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Abstract: This work proposes a new method for estimating downwelling surface longwave radiation
(DSLR) under cloudy-sky conditions based on a parameterization method and a genetic algorithm–
artificial neural network (GA-ANN) algorithm. The new method establishes a GA-ANN model
based on simulated data, and then combines MODIS satellite data and ERA5 reanalysis data to
estimate the DSLR. According to the validation results of the field sites, the bias and RMSE are
–9.18 and 34.88 W/m2, respectively. Compared with the existing research, the new method can
achieve reasonable accuracy. Parameter analysis using independently simulated data shows that
the near-surface air temperature (Ta) and cloud base height (CBH) have an important influence on
DSLR estimation under cloudy-sky conditions. With an increase in CBH, DSLR gradually decreases;
however, with an increase in Ta, DSLR shows a trend of gradual increase. When estimating DSLR
under cloudy-sky conditions, under the influence of clouds, except for cirrus, the change in DSLRs
with CBH and Ta is greater than 20 W/m2.

Keywords: downwelling surface longwave radiation; GA-ANN; MODIS; ERA5; cloudy sky

1. Introduction

The downwelling surface longwave radiation (DSLR) is an important component of
surface net longwave radiation, which is significant for surface radiation balance and is
mainly affected by factors such as atmospheric temperature, water vapor content (WVC),
and clouds. The effect of clouds on longwave radiation is mainly to absorb longwave
radiation from the atmosphere and the surface; at the same time, as a radiator, it has an
impact on the atmosphere. At present, there are two main methods for estimating the DSLR
under cloudy-sky conditions: one is an empirical algorithm that modifies or adds cloud
parameters based on clear-sky conditions, and the other establishes a parameterization
algorithm based on different cloud characteristics, such as cloud base temperature or cloud
top temperature.

For empirical algorithms, DSLR estimation under cloudy-sky conditions is mainly
used as the cloud fraction to correct the estimation method under clear-sky conditions.
Studies [1–4] estimated the cloud fraction using the ratio of the observed solar radiation to
the simulated clear-sky solar radiation. Rooney [5] proposed obtaining the estimated cloud
fraction from the output data of the laser cloud-based recorder. Zhong et al. [6] adjusted
the parameters of the model proposed by Crawford and Duchon [3] and obtained a DSLR
model under cloudy-sky conditions by considering the influence of clouds on air emissivity.
Cheng et al. [7] evaluated seven widely used DSLR algorithms under all-sky conditions
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using ground measurement data collected from 44 globally distributed flux measurement
sites. Additionally, Cheng et al. [7] introduced the Bayesian model averaging method to
integrate multiple estimation formulas and obtain the estimation of DSLR under cloudy-sky
conditions. Liu et al. [8] used longwave radiation measurement data from three observation
sites on the Qinghai-Tibet Plateau to make parameter adjustments to the four commonly
used parameterization schemes under cloudy-sky conditions. After local calibration of
the parameters, it was found that combining the clear-sky parameterization of Dilley and
O’Brien [9] with the cloud correction scheme of Jacobs [10] achieves the best result. In
addition, Liu et al. [8] found that the cloud base height (CBH) has a significant impact on
DSLR estimation under cloudy-sky conditions, resulting in an improved parameterization
scheme to estimate the DSLR based on the CBH.

For parameterization algorithms, many scholars have considered the influence of cloud
base temperature and estimated DSLR under cloudy-sky conditions based on a single-
layer cloud model. Wang et al. [11] fused Moderate-resolution Imaging Spectroradiometer
(MODIS) atmospheric temperature profile data under clear skies with the Atmospheric
Infrared Sounder (AIRS)/the Advanced Microwave Sounding Unit (AMSU) temperature
profile data under cloudy skies to obtain a high spatial resolution sub-cloud atmospheric
profile. The cloud base temperature was obtained using this fused temperature profile data.
Yang and Cheng [12] used the constructed cloud attribute database to adjust the coefficients
of the Clouds and Earth’s Radiant Energy Systems (CERES) cloud geometric thickness
model, calculated the CBH based on cloud top height and geometric thickness, and then
used the temperature profile of the reanalysis data to obtain the cloud base temperature.
Ahn et al. [13,14] developed an algorithm to calculate the DSLR under all-sky conditions
using cloud base temperature and precipitable water between clouds and ground. Some
scholars use cloud top temperature instead of cloud base temperature to estimate DSLR
because cloud base temperatures obtained from passive remote sensing data have greater
uncertainty. Wang et al. [15] used cloud top temperature to replace cloud base temperature,
combined with land surface temperature and atmospheric water vapor content under
clear-sky conditions, and used a nonlinear parametric model to estimate the DSLR.

Compared with DSLR estimation under clear-sky conditions, there is a large uncer-
tainty in DSLR estimation under cloudy-sky conditions, regardless of whether an empirical
algorithm or parameterized algorithm was used. The empirical algorithm under cloudy-
sky conditions was generated using a specific dataset under a specific underlying surface
condition. Most of the empirical algorithms under cloudy-sky conditions use CF to correct
the algorithm under clear-sky conditions, and do not fully consider the influence of CBH
on DSLR estimation. The parameterization method based on the cloud base temperature or
cloud top temperature has a strong universality and can obtain better results across appli-
cations. However, the CBH used to determine the cloud base temperature has mostly been
estimated using different empirical algorithms, and its estimation methods are not mature.
At present, relatively mature CBH products have been developed based on ERA5 reanalysis
data, but few scholars have applied it to DSLR estimation. In this study, a new method was
developed to estimate the DSLR under cloudy-sky conditions by directly using the CBH
from ERA5 reanalysis data and combining the radiance at the top of the atmosphere (TOA),
WVC, and Ta data. The remainder of this article is organized as follows: Section 2 describes
the datasets used in this study, Section 3 presents the GA-ANN model construction and
DSLR estimation method under cloudy-sky conditions, Section 4 presents the results of the
GA-ANN algorithm and a sensitivity analysis, Section 5 provides validation using in situ
measurements and comparisons with existing methods, Section 6 presents the discussion,
and conclusions are presented in Section 7.

