
Citation: Feng, Y.; Fan, S.; Xia, K.;

Wang, L. Estimation of Regional

Ground-Level PM2.5 Concentrations

Directly from Satellite

Top-of-Atmosphere Reflectance

Using A Hybrid Learning Model.

Remote Sens. 2022, 14, 2714.

https://doi.org/10.3390/rs14112714

Academic Editors: Yong Ge, Lianfa Li

and Xiaomei Yang

Received: 27 April 2022

Accepted: 2 June 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Estimation of Regional Ground-Level PM2.5 Concentrations
Directly from Satellite Top-of-Atmosphere Reflectance Using
A Hybrid Learning Model
Yu Feng, Shurui Fan , Kewen Xia * and Li Wang

School of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, China;
202021902013@stu.hebut.edu.cn (Y.F.); fansr@hebut.edu.cn (S.F.); qhdzywl@hebut.edu.cn (L.W.)
* Correspondence: kwxia@hebut.edu.cn

Abstract: The accurate prediction of PM2.5 concentrations is important for environmental protection.
The accuracy of the commonly used prediction methods is not high; so, this paper proposes a
PM2.5 concentration prediction method based on a hybrid learning model. The Top-of-Atmosphere
Reflectance (TOAR), PM2.5 data decomposed by wavelets, and meteorological data were used as
input features to build an integrated prediction model using random forest and LightGBM, which
was applied to PM2.5 concentration prediction in the Beijing–Tianjin–Hebei region. The practical
application showed that the proposed method using TOAR, incorporating wavelet decomposition
with meteorological element data, had an improvement of 0.06 in the R2 of the model accuracy
and a reduction of 2.93 and 1.14 in the root mean square error (RMSE) and mean absolute error
(MAE), respectively, over the model using Aerosol Optical Depth (AOD). Our model had a prediction
accuracy of R2 of 0.91, which was better than the other models. We used this model to estimate and
analyze the variation in PM2.5 concentrations in the Beijing–Tianjin–Hebei region, and the results
were the same as the actual PM2.5 concentration distribution trend. Obviously, the proposed model
has a high prediction accuracy and can avoid the errors caused by the limitations of the AOD
inversion method.

Keywords: PM2.5 estimation; hybrid learning model; top-of-atmosphere reflectance; Beijing–Tianjin–
Hebei region

1. Introduction

PM2.5 has a large impact on atmospheric environmental quality and can cause health
problems [1–3]. Compared with PM10, PM2.5 has a small particle size, large area, and
strong activity; it can remain in the atmosphere for a long time and be transmitted over
long distances [4]. Particles with a diameter of 10 microns usually deposit in the upper
respiratory tract, while those below 2 microns can enter the human alveoli, directly af-
fecting the ventilation function of the lungs, causing the body to be in a state of oxygen
deprivation [5]. With the rapid development of the economy, industrial production and
human-caused emissions have increased dramatically, resulting in a serious deterioration
in air quality in east-central China, with the Beijing–Tianjin–Hebei region being the most
significantly affected area [6,7].

The conventional monitoring method is to establish ground monitoring stations [8],
and by January 2015, more than 1500 PM2.5 concentration (unit: µg/m3) observation sta-
tions had been built nationwide to obtain ground-level high-precision PM2.5 concentrations.
However, the ground monitoring stations are restricted by human and material resource
conditions, resulting in the uneven distribution of monitoring points, lack of regional
representativeness, and lack of continuity of data [9,10]. In recent years, many studies
have shown that, compared with traditional air pollution monitoring technology, remote

Remote Sens. 2022, 14, 2714. https://doi.org/10.3390/rs14112714 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14112714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0091-4182
https://orcid.org/0000-0003-3968-481X
https://doi.org/10.3390/rs14112714
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14112714?type=check_update&version=1


Remote Sens. 2022, 14, 2714 2 of 20

sensing [11] has the advantages of a wide monitoring range, fast and easy to achieve
continuous monitoring, and unique ways to acquire environmental information [12].

