

of environmental factors including (a, b) photosynthetically active radiation (PAR), (c, d) air tem-

perature (Ta), and (e, f) vapor pressure deficit (VPD) at AR site during the 2019 (left) and 2020 (right) 

growing seasons with half-hourly averaged data. Red plus signs in the figure represent outliers. 
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Figure 5. Scatter plot of the fitted relationship between (a) SIF���, (b) SIF�������, and GPP at the 

diurnal scale and daily variations of (c) air temperature (Ta), (d) vapor pressure deficit (VPD), and 

(e) photosynthetically active radiation (PAR) for DOY220 and DOY227 in 2020 at AR site. The scatter 

points represent half-hourly averaged data, the solid line represents the fitted line of the SIF-GPP 

relationship, and the shaded area indicates the 95% confidence level of the prediction, where red 

represents DOY227, and blue represents DOY220. 
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Figure 6. Scatter plot of the fitted relationship between (a) SIF���, (b) SIF�������, and GPP at the 

diurnal scale and daily variations of (c) air temperature (Ta), (d) vapor pressure deficit (VPD), and 

(e) photosynthetically active radiation (PAR) for a typical sunny day and cloudy day at AR site. The 

scatter points represent half-hourly averaged data, the solid line represents the fitted line of the SIF-

GPP relationship, and the shaded area indicates the 95% confidence level of the prediction, where 

red represents sunny day and blue represents cloudy day. 

4. Discussion 

4.1. Reasons Why Red SIF Shows More Potential Than Far-Red SIF for Monitoring GPP in an 

Alpine Meadow Ecosystem 

At present, researchers have not reached a definite conclusion as to which has greater 

potential for monitoring GPP in various ecosystems, red SIF or far-red SIF. Most previous 

studies at the canopy level have shown that the potential of red SIF for monitoring GPP 

was limited by strong reabsorption effects within the canopy and relatively low retrieval 

accuracy [9,14,27]. However, the results in this study show that red SIF had even more 

potential than far-red SIF in monitoring GPP in an alpine meadow ecosystem. Here are 

several possible main reasons for this result. 
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First of all, we obtained a relatively high precision SIF inversion result for the red and 

far-red bands. The specifications of the instruments used to measure the spectra and the 

spectral properties of the irradiance and the reflectance spectra at the absorption bands 

affect the accuracy of SIF retrieval [57]. In this study, measurements of the continuous 

spectrum were performed using the SIFSpec system, the core of which is a customized 

Ocean Optics QE65 Pro spectrometer having high signal-to-noise ratio (>1000) and high 

spectral resolution (~0.34 nm), ensuring the quality and accuracy of the collected spectral 

data. Meanwhile, the SFM algorithm was used for the inversion of canopy SIF. The SFM 

algorithm uses mathematical functions to, first, model the reflectance and fluorescence 

spectral curves and then invert the chlorophyll fluorescence intensity. In a narrow spectral 

range, relatively simple fluorescence and reflectance spectral curves can be fitted rela-

tively accurately using polynomial functions. In this study, a quadratic polynomial func-

tion was used to fit the spectral curves in both absorption bands of O2-A and O2-B, there-

fore, high-precision canopy SIF inversion results were obtained for both bands. 

For the second, the theoretical basis for red SIF to be sensitive to physiological 

changes in vegetation. SIF contains APAR information, and it also contains, to some ex-

tent, energy distribution information at the photosystem level [11,17,20]. There are two 

photosynthetic reaction systems in the mechanism of photosynthesis in higher plants, 

photosystem I (PS I) and photosystem II (PS II) [58,59]. Variable plant fluorescence is ob-

served for PS II due to changes in plant physiological conditions, but this variable fluo-

rescence is not observed for PS I [11,60,61]. SIF emission in the far-red band is performed 

by PS I and PS II, while SIF emission in the red band is mainly performed by PS II [11,62]. 

Therefore, theoretically, the SIF in the red contributed mostly by PS II shows greater re-

sponsiveness to changes in the physiological condition of vegetation [11]. Previously, sev-

eral studies have reported the potential of red SIF in monitoring GPP. For example, Liu et 

al. [38] showed that after down-scaling the red SIF of the maize canopy to the photosystem 

level, an obvious improvement in the red SIF and GPP correlation was achieved. Their 

findings also showed that at the photosystem level, red SIF monitored GPP equally well 

or even better than far-red SIF, which indicated that after removing the effect of canopy 

reabsorption, red SIF could provide more effective information on plant photosynthesis 

and physiology and, thus, red SIF was more related to GPP than far-red SIF. Joiner et al. 

[58] also observed that fluorescence in the red band was more sensitive to GPP than fluo-

rescence in the far-red band under drought stress. Hence, from a plant physiological per-

spective, the strong correlation between PSII and SIF��� may be one of the reasons for the 

performance of SIF��� being better than that of SIF������� in monitoring GPP in this al-

pine meadow ecosystem. 

