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Abstract: Rapeseed distribution mapping is a crucial issue for food and oil security, entertainment,
and tourism development. Previous studies have used various remote sensing approaches to map
rapeseed. However, the time-consuming and labor-intensive sample data used in these supervised
classification methods greatly limit the development of large-scale mapping in rapeseed studies.
Regarding threshold methods, some empirical thresholding methods still need sample data to select
the optimal threshold value, and their accuracies decrease when a fixed threshold is applied in
complex and diverse environments. This study first developed the Normalized Difference Rapeseed
Index (NDRI), defined as the difference in green and short-wave infrared bands divided by their
sum, to find a suitable feature to distinguish rapeseed from other types of crops. Next, a two-
stepwise hierarchical adaptive thresholding (THAT) algorithm requiring no training data was used
to automatically extract rapeseed in Xinghua. Finally, two adaptive thresholding methods of the
standalone Otsu and Otsu with Canny Edge Detection (OCED) were used to extract rapeseed across
Jiangsu province. The results show that (1) NDRI can separate rapeseed from other vegetation well;
(2) the OCED-THAT method can accurately map rapeseed in Jiangsu with an overall accuracy (OA)
of 0.9559 and a Kappa coefficient of 0.8569, and it performed better than the Otsu-THAT method;
(3) the OCED-THAT method had a lower but acceptable accuracy than the Random Forest method
(OA = 0.9806 and Kappa = 0.9391). This study indicates that the THAT model is a promising automatic
method for mapping rapeseed.

Keywords: rapeseed mapping; adaptive thresholding method; normalized difference rapeseed index;
Otsu thresholding method; canny edge detection; Harmonized Landsat/Sentinel-2

1. Introduction

Detailed and fine rapeseed distribution mapping is of great importance for three
reasons. Firstly, rapeseed map products are not only significant for food and oil security
(rapeseed is an oily crop providing edible oil for the increasing population [1,2]), but
they are also meaningful for animal husbandry (rapeseed contains rich protein for animal
feed [3]). Secondly, the distribution information of rapeseed is pivotal for further research,
such as crop yield prediction and the assessment of climate change effects on agriculture,
promoting the development of digital agriculture [4]. Thirdly, the beautiful yellow flowers
of rapeseed fields provide resources for entertainment and tourism [5]; thus, rapeseed
maps offer lots of details for decision makers to plan for tourism development.

Remote sensing techniques have been widely used in crop mapping because they
are timely, labor-saving, and inexpensive in contrast with traditional field surveys [6,7].
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Previous studies showed that the mapping of rapeseed attracts less attention than that
of its counterparts (e.g., winter wheat and paddy rice) [2]. The challenges of rapeseed
mapping include the following: similarity in spectral response between rapeseed and other
vegetation [2], spectral mixing pixels due to patchy rapeseed fields [8], cloud contamination
reducing effect observation times [5], and expensive training samples limiting large-scale
studies [5,9,10].

Existing studies concerning rapeseed mapping can be divided into two categories.
The first category comprises studies employing ensemble classification techniques, such as
Random Forest (RF) and Support Vector Machine (SVM), using images taken during the
flowering period [11–14]. For example, Meng et al. (2020) used all the cloud-free Sentinel-2
images to select the optimal temporal phases for winter wheat and rapeseed extraction in
Zhongxiang, China [11]. This method has a high accuracy but depends on large amounts
of training samples.

The second category comprises studies employing phenological-based threshold seg-
mentation [9,15,16]. This method has been receiving increasing attention for automatic crop
mapping because it has a promising accuracy with an empirical threshold [9,17–19]. Nev-
ertheless, a fixed threshold requires some samples to choose an optimal threshold for the
purpose of improving accuracy, which, in some studies, was not enough to meet the require-
ment of zero training samples [9,16–18], and in other studies, it was challenging to apply
it in other areas because the accuracy decreased when the environment changed [20,21].
Therefore, in some cases, the threshold was manually intervened with to achieve better
performance [22]. For instance, Ashourloo (2019) developed the Canola Index (CI) concern-
ing near-infrared (NIR), red, and green bands for automatic rapeseed mapping, while its
threshold was selected using an empirical method, which needed sample data to choose an
optimal threshold when extending to testing sites [9]. Some adaptive threshold methods,
such as the Otsu thresholding method originally used in image segmentation [23], have
been introduced in other research fields. The Otsu thresholding method has become popu-
lar in remote sensing areas. For example, Zhang (2021) and Singh (2020) employed the Otsu
with Canny Edge Detection (OCED) thresholding method to extract aquatic vegetation from
water [20,22]. These methods are usually used to extract open water from land, aquatic
vegetation from water, and glaciers from non-glaciers because the images can be simply
divided into two parts: the object and the background [20,22]. Furthermore, objects and
backgrounds have huge differences in spectral response, so a threshold can separate objects
and backgrounds easily [22]. To the best of our knowledge, the adaptive thresholding
method has not been applied in crop mapping to date, because crops share similarities in
spectra, making it a challenge to determine a suitable threshold.