Aerosol optical depth (AOD) has been widely and successfully used for PM2.5 con-
centration estimation due to its different spatial resolution and its close correlation with
particle concentrations [13–15]. Many researchers have developed different models estab-
lishing a link between satellite AOD and ground PM2.5 concentrations, including physical
models [16], statistical models, and machine learning models. The physical models, based
on the physical relationship between AOD and PM2.5, use higher quality AOD to assess
PM2.5 concentrations. Tang et al. [17] used Landsat8 OLI images to develop a physical
model of the relationship between AOD and PM2.5. However, the aerosol patterns need
to be determined with long-term ground-based monitoring data, which has an impact on
PM2.5 estimates. Statistical models used to describe the linear relationship between AOD
and PM2.5 have evolved from a single linear model to a linear mixed-effects model [18] and
a geographically and temporally weighted regression (GTWR) model [19]. He et al. [20]
developed an improved geographically and temporally weighted regression (iGTWR)
model that considered the seasonal characteristics of the data to obtain the AOD–PM2.5
relationship to predict PM2.5 concentrations in the Beijing–Tianjin–Hebei region, with an
R2 of 0.82 after cross-validation. Chu et al. [21] proposed to combine geographically and
temporally weighted regression (GTWR) and random sample consistency (RANSAC),
which resulted in a good fit between AOD and PM2.5. However, the statistical model could
not accurately respond to the complex nonlinear relationship between the variables and
PM2.5, which limited the accuracy of the inversion of PM2.5.

Compared with statistical models, machine learning models, including random forest,
gradient boosting, and deep learning [22], can better handle nonlinear problems, which can
provide a more accurate estimation of PM2.5 concentrations. Li et al. [23] combined random
forest with AOD to monitor PM2.5 concentrations in the Beijing–Tianjin–Hebei region,
which was advantageous in dealing with the complex nonlinear relationships between
a large number of meteorological elements and atmospheric pollutants. Wei et al. [24]
proposed a tree-based spatial–temporal lightweight gradient boosting model with the in-
clusion of parameters such as meteorological elements, population density, land utilization,
and ground elevation for national hourly PM2.5 concentration prediction. The prediction
results achieved an R2 of 0.85 and an RMSE and MAE of 13.62 and 8.49, respectively, and
the proposed method outperformed most traditional statistical regression models and
tree-based machine learning models.

However, the above studies were all based on satellite AOD data, which are limited in
spatial and temporal coverage due to the low revisit rate of satellites and limitations in the
application of the AOD inversion methods [25,26], thus affecting the prediction accuracy of
PM2.5. To solve the above problems, Shen et al. [27] used a deep belief network (DBN) to
construct a model in which the top-of-atmosphere reflectance (TOAR) from the MODIS
sensor inversion AOD band was used instead of AOD for PM2.5 prediction. The cross-
validation yielded an R2 of 0.87, which avoided the error in the AOD inversion process and
had higher prediction accuracy and spatial coverage. Bai et al. [28] used four different ma-
chine learning algorithms (random forest, extreme gradient boosting, gradient augmented
regression, and support vector regression) to construct PM2.5 prediction models based on
TOAR and AOD, respectively, and cross-validation yielded the best performance of the
TOAR-based random forest model with an R2 of 0.75. Yang et al. [29] integrated variables,
such as satellite TOAR, meteorological elements, and land utilization, and used a random
forest model to estimate PM2.5 concentrations in the Yangtze River Delta region with a
cross-validated R2 of 0.92. Yin et al. [30] used the LightGBM algorithm to predict PM2.5
concentrations nationwide using TOAR and AOD from Himawari-8, and the LightGBM
model had an R2 of 0.83 in regions where AOD was not available.