2. Data
2.1. MODIS Satellite Data

MODIS is a medium-resolution passive imaging spectroradiometer that is carried
on the Terra and Aqua platforms of American polar-orbiting satellites. It collects a total
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of 36 groups of wavelengths, or bands, and the spectral coverage ranges from 0.405 to
14.385 µm. These data have a very high signal-to-noise ratio. In the scientific fields of
ocean, land, and atmosphere, there have been many applied studies on MODIS, and a
variety of products of different levels have been produced to meet the needs of Earth
science research (http://modis.gsfc.nasa.gov/data/dataprod/index.php; accessed on 30
May 2022). Terra-MODIS products from 2010, 2017, and 2018 were employed in this study.
They are MOD021KM, MOD03, MOD05, and MOD35 (Table 1). MOD021KM products
are level 1 products with radiation correction and contain reflectance and radiance data
at the TOA [16]. The spatial resolution of channels 1–2 is 250 m, channels 3–7 is 500 m,
and channels 8–36 is 1 km. This study mainly used TOA radiance of bands 28, 29, 31, 33,
34, and 36. MOD03 products are level 1 products used for data geolocation. It provides
information such as the geographic coordinates of each pixel with a resolution of 1 km,
including latitude, longitude, ground elevation, satellite view zenith angle (VZA), and sea
and land masks [17]. This study uses latitude and longitude data, as well as satellite VZA
data. MOD05 is a level 2 product of the total precipitable water vapor. Atmospheric water
vapor content data were used in this study. MOD35 is a cloud mask product used in this
study to distinguish cloud pixels.

Table 1. Satellite data and reanalysis data used in this study.

Data Sources Product Resolution Parameters

MODIS

MOD021KM 1 km Radiance of bands 28, 29, 31, 33, 34, 36

MOD03 1 km Latitude, Longitude

MOD05 1 km WVC

MOD35 1 km Cloud mask

ERA5

0.25◦ × 0.25◦ Cloud base height

0.25◦ × 0.25◦ Total cloud cover

0.25◦ × 0.25◦ 2 m air temperature

0.25◦ × 0.25◦ 2 m dew point temperature

0.25◦ × 0.25◦ Cloud base temperature

2.2. Reanalysis Data

ERA5 is a fifth-generation reanalysis product launched by the European Center for
Medium-Term Weather Forecasts (ECWMF) after ERA-Interim. It provides a large number
of ocean climate and hourly climate variables with a spatial resolution of 0.25◦ × 0.25◦, the
vertical resolution ranges from 1000 to 1 hPa, a total of 37 layers, and a time resolution of
1 h. This study employed the CBH, total cloud cover, 2 m air temperature, and 2 m dew
point temperature from ERA5 hourly data on single levels (Table 1). In addition, this study
employed ERA5 hourly data on pressure levels to obtain the cloud base temperature at the
CBH location.

2.3. Site Observations

This study selected three observation network sites to verify the accuracy of the
estimated DSLR: the Chinese Watershed Allied Telemetry Experimental Research (WATER)
in the Heihe River Basin [18–21], the Qilian Mountains integrated observatory network
in the Cold and Arid Research Network of Lanzhou University (CARN), and the multi-
scale surface flux and meteorological element observation dataset in the Hai River Basin
(HAIHE) [22,23]. The Heihe River Basin and Qilian Mountain Basin are located in arid and
semi-arid regions of Northwest China. The underlying surface includes alpine snow, ice
belts, forest grassland belts, plain oasis belts, gobi desert belts, and other landscape types.
The Haihe River Basin is located on the North China Plain. Within the territory, climatic
conditions are relatively favorable, and the types of surface coverage are more complicated.

http://modis.gsfc.nasa.gov/data/dataprod/index.php
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Based on the data availability and quality control documents of the observation sites,
the verification sites selected in this study included the Yingke Observation Site and the
Huazhaizi Observation Site in the middle reaches of the Heihe River basin, the Huailai
site in the Haihe River basin, and the Xiyinghe Observation Site and Linze Observation
Site of the Qilian Mountains Basin (Figure 1). These sites are equipped with automatic
weather stations and four-component radiation meters that can continuously obtain flux
observation data. Measurement data included total solar radiation, reflected radiation,
downwelling longwave radiation, and upwelling longwave radiation. The time resolution
was 10 min. Table 2 lists the latitude, longitude, surface type, elevation, and verification
time range for each site.
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Table 2. Descriptions of site conditions.

Site Name Lat and Lon (Deg) Land Cover Elevation (m) Temporal Period

Yingke 38.85, 100.4167 Cropland 1519 2010.01.01–2010.12.31
Huazhaizi 38.7667, 100.45 Desert 1731 2010.01.01–2010.12.31

Linze 39.238, 100.062 Cropland 1402 2018.01.01–2018.12.31
Xiyinghe 37.561, 101.855 Alpine grassland 3616 2018.01.01–2018.12.31
Huailai 40.3574, 115.7928 Cropland 480 2017.01.01–2017.12.31

2.4. Simulated Data

The atmospheric radiation transmission model, MODTRAN 5 [24], was used to simu-
late DSLR estimation under cloudy-sky conditions. To cover all atmosphere and surface
conditions, the sounding database used in the simulation was the latest version of the
Thermodynamic Initial Guess Retrieval, i.e., TIGR2002, which was constructed by the
Laboratoire de Meteorologie Dynamique (LMD) (https://ara.lmd.polytechnique.fr/index.
php?page=tigr; accessed on 30 May 2022). This database uses complex statistical methods
to select 2311 atmospheric profiles from different periods and global statistical samples