Regarding classification features, spectral and phenological characteristics form the
hypothetical bases to discriminate crops [6,11,24]. The Normalized Difference Vegeta-
tion Index (NDVI), Enhanced Vegetation Index (EVI), and Soil-Adjusted Vegetation Index
(SAVI) are major features in most staple crop-mapping studies [2,25]. Because the canopy
of rapeseed differs greatly from that of other crops during the flowering stage, new tax-
onomic features are often mined for rapeseed in studies of rapeseed extraction. Wang
(2018) developed the Ratio Oilseed Rape Colorimetric Index (RRCI) based on HSV trans-
formation according to the principle that the color of rapeseed landscapes differs from
that of other landscapes during the flowering period, and then a decision tree was em-
ployed for automatic rapeseed extraction using a uniform threshold in Hubei province [15].
D’Andrimont (2020) used the Normalized Difference Yellow Index (NDYI) concerning
green and blue bands to extract rapeseed fields based on RF and then tracked the flowering
date [10]. Veloso (2017) explored the temporal profile of NDVI and the radar backscatter
of various crops, including rapeseed, to evaluate phenological characteristics for potential
applications [26]. The results of their study suggest that radar and visible-near infrared
are the major features in crop mapping. However, there is a significant lack of short-wave
infrared (SWIR) bands in phenological features, with focus usually placed on visible-near
infrared (vis-NIR) bands. The SWIR band is sensitive to water, and it can improve our



Remote Sens. 2022, 14, 2715 3 of 17

understanding of vegetation moisture content; thus, it may provide more information to
identify specific crops [27,28].

The objective of this study was to automatically map rapeseed using a two-stepwise
hierarchical adaptive threshold method. This was undertaken by developing an adaptive-
threshold-based algorithm, which includes two key points: the optimal feature and the
adaptive threshold. Accordingly, this study aimed to (1) determine the optimal rapeseed
discrimination feature; (2) find a suitable adaptive threshold method; and (3) develop an
automatic rapeseed mapping method based on the feature and the adaptive threshold
method mentioned above and apply this method in Jiangsu Province on the Google Earth
Engine (GEE) platform.

2. Materials
2.1. Study Area

As shown in Figure 1, Xinghua County and Jiangsu Province were chosen as the study
sites. Xinghua County was the training area because the field data used to develop the
method were collected in Xinghua County, and Jiangsu Province was the testing area in
order to evaluate the robustness of the proposed approach in a large-scale region with a
more complicated environment.

Figure 1. Location of study area, including training area, Xinghua County, and testing area,
Jiangsu Province.

The location of Jiangsu Province is downstream of the Yangtze River (116◦18′–121◦57′ E,
30◦45′–35◦20′ N) [29], eastern China, covering an area of 102,600 km2 [30]. Xinghua County
has an area of 2393.35 km2 and lies in the middle of Jiangsu Province, sharing a climatic
environment and a crop planting structure with Jiangsu Province.

The climate type is a transition zone between subtropical and temperate monsoon
climate zones, where the annual average temperature ranges from 13.6 to 16.1 ◦C, and
the average annual precipitation is 1000 mm, which provides a suitable environment for
agricultural development [31]. The summer crops in the study area are paddy rice, corn,
and soybean; the winter crops are winter wheat and rapeseed. According to the situ
survey, rapeseed is planted in a fragmented manner, mostly distributed on the ridge and
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polder. The phenological calendar of rapeseed presented in Table 1 was collected from the
Meteorological Bureau of Jiangsu Province.

Table 1. Phenological calendar of rapeseed in Jiangsu Province.