Last but not least, the red SIF showed a linear correlation with GPP in this alpine 

meadow ecosystem. That linear relationship between red SIF and GPP is more advanta-

geous for GPP tracking than the nonlinear relationship between far-red SIF and GPP. Al-

pine meadow ecosystems are dominated by grasses with relatively low leaf area index 

values, and the resorption effect within the canopy is likely to be relatively small. How-

ever, during a period of vigorous vegetation growth, the SIF in the red band is probably 

inevitably affected by the reabsorption effect. For example, following the downscaling of 

grass and wheat canopy SIF to the photosystem level using the random forest method, 

Liu et al. [63] found that the correlation between red SIF at the photosystem level and 

chlorophyll absorption of photosynthetically active radiation was remarkably enhanced 

compared to red SIF at the canopy level. This also implied that the red SIF is mainly influ-

enced by the internal reabsorption effect of leaves. Therefore, it is reasonable to speculate 

that the red SIF observed in the alpine meadow canopy was saturated due to the reab-

sorption effect. Moreover, many studies have confirmed that the relationship between 

GPP and absorption of photosynthetically active radiation is nonlinear and that GPP will 

saturate when the APAR reaches a certain level [40,56]. Therefore, the saturation phenom-

enon that occurred for both GPP and SIF��� resulted in a linear relationship between the 

two. While the far-red SIF is mainly affected by canopy scattering, and the effect of 
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reabsorption on it can be basically ignored [43,63], thus the far-red SIF does not exist sat-

uration phenomenon. When PAR reached a certain level, GPP no longer increased, while 

far-red SIF was still increasing, thus far-red SIF showed a nonlinear correlation with GPP 

in this alpine meadow ecosystem. As the time resolution of the data was reduced from 

half-hourly average to daily average, there was smoothing of the data noise and variance, 

which led to a reduction in the difference between the results of fitted SIF������� to GPP 

with nonlinear and linear functions under the daily averaged data. Nevertheless, from the 

trend of data distribution, whether half-hourly or daily averaged data, GPP showed a 

more linear relationship with red SIF than with far-red SIF. 

4.2. Differences in the Response of ������/GPP and ����������/GPP to Changes in 

Environmental Factors 

How well synchronized the SIF and GPP are in response to environmental changes 

affects the accuracy of SIF estimation of GPP. Alpine meadow ecosystems are sensitive to 

environmental changes [3,5–7]. For the alpine meadow ecosystem at the AR site, the av-

erage annual Ta is low. Even in summer, frosts may still occur in the early morning [64]. 

The AR station is at high altitude and has high levels of harmful ultraviolet-B radiation, it 

also has sufficient radiation and sufficient hours of sunshine to allow plants to perform 

normal photosynthesis to maintain their organic growth. VPD also has a range of fluctu-

ations in this alpine meadow ecosystem. The level of VPD has a direct effect on the sto-

matal conductance of plant leaves. Excessive VPD leads to decrease in stomatal conduct-

ance to prevent excessive water loss in plants, though this inevitably reduces the CO2 up-

take of photosynthesis and affects the photosynthetic process. 

In this research, the ratio ofSIF���/GPP was found more stable than SIF�������/GPP 

as environmental factors varied at the seasonal scale. We investigated the relationship be-

tween SIF���-GPP and SIF�������-GPP with seasonal changes in PAR, Ta, and VPD at sea-

sonal scales using the ratio of SIF to GPP. As Ta, VPD levels varied along the x-axis, 

SIF���/GPP was able to remain relatively stable, and the boxes at different levels in Figure 

4c,e were roughly on the same level, indicating that the sensitivity of SIF��� and GPP to 

changes in Ta and VPD were similar. Therefore, the magnitude of SIF���/GPP values did 

not change obviously on the seasonal scale. Compared to the stability of SIF���/GPP, the 

value of SIF�������/GPP showed a more obvious fluctuation with the variation of Ta and 

VPD and showed an increasing trend. Both Ta and VPD can cause physiological activity 

alterations in vegetation as Ta variations cause changes in photosynthetic enzyme activity, 

while VPD variations change the degree of opening of vegetation stomatal conductance. 

Red SIF is more closely correlated with changes in vegetation physiological activity and 

may provide more timely feedback than far-red SIF on physiological changes such as pho-

tosynthetic carbon assimilation due to environmental changes [11], and this may explain 

why SIF���/GPP was more stable than SIF�������/GPP. As shown in Figure 4, when PAR 

levels varied along the x-axis, SIF��� /GPP also showed slight fluctuations after PAR 

reached a certain level, but obviously not as much as SIF�������/GPP. As discussed in Sec-

tion 4.1, both the red SIF and GPP were probably saturated, but likely the degree of satu-

ration was different for both, resulting in slight fluctuations in SIF���/GPP. While satura-

tion occurred in GPP, the far-red SIF value was still increasing, thus leading to large fluc-

tuations with an increasing trend in the value of SIF�������/GPP. These results are con-

sistent with the conclusions obtained in Figure 2. 