https://ara.lmd.polytechnique.fr/index.php?page=tigr
https://ara.lmd.polytechnique.fr/index.php?page=tigr
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from polar to tropical regions to provide as many global atmospheric conditions as possible.
Each atmospheric profile represents different atmospheric conditions, including air tem-
perature, air pressure, WVC, and ozone content. The purpose of this study is to establish
a DSLR estimation method for cloudy-sky conditions. Then, the TIGR2002 profiles with
relative humidity (RH) greater than 90% were identified as cloudy-sky profiles, while the
rest were identified as clear-sky profiles. According to the judgment of the cloudy sky, the
atmospheric profile affected by clouds was screened out, and 1365 atmospheric profiles
under cloudy-sky conditions and 946 atmospheric profiles under clear-sky conditions were
obtained, respectively. Eight feature types were chosen to represent as many different
underlying surface types as possible in the MODTRAN 5 simulations. These features
include evergreen broadleaf forest, grassland, wetland, sandy loam, barren desert, urban,
ocean water, and fresh snow. Considering the angular dependence of the TOA radiance and
maximum observed zenith angle of MODIS (less than 65◦ from the lowest point), different
observed zenith angles from 0◦ to 60◦ were used to calculate the TOA radiance and DSLR
of the MODIS infrared channel in the MODTRAN simulation. To set the cloudy-sky pa-
rameters, seven types of clouds provided by MODTRAN were selected for the simulation,
including cumulus, altostratus, stratus, stratus/stratocumulus, nimbostratus, standard
cirrus, and subvisual cirrus. The CBH was set to the default CBH for each cloud type in
MODTRAN. Finally, set variables were input into MODTRAN to obtain the simulation
value of the DSLR under cloudy-sky conditions. A total of 458,640 samples were prepared
for the MODTRAN simulation code, and the DSLR, TOA radiance, CBH, Ta, VZA, and
WVC were used to establish the machine learning algorithm under cloudy-sky conditions.
When the simulation is carried out under clear-sky conditions, the input parameters are set
to be the same as those under cloudy-sky conditions, except that the information related to
cloud parameters is not set, while the DSLR, TOA radiance, Ta, VZA, and WVC were used
to establish the machine learning algorithm.

3. Methodology
3.1. Estimating DSLR under Cloudy-Sky Conditions

DSLR under cloudy-sky conditions can be expressed as:

DSLR = DSLRclear × 1 − CF + DSLRcloudy × CF (1)

where DSLRclear represents downwelling longwave radiation under clear-sky conditions,
DSLRcloudy represents downwelling longwave radiation under fully cloudy-sky conditions,
and CF represents fractional cloud cover. The first term on the right side represents the
radiation from the cloudless coverage area in the pixel, and the second term represents the
radiation from the cloud coverage area in the pixel.

Based on the cloud fraction, the DSLR estimation under cloudy-sky conditions was
divided into partially and fully cloudy pixels. For all pixels with clouds, the DSLR was esti-
mated using the algorithm presented in cloudy-sky conditions, as detailed in Section 3.1.2.
Partly cloudy pixels were divided into cloud-covered and clear-sky areas. In the cloud-
covered area, the DSLR was also estimated according to the algorithm for cloudy-sky
conditions in Section 3.1.2. In clear-sky areas, the DSLR was estimated using the clear-sky
algorithm in Section 3.1.1. In the following sections, the DSLR estimation algorithms under
the clear-sky and cloudy-sky conditions are detailed.

3.1.1. Estimating DSLR under Clear-Sky Conditions

In clear-sky conditions, many researchers have used satellite-based radiances mea-
sured at TOA to develop different statistical regression methods to estimate DSLR [25–27].
Some scholars have modified Tang and Li’s [25] method to make it suitable for different
situations [28,29], showing that the algorithm is relatively mature. Tang and Li’s [25]
algorithm is expressed as follows:

DSLR = a0(θ, z) + ∑n
i=1 ai(θ, z)Mi (2)
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Mi = π × Li(θ) (3)

where a0 and ai are the conversion parameters related to view zenith angle θ and topo-
graphic height z, and Li is the TOA radiance of MODIS band i. For the calculation of the
clear sky under partially cloudy-sky conditions, this study used the required parameters of
Tang and Li’s [25] method and added the Ta and WVC to establish the estimation model.

A GA-ANN algorithm was employed to build the estimation model. Artificial neural
network (ANN) models are widely used in pattern recognition, signal processing, and earth
sciences [30,31]. The genetic algorithm (GA), inspired by natural selection and biological
evolution, is a method for solving constrained and unconstrained optimization problems.
Therefore, the genetic algorithm is usually introduced to determine the initial weight, as
this is a sensitive factor that affects the performance of neural network models, the number
of nodes in the hidden layer has a significant influence on the simulation accuracy, so the
appropriate number of nodes can be determined through repeated training [32]. For the
calculation of the DSLR under clear-sky conditions, this study uses TOA radiance, VZA,
WVC, and Ta as input data, and DSLR as output data. After many pieces of trainings,
the appropriate number of hidden layer nodes was determined, and the corresponding
GA-ANN model was obtained.

3.1.2. Estimating DSLR under Fully Cloudy-Sky Conditions

In fully cloudy-sky conditions, DSLR consists of radiation contributed by cloud and
sub-cloud atmospheric layers. To develop the DSLR retrieval algorithm, the atmospheric
radiative transfer model, MODTRAN 5, was used to simulate the DSLR under cloudy-
sky conditions. To simulate as much realistic atmospheric variation as possible, this
study constructed a representative atmospheric profile database and a ground object
reflection/radiation spectrum database. On this basis, changes in cloud, surface, and
atmospheric conditions are fully considered, and these databases drive MODTRAN 5 to
conduct a large number of simulation experiments. The settings of the simulated data
under cloudy-sky conditions are introduced in Section 2.4.

A neural network model can accept more input data and has incomparable advantages.
If sufficient atmospheric, surface, and cloud parameters sensitive to DSLR can be collected,
a neural network with strong parallel processing and nonlinear approximation abilities can
easily and accurately establish a DSLR estimation model. Thus, the GA-ANN algorithm
was also used to construct a DSLR estimation model under cloudy-sky conditions. By
analyzing the input parameters, this study resolved to use TOA radiance, WVC, VZA, Ta,
and CBH as input data and DSLR as output data to train the GA-ANN estimation model.
The process for determining the input parameters is described in Section 4.1. Finally, the
TOA radiance, WVC, and VZA from MODIS products, along with Ta and CBH from ERA5
reanalysis data, were input into the trained GA-ANN model to estimate DSLR under
cloudy-sky conditions. Table 3 lists the input and output variables required for different
situations.

Table 3. Input and output variables required by GA-ANN.