Month Oct Nov Dec Jan Feb Mar Apr May Jun

Ten-day II III I II III I II III I II III I II III I II III I II III I II III I II
Phase

Seedling: blue; tillering: green; overwintering: gray; bolting: orange; flowering: yellow; pod filling: purple;
harvesting: pink.

2.2. Sample Data Acquisition

The sample datasets were collected by conducting a field survey in Xinghua County in
April and by visually interpreting high-resolution images, including those from Sentinel-2
and Landsat-8, on the GEE platform [32]. The samples were divided into rapeseed, wheat,
trees, shrublands, river, aqua-farm ponds, built-up, greenhouses, and solar panels. These
landscapes were split into three groups: rapeseed formed a group; wheat, trees, and
shrublands were grouped into other vegetation; and river, aqua-farm ponds, built-up,
greenhouses, and solar panels were grouped into non-vegetation. The number of samples
is shown in Table 2, and their distribution is shown in Figure 2. Notably, all the samples
in Jiangsu Province were only used for validation, while the samples in Xinghua County
were split into training and validation samples. The former was used to develop the
rapeseed automatic method by analyzing spectral temporal behaviors; the latter was used
for validation.

Table 2. The number of different kinds of landcovers.

Class Xinghua County Jiangsu Province Total

Non-vegetation 247 1575 1822
Other vegetation 140 860 1000

Rapeseed 163 625 788
Total 550 3060 3610

Figure 2. Location of samples: (a) the distribution of training and validation samples in Xinghua
County; (b) the distribution of validation samples in Jiangsu Province.
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2.3. Remote Sensing Data

Remote sensing images were retrieved from the GEE platform. The GEE cloud-
computed platform provides large remotely sensed images and vast computing power.
Considering the access and the consistency of Sentinel-2, Landsat-7, and Landsat-8, several
bands, including red, green, blue, NIR, SWIR1, and SWIR2, of these three sensors were
selected [33]. In particular, the B8A band of Sentinel-2 was selected for the NIR band
because it is a better match for Landsat imagery [4]. In this study, images taken during
the rapeseed growth cycle were used for spectral analysis, and images taken during the
rapeseed flowering period were used for rapeseed mapping.

2.4. Data Preprocessing

Images in the GEE platform are well preprocessed with radiometric calibration and
registration [16,33]. Thus, the image preparation process included cloud removal, harmo-
nization, and temporal aggregation.

Cloud removal was the first preprocessing step. Jiangsu Province is always cloudy
during the rapeseed life cycle. Due to cloud and shadow contamination, it is a challenge
to obtain cloud-free images during a specific period [34]. To reduce the effect of clouds,
different cloud removal methods were used for different datasets [35]. The Quality Assess-
ment (QA) band was used to identify clouds, and then the mask function was applied to
remove pixels whose cloud cover was less than 50% in the Landsat series [16,36,37], while
the Sentinel-2 probability dataset was used to detect clouds in Sentinel-2 imagery [38].

The second preprocessing step was harmonization. After cloud removal, there were
some missing data in the imagery. Before using temporal aggregation to fill these missing
pixels, harmonization needs to be carried out to reduce the differences in resolution,
spectral bandwidth, spectral response function, and the field of view of the different
sensors because Jiangsu Province is such a cloudy region that it is a challenge to obtain
a completely clear image during the rapeseed growing period with standalone sensor
imagery. Here, the widely used linear regression was used to reduce the spectral difference
between sensors [39–42]. The linear regression formula is shown in Table 3 [42]. ETM+ and
OLI imagery were harmonized to the reference of MSI data [40]. Thereafter, these imageries
were compiled into one image dataset called the Harmonized Landsat and Sentinel-2 (HLS)
dataset [43].

Table 3. The transformation formula from Landsat to Sentinel-2.

Band ETM+ to MSI OLI to MSI

Red MSI = 1.1060 ETM − 0.0139 MSI = 1.0946 OLI − 0.0107
Green MSI = 0.9909 ETM + 0.0041 MSI = 1.0043 OLI + 0.0026
Blue MSI = 1.0568 ETM − 0.0024 MSI = 1.0524 OLI − 0.0015
NIR MSI = 1.0045 ETM − 0.0076 MSI = 0.8954 OLI + 0.0033