All the above models were single-model predictions, which can lead to poor single-
model performance due to various factors such as feature space, model size, and hyper-
parameter selection, etc. To make up for this deficiency, hybrid models have been created.
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Hybrid models [31] refer to models generated by combining signal decomposition tech-
niques with other prediction models. The hybrid model is a further decomposition of the
nonlinear original time series into more stable and regular subseries, and the final prediction
results are obtained by aggregating the predicted values of all subseries. Ding et al. [32]
performed wavelet decomposition of meteorological variables and PM2.5 and used the
CatBoost algorithm to build a prediction model for PM2.5, obtaining an R2 of 0.88. Wang
et al. [33] performed a four-layer wavelet decomposition of the original PM2.5 and used the
XGBoost algorithm to model each layer of PM2.5 after wavelet decomposition with an R2 of
0.87. Therefore, this study aims to develop a hybrid learning model that uses MODIS 1B
satellite TOAR as the main prediction parameter and adds auxiliary parameters such as
meteorological elements and elevation data to estimate daily PM2.5 concentrations in the
Beijing–Tianjin–Hebei region.

2. Materials and Methods
2.1. Research Area

The Beijing–Tianjin–Hebei region is located in northern China, with a geographical
range between 113.3–119.5 E and 36–42.4 N, including Beijing and Tianjin, two municipal-
ities directly under the central government, as well as 11 prefecture-level cities in Hebei
Province and two cities directly under provincial control. The region is the core of the coun-
try’s northern economy and the political and cultural center of the country. Figure 1 shows
the elevation map of the Beijing–Tianjin–Hebei region, which is rapidly industrializing and
urbanizing, with increasing pollutant emissions and serious air pollution problems. Since
the region connects to the Yanshan Mountains to the north and the Taihang Mountains
to the west, these will have a blocking and weakening effect on the wind, resulting in
pollutants not being easily dispersed, which will seriously affect the public health and
economic development of the region.
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2.2. Data Collection

This study used PM2.5 concentration data, satellite remote sensing data, meteorological
elements, and ground elevation data as variables for model fitting and validation.

(1) Near-ground PM2.5 monitoring data

The near-ground PM2.5 data included data from 80 state-controlled monitoring stations
in the Beijing–Tianjin–Hebei region for the two years 2019 and 2020, which are available
on the website of the Shanghai Environmental Monitoring Center (https://data.epmap.org/
product, accessed on 1 September 2021). The invalid data (PM2.5 concentrations ≤ 0 µg/m3)
and missing data (None) were removed before data integration.

(2) Satellite Data

The satellite data used Terra MODIS 1B calibration radiometric data (MOD021KM);
MODIS (Moderate Resolution Imaging Spectoradiometer) is currently carried on Terra
and Aqua satellites with a spatial resolution of 1KM and is available for free download
at URL https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 2 September 2021. PM2.5
prediction models were constructed using observation angles (solar zenith angle, solar
azimuth angle, satellite zenith angle, and satellite azimuth angle) and the TOAR in band 1
(0.62–0.67 µm), band 3 (0.459–0.479 µm), and band 7 (2.105–2.155 µm). At the same time,
MODIS AOD data with a resolution of 1 KM over two years were downloaded as model
inputs for comparison.

(3) Meteorological and elevation data

The meteorological data were obtained from the ERA-Interim reanalysis in the ECMWF
(European Center of Middle-range Weather Forecast). The meteorological data included
seven meteorological variables: Boundary Layer Height (BLH; unit: m), atmospheric
Surface Pressure (SP; unit: hPa), Total Column of Water (TCW), Total Column Ozone
(TCO), 2 m air temperature (unit: K), U/V wind speed at 10 m (U10M, V10M; unit: ms−1),
where “U10M” and “V10M” were vector synthesized. Using the daily average meteoro-
logical quantities at zero point in the Beijing–Tianjin–Hebei region, consistent with PM2.5
concentrations and satellite data, the selection of meteorological elements was based on
previous studies [34,35], which revealed factors that have a significant impact on PM2.5
concentrations. The elevation data of the Beijing–Tianjin–Hebei region were obtained
from the Geographic State Monitoring Cloud Platform (http://www.dsac.cn/, accessed
on 6 October 2021). All meteorological data were resampled to the same spatial resolution
(1KM) as the satellite data, and the processed dataset was used for model development.