Inputs of GA-ANN Output of GA-ANN

Clear sky M28, M29, M31, M33, M34, M36, VZA, WVC, Ta DSLR

Cloudy sky M28, M29, M31, M33, M34, M36, VZA, WVC, Ta,
CBH DSLR

4. Results
4.1. The Performance of GA-ANN Algorithm

To test the performance of the GA-ANN algorithm under cloudy-sky conditions, the
simulated dataset was randomly divided into two groups: one group randomly selected
80% of the simulated dataset as a training dataset to establish the GA-ANN model, and the
other group randomly selected 20% as a testing dataset to verify the fitting quality of the
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algorithm. Figure 2 compares the simulated DSLR (MODTRAN 5 simulated DSLR) and
those estimated using the GA-ANN model. The DSLR can be estimated using the GA-ANN
model, where bias (estimated minus simulated DSLR) is 0.02 W/m2 and where the Root
Mean Square Error (RMSE) is 4.09 W/m2. The self-verification results show that the DSLR
estimation model established by the GA-ANN algorithm can achieve good accuracy under
cloudy-sky conditions.
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4.2. Sensitivity Analysis

DSLR estimation under cloudy-sky conditions is related to many parameters, such
as the atmosphere and clouds. It is necessary to analyze the input data to determine the
parameters that are most sensitive to DSLR. Tang and Li [25] analyzed the sensitivity of
several thermal infrared bands of MODIS to DSLR, and the results showed that MODIS
bands 28, 29, 31, 33, 34, and 36 could be used as input parameters. Wang et al. [29] proposed
that the WVC and VZA were crucial for the estimated DSLR; therefore, these parameters
were also determined for the input part of the GA-ANN.

CBH is a key parameter for characterizing the cloud radiation effect [33]; therefore,
it was used as a required input parameter. In addition to cloud parameters, the great-
est uncertainty of DSLR estimation comes from atmospheric parameters such as Ta and
WVC [34]. Due to this, Ta was determined by the input parameters. Further, the influence
of different Ta and CBH values on the DSLR was quantitatively analyzed. The atmospheric
radiative transfer model, MODTRAN 5, was used to set different Ta and CBH values to
simulate the effect on DSLR. The controlled variable method was used to uniformly set
other MODTRAN variables to fixed values. The cloud model in MODTRAN includes five
water cloud and two ice cloud types. The water clouds are cumulus, altostratus, stratus,
stratus/stratocumulus, and nimbostratus, and the ice clouds are standard cirrus and sub-
visual cirrus. Cumulus, stratus, stratus/stratocumulus, and nimbostratus are low clouds.
The CBH was set to model a dynamic change from 0.1 to 2 km. Altostratus, standard cirrus,
and subvisual cirrus belong to high clouds, and the CBH was set to model a dynamic
change from 1 to 16 km. In addition, to analyze the influence of Ta on DSLR, Ta was set in
the range of 200 to 350 K.

As shown in Table 4, under the influence of different cloud types, the DSLR changed
significantly with changes in CBH and Ta. Figure 3 shows the changes in DSLR with
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CBH under different types of clouds. Combining Figure 3 and Table 4, the data show
that the relationships between DSLR and CBH are similar for various cloud types. With
an increase in CBH, the DSLR gradually decreased. This is because as CBH increased,
the cloud base temperature gradually decreased, resulting in a decrease in the radiation
emitted from the cloud base. We also found that altostratus clouds had the largest range
of variation, measured at 38.343 W/m2. The variation in cirrus clouds was smaller, less
than 5 W/m2, and the various values of the remaining types of clouds were greater than
20 W/m2. Figure 4 shows the trend of DSLR changes with Ta. As Ta increased from 200 to
350 K, the DSLR affected by different cloud types also gradually increased. Similarly, we
found that the variation range of cirrus clouds was small, and typically less than 1 W/m2.
For the other types of clouds, the DSLR changes with Ta were greater than 20 W/m2.
From the above analysis, it can be concluded that the DSLR is sensitive to the CBH and Ta.
Therefore, CBH and Ta should be used as necessary input parameters when establishing a
DSLR estimation algorithm.

Table 4. DSLR affected by CBH and Ta.

DSLR Affected by CBH DSLR Affected by Ta

Max (W/m2) Min (W/m2) Difference
(W/m2) Max (W/m2) Min (W/m2) Difference

(W/m2)

Cumulus 461.348 437.934 23.414 456.952 433.198 23.754
Altostratus 448.52 410.177 38.343 470.913 431.144 39.769

Stratus 461.914 438.454 23.460 459.25 433.133 26.117
Stra-tus/Stratocumulus 460.272 438.273 21.999 458.555 433.44 25.115

Nimbostratus 462.762 438.882 23.880 460.568 433.106 27.462
Standard cirrus 403.231 398.846 4.385 400.486 400.089 0.397
Subvisual cirrus 402.139 399.032 3.107 400.426 399.771 0.655
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5. Validation
5.1. Validation Using in Situ Measurements

Five sites were used to validate the proposed DSLR estimation algorithm. They are
the Yingke and Huazhaizi sites of WATER, the Xiyinghe and Linze sites of CARN, and
the Huailai site of HAIHE. At each site, six bands of TOA radiance, WVC, and VZA were
extracted from MODIS data. Ta, CBH, and CF were obtained from the ERA5 reanalysis data.
In this study, CF obtained from the reanalysis data was used for two main reasons: first,
to ensure the CF is matched to CBH and Ta, and second to facilitate the comparison with
Bisht and Bras’s [35] model in the later section. Then, according to the GA-ANN model,
the DSLR of the clear-sky coverage area and cloud coverage area in cloudy pixels were
calculated. Finally, the DSLR under cloudy-sky conditions was obtained using Equation (1).
Note that cloudy-sky observations were identified using the MODIS cloud product. Only
the cloudy-sky data were retained, and during the validation process, the ground-measured
DSLRs that were closest to the MODIS satellite overpass time were adopted.