SWIR1 MSI = 1.0361 ETM + 0.0041 MSI = 1.0049 OLI + 0.0065
SWIR2 MSI = 1.040 ETM + 0.0086 MSI = 1.0002 OLI + 0.0046

Temporal aggregation was the final preprocessing step. It was carried out using
the median algorithm on the GEE platform. As a result, a median value layer stack of
every pixel in a time-series image dataset was calculated and used to fill in the missing
pixels caused by cloud removal [4,13]. Moreover, the median value layer stack prevented
oversaturation and lower values; thus, the time-series data could be smoothed [16,44]. The
time window was not the same for every temporal aggregation application. A shorter one
may lead to noise; a longer one may cause the loss of critical phenological information.
There are options for time intervals for temporal aggregation when performing diverse
functions. Here, temporal aggregation was used three times, and each time had a different
time window. First, the HLS dataset was daily aggregated to analyze the temporal behaviors
of all the selected bands so that the high temporal resolution could keep tracking the entire
trajectory of the landscapes. Moreover, daily aggregation allows for the median value
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to be calculated in overlapping images for the same day, paving the way for analysis.
Second, the time-series Normalized Difference Rapeseed Index (NDRI) and NDVI datasets
were monthly aggregated because the monthly temporal curve was enough to capture key
information. Third, the flowering phase (from 1 March to 30 May) phenological window
was used to produce a seamless cloud-free composite image covering Jiangsu Province.
The number of images available is shown in Table 4. All images listed in Table 4 were
used in spectral temporal analysis; images taken during March and April were used for
rapeseed mapping.

Table 4. Number of images available for each month in Jiangsu Province.

Image Acquisition
Period

Number of Sentinel-2 MSI
Images

Number of Landsat-8 OLI
Images

Number of Landsat-7
ETM+ Images

Total Number
of Images

November 129 14 9 152
December 129 17 12 158

January 48 9 6 63
February 81 10 7 98

March 114 16 8 138
April 120 18 14 152
May 118 18 7 143

3. Two-Stepwise Hierarchical Adaptive-Threshold-Based Rapeseed Mapping Model

The two-stepwise hierarchical adaptive-threshold-based method (THAT) was intro-
duced to automatically extract rapeseed in Xinghua County, and it was tested in both
Xinghua and Jiangsu. The workflow is shown in Figure 3. First, cloud detection, im-
agery harmonization, and temporal aggregation were applied to prepare an HLS dataset.
Thereafter, the HLS dataset was smoothed using the Savitzky–Golay (S-G) filter, and then
it was used to analyze the temporal characteristics of the different bands of the various
landcovers. A new vegetation index named the Normalized Difference Rapeseed Index
(NDRI) was developed according to the temporal spectral analysis. A two-stage hierarchi-
cal classification was proposed to first extract vegetation and then rapeseed [20,45]. Using
the NDVI and the Otsu thresholding method (NDVI-Otsu), the non-vegetation landcover
was masked because this study focused only on vegetation. Next, NDRI was combined
with the adaptive threshold to automatically extract rapeseed. When using NDRI and
the Otsu thresholding method, it is called NDRI-Otsu; when using NDRI and the OCED
thresholding method, it is called NDRI-OCED. Finally, validation was used to evaluate the
potential of the developed method.

3.1. Construction of Normalized Difference Rapeseed Index Using Temporal Spectral Analysis

To select optimal features, temporal spectral analysis was conducted to understand the
temporal spectral trajectory of different landcovers during the rapeseed growth cycle [16,26,46].
The spectral reflectance of vegetation is seasonal, expressing phenological details at the dif-
ferent growth stages that can be used to extract certain crops from other crops that share a
similar spectrum [7,13]. Before temporal analysis, the S-G filter was adopted to smooth the
time-series spectral bands [34]. The optimal bands were selected based on one premise: if
there are maximum and minimum bands in a rapeseed field in a certain period, these bands
are the optimal bands that can be used to determine the features that distinguish rapeseed
from other vegetation [17].

As a further step, the Jeffries–Matusita (JM) distance was calculated to quantitatively
compare the indices commonly used in rapeseed mapping [5]. Here, the sample data
of trees, shrublands, and wheat were grouped into the other category, and then the JM
distance was calculated between the rapeseed (object) and other (background) sample data.
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Figure 3. Workflow of two-stepwise hierarchical adaptive thresholding (THAT) rapeseed mapping
method.