(4) Descriptive Statistics

The dataset mainly included PM2.5 concentrations data, satellite data, and auxiliary
data, as shown in Table 1.

Table 1. Descriptive statistics of the dataset.

Category Variable Spatial Resolution Temporal Resolution

PM2.5 daily-mean PM2.5 — day

Remote sensing data TOAR, AOD, solar zenith, solar azimuth,
sensor zenith, sensor azimuth

1 km day
1 km day
1 km day

Meteorological element data

Boundary Layer Height, Total Column of
Water, Total Column Ozone, Surface

Pressure, 2 m temperature, 10 m
u-component of wind, 10 m v-component

of wind

0.25 day

Auxiliary data Elevation data 1 km year

https://data.epmap.org/product
https://data.epmap.org/product
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.dsac.cn/
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The daily maximum PM2.5 concentrations in the Beijing–Tianjin–Hebei region were
424 µg/m3, and the average daily average PM2.5 concentrations at each site were higher
than 75 µg/m3 for 53 days per year. According to Chinese standards, air quality with PM2.5
concentrations below 35 µg/m3 is excellent, below 75 µg/m3 is good, and above 75 µg/m3

will be harmful to the human body and reach the level of pollution. The seasonal averages
of PM2.5 concentrations in the Beijing–Tianjin–Hebei region throughout the study period
were: winter (69.70 µg/m3) > spring (40.31 µg/m3) > autumn (37.83 µg/m3) > summer
(31.26 µg/m3). Among them, the annual average PM2.5 concentrations in Beijing were
lower (39 µg/m3), and the annual average PM2.5 concentrations in Tianjin (50 µg/m3) were
higher than that in Beijing. The annual average TOAR of B1, B3, and B7 measured by
MOD021KM products were 0.18, 0.22, and 0.11, respectively.

2.3. Methods

In the PM2.5 concentration prediction study, the main processes were data collection,
feature extraction, and prediction modeling, and Figure 2 shows the technology roadmap.
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(1) Data collection: This included temporal and spatial matching of ground station PM2.5
data, satellite data, and meteorological element data;

(2) Feature extraction: Four layers of wavelet decomposition were used to obtain four
high-frequency detail components (D1, D2, D3, and D4) and one low-frequency
approximate component A4 for PM2.5 data, and the features were mainly composed
of D1-D4, A4, meteorological elements, elevation data, TOAR, and angle data with a
total of 18 features;

(3) Prediction modeling: The predictions of the PM2.5 subseries data after wavelet de-
composition were summed using Random Forest (RF) and LightGBM models to
construct an integrated learning model to obtain the final prediction results of the
PM2.5 concentrations.

2.3.1. Feature Extraction

The model input features included near-ground PM2.5 data, satellite data, meteorolog-
ical elements, and elevation data, where wavelet decomposition was used to decompose
the PM2.5 data to obtain high frequency and low frequency components.

Wavelet decomposition [36] can separate high-frequency signals from trending low
frequency signals to obtain more data features. The decomposition process is as follows:{

Aj+1 = H
(

Aj
)

Dj+1 = G
(

Dj
) (1)

where Aj and Dj refer to the low frequency approximation component and high frequency
detail component, respectively, j is the number of layers of wavelet decomposition, H is
the low-pass filter, and G is the high-pass filter.

When performing the wavelet transform, each layer of the decomposed signal is half
of the predecomposed signal data; so, two interpolation reconstructions are required to
recover the signal length, and the reconstruction equation is as follows:{

AJ = (H∗)j Aj

DJ = (H∗)j−1G∗Dj
(2)

where H∗ and G∗ are the double operators of H, G and J is the number of layers of the
low-frequency sequence and the high-frequency sequence that recovers the signal length
after reconstruction.

Figure 3 is a schematic diagram of the results after the wavelet decomposition of
the partial PM2.5 data, with the number of samples on the horizontal axis and the PM2.5
concentration values on the vertical axis. It can be seen that the A4 low-frequency series had
a clear trend as well as a certain periodicity, while D1–4 reflected the random fluctuation
changes in the trend of the original series.