Figure 5 shows a scatterplot of the estimated cloudy-sky DSLR vs. the measured
values at the five sites. It is evident that the proposed model can produce a reasonable
DSLR under cloudy-sky conditions at all sites with a bias of <10 W/m2 and an RMSE of
<35 W/m2. Overall, similar accuracy was observed at each site, with biases and RMSE’s
ranging from −1.28 to 13.57 W/m2 and 31.33 to 39.20 W/m2, respectively. There is a large
RMSE (39.20 W/m2) at the Huailai site and a large bias (−13.57 W/m2) at the Xiyinghe
site. The Xiyinghe site was located in a rugged area with a large surface elevation, which
led to a large bias. According to the histogram of the error distribution (Figure 6), the
new method has different degrees of underestimation at different sites. This is due to the
negative bias at high altitudes when estimating DSLRs based on the TOA radiance. The
Yingke, Huazhaizi, Linze, and Xiyinghe sites in this study are all located in high-altitude
areas, resulting in the underestimation of the estimation results. Some researchers [36]
found that when the temperature difference between the surface and the atmosphere is
large, the DSLR estimated by the parametric model is prone to overestimation. The sites in
the Heihe River Basin (Yinghe site, Huazhizi site) and the Qilian Mountains Basin (Linze
site, Xiyinghe site) are located in arid areas, with low vegetation coverage and a large
temperature difference between the surface and the atmosphere, which is the reason for the
overestimation of the estimated value. The high value of the estimation occurs in summer,
when the temperature difference between the surface and the atmosphere is larger, which
leads to overestimation in the high-value regions.
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5.2. Comparison with Existing Methods

As mentioned above, a variety of algorithms exist for estimating the DSLR under
cloudy-sky conditions. Bisht and Bras’s [35] method was selected for comparison in this
study. Bisht and Bras’s [35] method is expressed as follows:

DSLRcloudy = σεaT4
a + σ(1 − εa)εcT4

c (4)

where σ is the Stefan–Boltzmann constant (5.67 × 10 −8 W·m −2·K −4), εa is the air emissiv-
ity at near-surface, Ta is the near-surface air temperature, εc is the cloud emissivity, and Tc
is the cloud base temperature. Note that εc was set to 1, and εa was calculated using the
bulk scheme of Prata [37]:

εa = 1 − (1 + ξ) exp
(
−
√
(1.2 + 3ξ)

)
(5)

ξ =
46.5
Ta

e0 (6)

where e0 is the near-surface vapor pressure (hPa), which can be computed using the dew
point temperature according to the Clausius–Clapeyron equation:

e0 = 6.11 exp
[

LV
RV

(
1
T0

− 1
Td

)]
(7)

where LV = 2.5 × 106 J kg −1 is the latent heat of vaporization, RV = 461 J·kg−1K−1 is the
gas constant for water vapor, T0 = 273.15 K, and Td is the dew point temperature (K). Based
on the same data as in Section 4.1, Bisht and Bras‘s [35] method was tested using ERA5
reanalysis data. A scatter diagram comparing the estimated results and site measurements
is shown in Figure 7. The performance of Bisht and Bras’s [35] method at each site is
summarized in Table 5.
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Table 5. The performance of Bisht and Bras’s [35] method.

Sites Bias (W/m2) RMSE (W/m2) No. of Points

Huailai 20.27 36.04 121
Yingke 36.82 45.62 98

Huaizhazi 30.82 40.30 112
Linze 42.64 47.33 135

Xiyinghe 24.08 38.23 187

It can be seen from Figure 7 that Bisht and Bras’s [35] method exhibits a relatively
large bias (30.28 W/m2) and RMSE (41.39 W/m2). Overall, the comparison of Bisht and
Bras’s [35] method with site measurement data showed a large overestimation, which is
consistent with the results of Wang et al. [11]. From Table 5, it is apparent that Bisht and
Bras’s [35] method overestimates at each site, and its RMSE is larger than that of the newly
proposed method.

In addition, we compared the results with existing estimates of other methods under
cloudy-sky conditions. Currently, the main DSLR estimation methods under cloudy-sky
conditions can be divided into empirical algorithms based on cloud fraction and single-
layer cloud models. Yu et al. [38] validated two common estimation methods. Wang
et al. [11] and Yang and Cheng [12] used the single-layer cloud model to estimate DSLR
by calculating the CBH and combining it with temperature profile data. The results were
compared according to these two classifications (Table 6). The DSLR estimated by these
algorithms greatly varied. In contrast to the above studies, this study used simulated
data to establish the GA-ANN algorithm and then combined remote sensing data and
ERA5 reanalysis data to estimate the DSLR under cloudy-sky conditions. Comparing these
methods, this study obtained a similar accuracy, with a bias of −9.18 W/m2 and a RMSE of
34.88 W/m2.
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Table 6. Comparisons of DSLR estimates in this study with existing studies.

Algorithms Model Bias (W/m2) RMSE (W/m2)

This study GA-ANN −9.18 34.88

Yu et al. [38] Empirical Algorithms Based on Cloud Fraction
(Crawford and Duchon [3]) 35.8 52.6

Empirical Algorithms Based on Cloud Fraction
(Iziomon et al. [39]) 6.4 40.4

Empirical Algorithms Based on Cloud Fraction
(Josey et al. [40]) −34.4 48.4

Empirical Algorithms Based on Cloud Fraction
(Trigo et al. [41]) 3.3 32.3

Single-Layer Cloud Model (Schmetz et al. [42]) 21.7 42.5
Single-Layer Cloud Model (Gupta et al. [43]) 15.9 33.3
Single-Layer Cloud Model (Diak et al. [44]) 24.3 41.8

Wang et al. [11] Single-Layer Cloud Model −7.7 32.8
Yang and Cheng [12] Single-Layer Cloud Model 5.42 30.3

6. Discussion

DSLR under cloudy-sky conditions is composed of two parts: one is from the contribu-
tion of the sub-cloud atmosphere and the other is from the radiation contributed by clouds.
The contribution of the sub-cloud atmosphere is impacted by atmospheric emissivity, which
controls the penetration of the DSLR contributed by the atmosphere and the DSLR emitted
by the cloud. Some studies [3,39,45] have proposed the use of the function of Ta and water
vapor pressure to express atmospheric emissivity. Some studies [46,47] have only used
Ta to calculate atmospheric emissivity. In either case, there are two crucial variables: one
being the water vapor pressure and the other being Ta. In this study, WVC was used to
reflect changes in water vapor. WVC and Ta were added to the GA-ANN model as input
parameters. The WVC was obtained from MOD05 products, and the Ta was from ERA5
reanalysis data. Wang et al. [29] analyzed the influence of WVC on DSLR estimation under
aerosol conditions, and the results showed that WVC was crucial for quantifying aerosol
longwave radiative forcing. According to Section 4.2, DSLR also has a strong positive
correlation with Ta, since the spatial resolution of Ta in ERA5 reanalysis data was 0.25◦,
which is relatively imprecise, leading to great uncertainty in the estimation results. In
addition, this study used the nearest neighbor method to match different data, which is
bound to cause certain errors.