PAR dominated the variation in the slope of the linear fitted line with zero intercept 

for SIF-GPP at the diurnal scale among the three environmental factors investigated in 

this research. At the diurnal scale, when PAR experienced an obvious drop, the slope of 

the linear fitted line between SIF and GPP changed by 107.14% on average, while when 

Ta and VPD had an obvious drop, the slope of the linear fitted line between SIF and GPP 

changed by only 13.68% on average. Thus, combining Figures 5 and 6, it is evident that 

the slope variation of the linear fitted line of SIF versus GPP depended more on PAR than 

on Ta and VPD. The slope of the linear fitted line between SIF���  and GPP varied 
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obviously less than that between SIF������� and GPP. This also indicated that the red SIF 

was more similar than the far-red SIF in response to environmental changes with GPP. 

Both red SIF and far-red SIF correlated stronger with GPP on the cloudy day than on the 

sunny day. This result is consistent with previous results in crops [31] and forests ecosys-

tems [35]. On cloudy days, the proportion of scattered light increases, which penetrates 

into the lower leaves of the plant and the light-use efficiency of the plants gets improved 

[16,23], leading to a larger slope of the linear fitted of SIF to GPP. 

Against the background of global climate change, alpine meadow ecosystems will 

face a very uncertain growth environment, in which changes in meteorological environ-

mental factors will be unpredictable. The estimation of GPP in alpine meadow ecosystems 

urgently needs a stable indicator, and the results of this paper exactly demonstrated the 

potential of red SIF to track GPP in alpine meadow ecosystems when environmental 

changes occur. 

4.3. Limitations and Uncertainties 

Benefiting from the long-term and continuous observation capability of both the EC 

system and the Tower Platform Automated spectral observation system, we were able to 

explore the SIF-GPP relationship in alpine meadow ecosystems at the seasonal and daily 

scale as well as the response of their relationship to changes in environmental factor levels. 

However, several limitations and uncertainties still exist here. Firstly, there is a problem 

of footprint matching and spatial representativeness [65,66]. The spectral and flux obser-

vation are often prone to the problem of footprint mismatch [67]. At this research site, the 

EC system and the tower-based automatic spectral observation system were positioned 

on the same tower, and the spectral observation coverage was included in the flux obser-

vation coverage. The underlying surface of the AR station is flat and homogeneous, so the 

footprint mismatch problem was expected to have little impact on this study. However, 

given that only one alpine meadow ecosystem observation station at the AR site was in-

volved, whether the conclusions obtained in this study are applicable to all alpine 

meadow ecosystems needs further study. Secondly, there is the problem of observation 

geometry. The probe of our tower-based platform automatic spectroscopic observation 

system was placed heading southwest. We have removed the observation data with solar 

azimuth angle greater than 80° in order to ensure the data quality. However, the change 

of solar azimuth angle through the day still lead to the appearance of shadows in the ob-

servation field of view, which would certainly introduce errors to the inversion of canopy 

SIF. The effect of solar observation geometry should be considered in future studies. 

Thirdly, we merely conducted observational studies on canopy-scale SIF and GPP in al-

pine meadows at AR stations, without involving the measurement of canopy structural 

and physiological parameters in alpine meadows, which should be included in future 

studies to enable us to analyze the relationship between SIF and GPP more comprehen-

sively from a physiological perspective. Finally, recent studies have highlighted the excel-

lent performance of NIRV in tracking GPP [68,69], but NIRV reflects more information on 

vegetation canopy structure [70], while SIF is directly related to vegetation photosynthetic 

processes [16]. In the future study, we will investigate the superior and inferior perfor-

mance of NIRV and SIF in tracking GPP in alpine meadow ecosystems. 

5. Conclusions 

In this study, we acquired canopy spectral data, meteorological data, and flux data 

in 2019 and 2020 alpine meadow growing seasons using a continuous tower-based auto-

mated SIF and flux observation system to investigate SIF��� and SIF������� in terms of 

their performance in monitoring GPP in an alpine meadow ecosystem. Our results show 

that canopy SIF can effectively monitor GPP in alpine meadow ecosystem at both the sea-

sonal and diurnal scales. In particular, SIF��� presented a linear relationship with GPP, 

while SIF������� presented a nonlinear relationship with GPP, and the performance of 

SIF���  for monitoring GPP was comparable to that of SIF������� . PAR, VPD, and Ta 
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affected SIF�������/GPP more than SIF���/GPP at the seasonal scale. Red SIF was more 

similar with GPP than far-red SIF in response to seasonal changes in environmental fac-

tors. PAR dominated the influence on the diurnal-scale variation of the SIF-GPP relation-

ship among the three environmental impact factors considered in this research. Alto-

gether, the red band SIF-GPP relationship was more robust when the environmental fac-

tors changed compared to the far-red band. The results of this study highlight the poten-

tial of utilizing red SIF for GPP monitoring in alpine meadow ecosystems. 
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