3.2. NDVI-Otsu Thresholding Method for Non-Vegetation Masking

SWIR is sensitive to water information, including subtle differences in soil moisture
and leaf water [27]. To avoid the effects of rivers, lakes, ponds, and weather conditions
(such as rain), NDVI was calculated to erase the non-vegetation area, including built-up,
river, aqua-farm ponds, panels, and greenhouses, where NDVI was usually lower than
vegetation [5,22,47]. The masking threshold was obtained using the Otsu algorithm (see
Section 3.3) [23]. The formula of NDVI is described in Equation (1):

NDVI = (ρnir − ρred)/(ρnir + ρred) (1)

where ρnir and ρred represent the reflectance of the NIR band and red band, respectively.

3.3. Adaptive Thresholding Method to Extract Rapeseed

As mentioned in Section 1, the commonly used empirical threshold method suffers
from low applicability. Hence, this study adopted an adaptive thresholding method to
overcome the weakness of uniform thresholds. Here, this study introduced two kinds
of adaptive thresholding methods and developed a threshold-based rapeseed mapping
method. To evaluate the threshold selected using the adaptive thresholding method, the
empirical thresholding value was utilized as a comparison. The optimal empirical threshold
value was chosen according to the overall accuracy (OA) calculated at every threshold
value with steps of 0.01 from −0.30 to −0.10.

The Otsu algorithm is widely used in simple image segmentation where objects and
backgrounds have huge differences [48]. It is a threshold selection method solely based on
gray-level histograms with no prior knowledge [23]. The interclass variance is iteratively
obtained from the histogram of the image for each threshold (see Equation (2)). The
maximum interclass variance corresponds to the optimal threshold [22].

BSS = ∑p
k=1

(
Vk −V

)2 (2)
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where BSS means the between sum-of-squares, describing the interclass variance quantita-
tively; p represents the number of categories, which is defined as 2 in this study; V is the
value of the band used for segmentation; and category k is assigned by every V less than a
specific threshold.

Although the Otsu algorithm provides a changeable threshold value for different envi-
ronments, it has a limitation in that its accuracy becomes lower when facing a complicated
image that contains several categories to classify [23] or the background is much larger
than the object pixels [22]. To solve this problem, a combination of the Otsu thresholding
method and Canny Edge Detection (OCED) was introduced [20,22]. There was a drastic
difference at the boundary between rapeseed and non-rapeseed in NDRI, which could be
detected by Canny Edge Detection (CED). It is noteworthy that, after the OCED process,
the redundant pixels were cut, leaving the informative boundary pixels preserved. Thus,
the histogram distribution represented the boundary of the rapeseed and other vegetation,
containing a more balanced proportion of object and background. Thus, the accuracy of
the Otsu algorithm improved [20,22].

In conclusion, the THAT automatic rapeseed mapping model can be described as follows:

Prapeseed =
{

Pi

∣∣∣NDVIi > T1
⋂

NDRIi > T2

}
(3)

where Prapeseed means the pixels considered as rapeseed; Pi means pixel i in the image; and
NDVIi and NDRIi mean the NDVI and NDRI values of pixel Pi, respectively. T1 is the
threshold derived from the Otsu thresholding algorithm with the whole NDVI image, while
T2 is the threshold derived from the adaptive algorithm (Otsu method or OCED model)
with the NDRI image masked NDVI > T1.

3.4. Validation to Evaluate the Ability of the THAT Method

The accuracy assessment included two kinds of validation methods. First, samples
were used to calculate the confused matrix, OA, user accuracy (UA), producer accuracy (PA),
and kappa coefficient [49]. Second, the rapeseed mapping result based on OCED-THAT
was compared with that based on the Otsu method, as well as widely used Random Forest
classifiers; Random Forest is a stable, efficient, easily parameterized ensemble learning
method and fits well in remote sensing classification [50]. Notably, only NDVI and NDRI
were used in RF in order to maintain consistency with the THAT method.