The CBH is a key parameter for measuring the radiation effect of cloud contributions
in DSLR estimation. One of the challenges in surface radiation estimation is the proper
determination of the CBH. An error of 100 m in the CBH can generate a DSLR error of
1.5 W/m2 [48,49]. In general, the influence of multi-layer clouds is not considered in high-
resolution DSLR estimation because clouds at different heights are generally completely
overlapped on the kilometer scale. The DSLR is mainly affected by the lowest-layer cloud;
however, when the lowest-layer cloud is not a black body, the DSLR estimation under
cloudy-sky conditions is affected by upper-layer clouds. Regrettably, it is difficult to identify
and detect multi-layer clouds, which leads to uncertainties in the estimation of CBH.

To further analyze the correlation between CBH, Ta, and DSLR, we plotted the CBH
and estimated DSLR, and plotted Ta and estimated DSLR. The results are shown in Figure 8.
Although CBH affects the thermal radiation emission capacity of clouds, its linear correla-
tion with the estimated DSLR is weak. In contrast, the estimated DSLR has a strong linear
relationship with Ta, indicating that Ta is still an important factor affecting the DSLR even
under cloudy-sky conditions.
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7. Conclusions

In this study, a new method for estimating DSLR under cloudy-sky conditions was
established by combining the neural network model with the radiance of TOA, VZA, and
WVC from MODIS satellite data along with the Ta and CBH from ERA5 reanalysis data.
Based on radiative transfer theory, the GA-ANN algorithm was developed using data
simulated by MODTRAN 5. Self-verified results showed that the instantaneous DSLR
bias and RMSE estimated by this new method were 0.02 and 4.09 W/m2, respectively. To
verify the accuracy and reliability of the new method, five field observation sites in three
observation networks were used to validate the DSLR estimation. The results showed that
the new method can achieve good accuracy, with a bias of −9.18 W/m2 and a RMSE of
34.88 W/m2.

To further verify the proposed method, the algorithm proposed by Bisht and Bras [35]
was combined with ERA5 reanalysis data to estimate the DSLR under cloudy-sky conditions.
Comparisons of the results showed that the new method is superior to this method at all
sites. In addition, this study compared various DSLR estimation methods summarized
and validated by Yu et al. [38] and the single-layer cloud estimation models used by Wang
et al. [11] and Yang and Cheng [12]. The proposed new method can achieve accuracy
similar to that of the above methods.

Author Contributions: Methodology, Y.J. and B.-H.T.; investigation, Y.J. and B.-H.T.; conceptualiza-
tion, Y.J. and B.-H.T.; formal analysis, Y.J. and B.-H.T.; software, Y.J.; validation, Y.J.; resources, Y.J.
and B.-H.T.; visualization, Y.J.; writing, review, and editing, Y.J., B.-H.T., and Y.Z.; supervision, B.-H.T.
and Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 41871244, and in part by the Platform Construction Project of High-Level Talent in KUST.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank NASA Goddard Space Flight Center (GSFC)
Level 1 and Atmosphere Archive and Distribution System (LAADS) for providing us with the MODIS
data products, the Copernicus and ECMWF for providing the ERA5 reanalysis data, the Laboratoire
de Meteorologie Dynamique (LMD) for the distribution of the latest version of the Thermodynamic
Initial Guess Retrieval (TIGR) database, TIGR2002, the National Tibetan Plateau Data Center for
providing the in situ DSLR, and the MODTRAN development team for making their code available
to us.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 2716 15 of 16

References
1. Deardoff, J.W. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys.

Res. Atmos. 1987, 96, 541–550.
2. Aladosarboledas, I.; Vida, J.; Olmo, F.J. The estimation of thermal atmospheric radiation under cloudy conditions. Int. J. Climatol.

1995, 15, 589.
3. Crawford, T.M.; Duchon, C.E. An improved parameterization for estimating effective atmospheric emissivity for use in calculating

daytime downwelling longwave radiation. J. Appl. Meteorol. 1999, 38, 474–480. [CrossRef]
4. Lhomme, J.P.; Vacher, J.J.; Rocheteau, A. Estimating downward long-wave radiation on the Andean Altiplano. Agric. For. Meteorol.

2007, 145, 139–148. [CrossRef]
5. Rooney, G.G. Modelling of downwelling long-wave radiation using cloud fraction obtained from laser cloud-base measurements.

Atmos. Sci. Lett. 2005, 6, 160–163. [CrossRef]
6. Zhong, L.; Zou, M.; Ma, Y.; Huang, Z.; Xu, K.; Wang, X.; Ge, N.; Cheng, M. Estimation of Downwelling Shortwave and Longwave

Radiation in the Tibetan Plateau Under All-Sky Conditions. J. Geophys. Res. Atmos. 2019, 124, 11086–11102. [CrossRef]
7. Cheng, J.; Yang, F.; Guo, Y. A Comparative Study of Bulk Parameterization Schemes for Estimating Cloudy-Sky Surface Downward

Longwave Radiation. Remote Sens. 2019, 11, 528. [CrossRef]
8. Liu, M.; Zheng, X.; Zhang, J.; Xia, X. A revisiting of the parametrization of downward longwave radiation in summer over the

Tibetan Plateau based on high-temporal-resolution measurements. Atmos. Chem. Phys. 2020, 20, 4415–4426. [CrossRef]
9. Dilley, A.C.; O’Brien, D.M. Estimating downward clear sky long-wave irradiance at the surface from screen temperature and

precipitable water. Q. J. R. Meteorol. Soc. 1998, 124, 1391–1401. [CrossRef]
10. Jacobs, J.D. Radiation Climate of Broughton Island. In Energy Budget Studies in Relation to Fast-Ice Breakup Processes in Davis Strait;

Barry, R.G., Jacobs, J.D., Eds.; Occasional Paper No. 26; Institute of Arctic and Alp Research, University of Colorado: Boulder, CO,
USA, 1978; pp. 105–120.

11. Wang, T.; Shi, J.; Yu, Y.; Husi, L.; Gao, B.; Zhou, W.; Ji, D.; Zhao, T.; Xiong, C.; Chen, L. Cloudy-sky land surface longwave
downward radiation (LWDR) estimation by integrating MODIS and AIRS/AMSU measurements. Remote Sens. Environ. 2018,
205, 100–111. [CrossRef]

12. Yang, F.; Cheng, J. A framework for estimating cloudy sky surface downward longwave radiation from the derived active and
passive cloud property parameters. Remote Sens. Environ. 2020, 248, 111972. [CrossRef]

13. Ahn, S.-H.; Lee, K.-T.; Rim, S.-H.; Zo, I.-S.; Kim, B.-Y. Surface Downward Longwave Radiation Retrieval Algorithm for GEO-
KOMPSAT-2A/AMI. Asia-Pac. J. Atmos. Sci. 2018, 54, 237–251. [CrossRef]

14. Gupta, S.K.; Darnell, W.L.; Wilber, A.C. A Parameterization for Longwave Surface Radiation from Satellite Data—Recent
Improvements. J. Appl. Meteorol. 1992, 31, 1361–1367. [CrossRef]

15. Wang, T.; Shi, J.; Ma, Y.; Letu, H.; Li, X. All-sky longwave downward radiation from satellite measurements: General parame-
terizations based on LST, column water vapor and cloud top temperature. ISPRS J. Photogramm. Remote Sens. 2020, 161, 52–60.
[CrossRef]

16. Savtchenko, A.; Ouzounov, D.; Ahmad, S.; Acker, J.; Leptoukh, G.; Koziana, J.; Nickless, D. Terra and aqua MODIS products
available from NASA GES DAAC. Adv. Space Res. 2004, 34, 710–714. [CrossRef]

17. Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S. Achieving sub-pixel geolocation accuracy in
support of MODIS land science. Remote Sens. Environ. 2002, 83, 31–49. [CrossRef]

18. Xu, T.R.; Liu, S.M.; Xu, L.; Chen, Y.J.; Jia, Z.Z.; Xu, Z.W.; Nielson, J. Temporal Upscaling and Reconstruction of Thermal Remotely
Sensed Instantaneous Evapotranspiration. Remote Sens. 2015, 7, 3400–3425. [CrossRef]

19. Li, X.; Li, X.; Li, Z.; Ma, M.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.; Yan, G. Watershed Allied Telemetry Experimental
Research. J. Geophys. Res. Atmos. 2012, 114, 2191–2196. [CrossRef]

20. Liu, S.M.; Li, X.; Xu, Z.W.; Che, T.; Xiao, Q.; Ma, M.G.; Liu, Q.H.; Jin, R.; Guo, J.W.; Wang, L.X.; et al. The Heihe Integrated
Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone J. 2018, 17, 1–21. [CrossRef]

21. Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.; Wang, J.M. A comparison of eddy-covariance and large aperture
scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 2011, 15, 1291–1306.
[CrossRef]

22. Liu, S.M.; Xu, Z.W.; Zhu, Z.L.; Jia, Z.Z.; Zhu, M.J. Measurements of evapotranspiration from eddy-covariance systems and large
aperture scintillometers in the Hai River Basin, China. J. Hydrol. 2013, 487, 24–38. [CrossRef]

23. Guo, A.L.; Liu, S.M.; Zhu, Z.L.; Xu, Z.W.; Xiao, Q.; Ju, Q.; Zhang, Y.; Yang, X.F. Impact of Lake/Reservoir Expansion and Shrinkage
on Energy and Water Vapor Fluxes in the Surrounding Area. J. Geophys. Res. Atmos. 2020, 125, e2020JD032833. [CrossRef]

24. Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN cloud
and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [CrossRef]

25. Tang, B.; Li, Z.-L. Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data. Remote Sens. Environ.
2008, 112, 3482–3492. [CrossRef]

26. Wang, W.; Liang, S. Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces
from MODIS data. Remote Sens. Environ. 2009, 113, 745–754. [CrossRef]

27. Yan, G.J.; Wang, T.X.; Jiao, Z.H.; Mu, X.H.; Zhao, J.; Chen, L. Topographic radiation modeling and spatial scaling of clear-sky land
surface longwave radiation over rugged terrain. Remote Sens. Environ. 2016, 172, 15–27. [CrossRef]

http://doi.org/10.1175/1520-0450(1999)038&lt;0474:AIPFEE&gt;2.0.CO;2
http://doi.org/10.1016/j.agrformet.2007.04.007
http://doi.org/10.1002/asl.110
http://doi.org/10.1029/2019JD030763
http://doi.org/10.3390/rs11050528
http://doi.org/10.5194/acp-20-4415-2020
http://doi.org/10.1002/qj.49712454903
http://doi.org/10.1016/j.rse.2017.11.011
http://doi.org/10.1016/j.rse.2020.111972
http://doi.org/10.1007/s13143-018-0007-1
http://doi.org/10.1175/1520-0450(1992)031&lt;1361:APFLSR&gt;2.0.CO;2
http://doi.org/10.1016/j.isprsjprs.2020.01.011
http://doi.org/10.1016/j.asr.2004.03.012
http://doi.org/10.1016/S0034-4257(02)00085-8
http://doi.org/10.3390/rs70303400
http://doi.org/10.1029/2008JD011590
http://doi.org/10.2136/vzj2018.04.0072
http://doi.org/10.5194/hess-15-1291-2011
http://doi.org/10.1016/j.jhydrol.2013.02.025
http://doi.org/10.1029/2020JD032833
http://doi.org/10.1016/S0034-4257(98)00045-5
http://doi.org/10.1016/j.rse.2008.04.004
http://doi.org/10.1016/j.rse.2008.12.004
http://doi.org/10.1016/j.rse.2015.10.026


Remote Sens. 2022, 14, 2716 16 of 16

28. Wang, J.; Tang, B.-H.; Zhang, X.-Y.; Wu, H.; Li, Z.-L. Estimation of Surface Longwave Radiation over the Tibetan Plateau Region
Using MODIS Data for Cloud-Free Skies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3695–3703. [CrossRef]

29. Wang, C.; Tang, B.-H.; Wu, H.; Tang, R.; Li, Z.-L. Estimation of Downwelling Surface Longwave Radiation under Heavy Dust
Aerosol Sky. Remote Sens. 2017, 9, 207. [CrossRef]