4. Results
4.1. Development of New Feature for Rapeseed Extraction

According to the spectral temporal analysis shown in Figure 4, rapeseed achieved the
maximum value among all the vegetation in the visible red and green bands during the
flowering period, as Davoud (2019) found in their study [9]. In contrast, the SWIR bands
achieved the minimum value during the same period. Therefore, rapeseed achieved the
maximum and minimum values during the flowering period, which follows the premise
mentioned in Section 3.1. The green band was the most striking out of the visible bands,
and SWIR1 was the most striking out of the SWIR bands. Accordingly, the green band and
the SWIR1 band were selected as the optimal bands to extract rapeseed. The normalized
difference between these two bands was computed so that the result could be confined to the
range [−1, 1] [28,51]. In this way, the Normalized Difference Rapeseed Index (NDRI) [21]
was developed. The formula of NDRI is described in Equation (4):

NDRI = (ρgreen − ρswir1)/(ρgreen + ρswir1) (4)

where ρgreen and ρswir1 represent the reflectance of the green band and the SWIR1
band, respectively.
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Figure 4. Temporal spectral profile of different landcovers at (a) near-infrared, (b) short-wave
infrared 1, (c) short-wave infrared 2, (d) red, (e) green, and (f) blue wavebands.

Figure 5 exhibits the temporal trajectory of several commonly used vegetation indices
for rapeseed extraction. In the NDRI temporal profile shown in Figure 5a, a separation
gap between rapeseed and other vegetation was found during the flowering period. The
mean NDRI value of rapeseed was about −0.1, while the mean values of other vegetation
were clustered around −0.35, theoretically forming a histogram with a bimodal pattern
that can be segmented using the thresholding algorithm. Concerning the NDYI displayed
in Figure 5c, the mean NDYI value of rapeseed was about 0.25 while that of wheat was
around 0.2, and the other had a mean value of 0.12; therefore, a theoretical three-peaked
histogram can be generated, which is challenge to segment with one single threshold. As
for the NDVI and RRCI values illustrated in Figure 5b,d, thresholding segmentation was
not an ideal method to extract rapeseed from these features.

As Table 5 illustrates, the JM distance indicates that NDRI outperformed other vegeta-
tion indices, including NDVI, NDYI, and RRCI, in rapeseed identification.

Table 5. JM distance between rapeseed and other vegetation in different vegetation index.

Index JM Distance Value

NDVI 0.5904
NDYI 0.5487
NDRI 1.0425
RRCI 0.7464
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Figure 5. Temporal profile of different vegetation with the (a) Normalized Difference Rapeseed Index
(NDRI), (b) Normalized Difference Vegetation Index (NDVI), (c) Normalized Difference Yellow Index
(NDYI), and (d) Ratio Oilseed Rape Colorimetric Index (RRCI).

4.2. Threshold Selection for Rapeseed Extraction

For the non-vegetation mask, the NDVI threshold values were 0.4456 in Xinghua
County and 0.3671 in Jiangsu Province.

For the extraction of rapeseed, the NDRI threshold values are displayed in Figure 6.
In Xinghua County, the threshold values were −0.2267 and −0.1485 corresponding to the
Otsu and OCED thresholding algorithms, respectively, as shown as Figure 6a,b. In Jiangsu
Province, the threshold values were −0.2893 and −0.1648 corresponding to the Otsu and
OCED thresholding methods, respectively, as shown as Figure 6c,d. As seen in Figure 7,
the threshold value of −0.13 was the appropriate empirical threshold corresponding to the
peak accuracy in Xinghua County. Conversely, this value was not appropriate in Jiangsu
Province. The threshold calculated using the OCED algorithm outperformed the empirical
threshold and the Otsu threshold.

Figure 6. Comparison of thresholding selection. The peak between-class variance corresponds to the
optimal threshold value. Panels (a,c) are Otsu-based thresholds selected in training area and testing
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area, respectively. Panels (b,d) are OCED-based (Otsu with Canny Edge Detection) thresholds
selected in training area and testing area, respectively.

Figure 7. Empirical threshold in Xinghua County and Jiangsu Province. The green and blue curves
are overall accuracy (OA) values at every empirical threshold in Xinghua and Jiangsu, respectively.
Panel (a) is the threshold selected using Otsu method in Jiangsu Province; panel (b) is the threshold
selected using Otsu method in Xinghua County; panel (c) is the threshold selected using Otsu with
Canny Edge Detection (OCED) method in Jiangsu Province; panel (d) is the threshold selected using
OCED method in Xinghua County; and panel (e) is the empirical threshold value determined in
Xinghua while applied in Jiangsu.