30. Suzuki, K. Artificial Neural Networks—Methodological Advances and Biomedical Applications; IntechOpen: London, UK, 2011.
31. Peng, Z.; Letu, H.S.; Wang, T.X.; Shi, C.; Zhao, C.F.; Tana, G.G.; Zhao, N.Z.; Dai, T.; Tang, R.L.; Shang, H.Z.; et al. Estimation of

shortwave solar radiation using the artificial neural network from Himawari-8 satellite imagery over China. J. Quant. Spectrosc.
Radiat. Transf. 2020, 240, 106672. [CrossRef]

32. Si, M.L.; Tang, B.H.; Li, Z.L.; Nerry, F.; Zhang, X.; Shang, G.F. An Artificial Neuron Network With Parameterization Scheme for
Estimating Net Surface Shortwave Radiation From Satellite Data Under Clear Sky—Application to Simulated GF-5 Data Set.
IEEE Trans. Geosci. Remote Sens. 2021, 59, 4262–4272. [CrossRef]

33. Stephens, G.L.; Wild, M.; Stackhouse, P.W.; L’Ecuyer, T.; Kato, S.; Henderson, D.S. The Global Character of the Flux of Downward
Longwave Radiation. J. Clim. 2012, 25, 2329–2340. [CrossRef]

34. Wang, K.C.; Dickinson, R.E. Global atmospheric downward longwave radiation at the surface from ground-based observations,
satellite retrievals, and reanalyses. Rev. Geophys. 2013, 51, 150–185. [CrossRef]

35. Bisht, G.; Bras, R.L. Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study.
Remote Sens. Environ. 2010, 114, 1522–1534. [CrossRef]

36. Yu, S.; Xin, X.; Liu, Q. Estimation of clear-sky longwave downward radiation from HJ-1B thermal data. Sci. China Earth Sci. 2012,
56, 829–842. [CrossRef]

37. Prata, A.J. A new long-wave formula for estimating downward clear-sky radiation at the surface. Q. J. R. Meteorol. Soc. 1996, 122,
1127–1151. [CrossRef]

38. Yu, S.; Xin, X.; Liu, Q.; Zhang, H.; Li, L. Comparison of Cloudy-Sky Downward Longwave Radiation Algorithms Using Synthetic
Data, Ground-Based Data, and Satellite Data. J. Geophys. Res. Atmos. 2018, 123, 5397–5415. [CrossRef]

39. Iziomon, M.G.; Mayer, H.; Matzarakis, A. Downward atmospheric longwave irradiance under clear and cloudy skies: Measure-
ment and parameterization. J. Atmos. Sol.-Terr. Phys. 2003, 65, 1107–1116. [CrossRef]

40. Josey, S.A.; Pascal, R.W.; Taylor, P.K.; Yelland, M.J. A new formula for determining the atmospheric longwave flux at the ocean
surface at mid-high latitudes. J. Geophys. Res. Ocean. 2003, 108, C4. [CrossRef]

41. Trigo, I.F.; Barroso, C.; Viterbo, P.; Freitas, S.C.; Monteiro, I.T. Estimation of downward long-wave radiation at the surface
combining remotely sensed data and NWP data. J. Geophys. Res. Atmos. 2010, 115, D24. [CrossRef]

42. Schmetz, P.; Schmetz, J.; Raschke, E. Estimation of Daytime Downward Longwave Radiation at The Surface From Satellite And
Grid Point Data. Theor. Appl. Climatol. 1986, 37, 136–149. [CrossRef]

43. Gupta, S.K.; Kratz, D.P.; Stackhouse, P.W.; Wilber, A.C.; Zhang, T.P.; Sothcott, V.E. Improvement of Surface Longwave Flux
Algorithms Used in CERES Processing. J. Appl. Meteorol. Climatol. 2010, 49, 1579–1589. [CrossRef]

44. Diak, G.R.; Bland, W.L.; Mecikalski, J.R.; Anderson, M.C. Satellite-based estimates of longwave radiation for agricultural
applications. Agric. For. Meteorol. 2000, 103, 349–355. [CrossRef]

45. Gao, B.-C.; Kaufman, Y.J. Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared
channels. J. Geophys. Res. Atmos. 2003, 108, 4389. [CrossRef]

46. Swinbank, W.C. Long-wave Radiation From Clear Skies. Q. J. R. Meteorol. Soc. 1963, 89, 339–348. [CrossRef]
47. Idso, S.B.; Jackson, R.D. Thermal Radiation From Atmosphere. J. Geophys. Res. 1969, 74, 5397–5403. [CrossRef]
48. Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s Global Energy Budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–323. [CrossRef]
49. Viudez-Mora, A.; Costa-Suros, M.; Calbo, J.; Gonzalez, J.A. Modeling atmospheric longwave radiation at the surface during

overcast skies: The role of cloud base height. J. Geophys. Res. Atmos. 2015, 120, 199–214. [CrossRef]

http://doi.org/10.1109/JSTARS.2014.2320585
http://doi.org/10.3390/rs9030207
http://doi.org/10.1016/j.jqsrt.2019.106672
http://doi.org/10.1109/TGRS.2020.3009647
http://doi.org/10.1175/JCLI-D-11-00262.1
http://doi.org/10.1002/rog.20009
http://doi.org/10.1016/j.rse.2010.02.007
http://doi.org/10.1007/s11430-012-4507-z
http://doi.org/10.1002/qj.49712253306
http://doi.org/10.1029/2017JD028234
http://doi.org/10.1016/j.jastp.2003.07.007
http://doi.org/10.1029/2002JC001418
http://doi.org/10.1029/2010JD013888
http://doi.org/10.1007/BF00867847
http://doi.org/10.1175/2010JAMC2463.1
http://doi.org/10.1016/S0168-1923(00)00141-6
http://doi.org/10.1029/2002JD003023
http://doi.org/10.1002/qj.49708938105
http://doi.org/10.1029/JC074i023p05397
http://doi.org/10.1175/2008BAMS2634.1
http://doi.org/10.1002/2014JD022310

	Introduction 
	Data 
	MODIS Satellite Data 
	Reanalysis Data 
	Site Observations 
	Simulated Data 

	Methodology 
	Estimating DSLR under Cloudy-Sky Conditions 
	Estimating DSLR under Clear-Sky Conditions 
	Estimating DSLR under Fully Cloudy-Sky Conditions 


	Results 
	The Performance of GA-ANN Algorithm 
	Sensitivity Analysis 

	Validation 
	Validation Using in Situ Measurements 
	Comparison with Existing Methods 

	Discussion 
	Conclusions 
	References