4.3. Accuracy Assessment and Comparison

Figure 8 depicts the overall extent of rapeseed distribution in both Xinghua and Jiangsu
in 2020 using three methods. Figure 9 displays zoom-in view of sites A and B in Figure 8. In
the optical true-color composite images of sites A and B displayed in Figure 9(1), rapeseed
was yellow-green, and the other crops are dark green. By zooming in on three case regions
of sites A and B (Figure 9a,c), it was found that the results of the OCED (demonstrated in
Figure 9(2)) and Random Forest (shown in Figure 9(4)) had a high spatial consistency with
the true-color optical Sentinel-2 image (Figure 9(1)), while the result of the Otsu suffered
from noticeable errors as displayed in Figure 9(3). As Figure 6 shows, the NDRI threshold
based on the Otsu was lower than that based on the OCED method. Conversely, as depicted
in Figure 5a, rapeseed achieved a higher NDRI value than other vegetation. Therefore, a
lower threshold derived from the Otsu method would lead to more commission errors.

Table 6 illustrates that the Otsu-based rapeseed map in Xinghua County in 2020
(Figure 8) had a high accuracy with the OA and kappa coefficient in the order of 0.9724 and
0.9327, respectively. However, when this method was used in Jiangsu Province, where the
environment is larger and more complicated, the OA and kappa coefficient decreased to
0.9310 and 0.8089, respectively. The kappa coefficient was slightly improved in Xinghua
County and remarkedly increased in Jiangsu Province based on the OCED thresholding
algorithm. Compared with the RF-based method, the kappa coefficient of the THAT-based
method was close to that in Xinghua County while slightly lower than that in Jiangsu
Province. A comparison between the RF-based and the OCED-based rapeseed maps
showed that the spatial distribution of these two products (Figure 9) had a high consistency
in Jiangsu Province. The OCED-based method was more likely to cause underestimation
but at an acceptable level. This suggests the potential of the OCED-based method to extract
rapeseed from other vegetation with optically sensed images.
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Figure 8. The overall view of rapeseed maps in (i) training area, Xinghua County, and (ii) testing area,
Jiangsu Province, in 2020. Panels (a–c) are the rapeseed maps derived from OCED-THAT method,
Otsu-THAT method, and RF classification method, respectively. Here, OCED means Otsu with
Canny Edge Detection thresholding algorithm, and THAT means two-stepwise hierarchical adaptive
thresholding method.
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Figure 9. The zoom-in view of (a) site A, (b) the red box of site A, (c) site B, and (d) the red box of site
B. Row (1) shows the pseudo-true-color composite image of positions (a–d). Rows (2–4) display the
OCED-THAT-based, Otsu-THAT-based, and Random Forest-based rapeseed maps corresponding to
places in row (1). Here, OCED means Otsu with Canny Edge Detection thresholding algorithm, and
THAT means two-stepwise hierarchical adaptive thresholding method.

Table 6. Accuracy of different rapeseed mapping methods.

Region Thresholding Method OA Kappa PA UA

Xinghua County
Otsu 0.9724 0.9327 0.9298 0.9755

OCED 0.9845 0.9614 0.9813 0.9632
RF 0.9840 0.9603 0.9917 0.9520

Jiangsu Province
Otsu 0.9310 0.8089 0.7556 0.9792

OCED 0.9559 0.8569 0.9554 0.8224
RF 0.9806 0.9391 0.9527 0.9497

5. Discussion

Several factors influence the accuracy of classification, namely, separability in spectral
features between objects and backgrounds, the optimum threshold, and the availability of
cloudless datasets [45].
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5.1. The Potential of NDRI in Rapeseed Mapping

This study verified the potential of the NDRI vegetation index for rapeseed discrimi-
nation. The fact that rapeseed undergoes two obvious changes during the flowering stage
provides theory support for the application of NDRI to identify rapeseed. Firstly, blooming
makes the reflectance of the rapeseed field turn from foliar information to a mixture of foliar
and floral signals [1]. Therefore, the intensity of the green band increases corresponding
to the yellow-green blossom, since the yellow color is a mixture of green and red rays [1].
Secondly, during the reproductive stage, rapeseed needs more water, and evapotranspira-
tion also increases [52,53]. As a result, the spectral reflection of the rapeseed field contains
changes in water content. The SWIR1 band of rapeseed shows a significant reduction
during the flowering stage, correlating to the increase in evapotranspiration, whereas other
vegetation remains stable. Not only does NDRI show a huge separation between rapeseed
and other vegetation, but it also keeps the value of rapeseed at its highest among all the
vegetation. Thus, rapeseed and other vegetation form a bimodal image, which provides a
means to apply the adaptive thresholding algorithm in crop mapping. It is noteworthy that
Xu (2006) developed the Modified Normalized Difference Water Index (MNDWI) for water
extraction, as it shared exactly the same band composite with NDRI [21].

However, the red-edge wavelength was not considered in this study because Landsat
imagery does not contain red-edge waveband information, making harmonization with
Sentinel-2 imagery challenging. Future studies may focus on the difference in red-edge
information between rapeseed and other vegetation [8]. In addition to spectral features,
the application of point clouds and plant height features [54] could also be considered in
the future.

5.2. Adaptive Threshold Method in Crop Mapping

In this paper, the adaptive thresholding method was used to select an optimal NDVI
threshold for non-vegetation masking and an optimal NDRI threshold for rapeseed ex-
traction. The adaptive threshold method is widely used in algae monitoring since the
spectral difference between water bodies and algae is very large. In contrast, there is a
significant lack of adaptive threshold applications in crop mapping because the histograms
of vegetation with the most commonly used indices are multimodal, which decreases the
accuracy of the adaptive thresholding method [20,22,23]. Consequently, the threshold is
usually empirically selected in previous studies [17,55], which affects the accuracy of the
crop map products [7,44]. The results of our study indicate that the OCED method had
good performance, with an OA of 0.9559 and a kappa of 0.8569.

However, we can envision more challenges when our method is replicated in large
regional studies. Since GEE often needs zoning processing due to the user’s memory
limitations, some pseudo-rapeseed pixels will still be extracted when using the OCED
method in the case of large-scale zoning processing if the rapeseed is not well distributed
and there happens to be no rapeseed in some sub-regions. Thus, improvements should be
made to detect whether there is any rapeseed. Only if there are any rapeseed pixels existing
can the automatic rapeseed mapping algorithm operate.

5.3. Solution for Cloudy Regions

In this research, multi-sensor temporal aggregation was applied to improve temporal
resolution in order to reduce cloud contamination. In the southern region of China, it is
often cloudy and rainy, and optical remote sensing images are susceptible to cloud con-
tamination, causing a reduction in the number of available images [13,22,56]. Additionally,
temporal resolution is more critical for crop extraction because an insufficient temporal
resolution can easily lose the information of crucial crop growth periods [55]. In particular,
NDRI contains the SWIR band, which is sensitive to clouds. Accordingly, the influence of
clouds should be considered [57]. High spatial and temporal resolution satellite datasets
may be a good solution to reduce the influence of clouds [7]. Thus, in this study, Landsat 7,
Landsat 8, and Sentinel 2 images were compiled into one dataset to improve the number of
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good-quality observations during the flowering period to obtain higher accuracy rapeseed
mapping in a cloudy region.

As a cash crop, rapeseed is cultivated in patches in southern China, leading to a
spectral mixture in remote sensing images [17]. Furthermore, rapeseed mapping requires
a high spatial resolution image, which is in contrast to the mapping of bulk crops (e.g.,
wheat and paddy rice). However, the HLS image had a coarser spatial resolution (30 m)
than the standalone Sentinel-2 image (10 m). Recently, the application of deep learning
was considered in a study to extract rapeseed in cloudy regions, and it attained a satis-
factory result [5]. Future research may focus on combining the deep learning technique
and the threshold method [5]. In addition to optical remote sensing, combinations with
radar data are expected to improve the accuracy of crop extraction in cloudy and rainy
areas [8,13,26,43,56,58].

6. Conclusions

This study developed a new index for rapeseed identification called the Normalized
Difference Rapeseed Index (NDRI) by analyzing the temporal profile of wavebands. The
Jeffries–Matusita (JM) distance was utilized to evaluate the separability of rapeseed and
other vegetation, and it was found that NDRI outperformed NDVI, NDYI, and RRCI in
rapeseed mapping. Moreover, adaptive thresholding methods, including Otsu and Otsu
with Canny Edge Detection (OCED), were conducted to choose an optimum threshold
value. When comparing these methods, the OCED proved to be the best among the Otsu
and empirical threshold methods. Based on NDRI and the adaptive thresholding method,
a two-stepwise hierarchical adaptive thresholding method for rapeseed discrimination was
developed in Xinghua County and extended to Jiangsu Province, China. The proposed
method had a satisfying accuracy without training data, keeping a high consistency with
pseudo-true-color composite images. In future research, more classification features should
be fully utilized, such as red-edge features.
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