2.3.2. Precision Modeling

Integrated learning improves generalization and robustness through the combination
of multiple base learners, including “Bagging” and “Boosting”. In this study, the random
forest model in “Bagging” and the LightGBM model in “Boosting” were selected as the
base learners to build the hybrid learning model.

(1) Random forest model: random forest [37] builds bagging integration based on
decision trees as the base learner and introduces random feature selection in the training
process of decision trees. The bagging algorithm randomly samples the samples with
replacement, constructs mutually independent sample datasets with equal sample sizes,
and trains different models in the same algorithm. For regression problems, it calculates
the arithmetic average of the prediction results of all models to obtain the final result. The
flowchart of the bagging algorithm is shown in Figure 4.
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(2) LightGBM model: both the LightGBM model [38,39] and XGBoost model [40] are
gradient boosting frameworks based on decision trees, and the objective function of the
XGBoost is Equation (3):

Ob(t) =
T

∑
j=1

[
Gjwj +

1
2
(

Hj + λ
)
w2

j

]
+ γT (3)

where T is the total number of leaf nodes in the t tree, Gj and Hj are the cumulative sum of
the first-order and second-order partial derivatives of the samples contained in leaf node j,
respectively. λ and γ are constants; wj is the score value of the j leaf node.

It is worth noting that LightGBM has the same gain Gjwj +
1
2
(

Hj + λ
)
w2

j as XGBoost,
but LightGBM uses a histogram-based algorithm to speed up the training process, as well
as strategies such as leaf-wise growth with depth restrictions and Gradient-based One-Side
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Sampling (GOSS), which allows LightGBM to have a higher prediction accuracy and less
running memory.

In Random Forest and LightGBM, different combinations of hyperparameters lead
to models with large gaps in prediction performance, and since both models have more
hyperparameters, it is necessary to automatically search for the combination of hyperpa-
rameters with the best performance. In this study, the Bayesian optimization method [41]
was selected to optimize the main hyperparameters of the random forest and LightGBM
models. The flowchart of the Bayesian optimization algorithm is shown in Figure 5.
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(3) Model integration: in model training, the results obtained from the random forest
model predictions are denoted as X = {X1, X2, X3, . . . , Xn}, and n is the sequence length;
the predicted result of the LightGBM model is denoted as Y = {Y1, Y2, Y3, . . . , Yn}, and
the actual PM2.5 concentrations data are denoted as Z = {Z1, Z2, Z3, . . . , Zn}. The linear
regression model Z = aX + bY + c of Z and X, Y was constructed, where a, b, and c are the
regression model coefficients.

(4) Evaluation Indicators
The mean absolute error (MAE), root mean square error (RMSE), and goodness of fit

(R2) were used to evaluate the model performance, and the MAE, RMSE, and R2 expressions
are shown in Equations (4)–(6).
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where ytrue, ypredict, and yaverage are the true, predicted, and average values of PM2.5,
respectively, and n is the overall length of the data.

In summary, the hybrid learning model proposed in this paper mainly includes the
following four steps.

Step 1. We performed wavelet decomposition on the PM2.5 sample data from ground
stations and matched the decomposed high-frequency and low-frequency subseries of each
layer with TOAR, meteorological elements, and elevation data in space and time.

Step 2. The random forest and LightGBM models were used for training, and the
optimal hyperparameter combinations of the random forest and LightGBM models were
selected by the Bayesian optimization algorithm to obtain the final random forest and
LightGBM models.

Step 3. We integrated the above two models to obtain the hybrid learning model and
evaluated the model performance using MAE, RMSE, and R2 as the evaluation metrics of
the model.

Step 4. The PM2.5 concentrations in the Beijing–Tianjin–Hebei region were predicted
using the hybrid learning model, and the spatial and temporal distributions of PM2.5
concentrations in the Beijing–Tianjin–Hebei region were plotted.

3. Results
3.1. PM2.5 Concentrations Prediction and Comparative Analysis
3.1.1. Application Environment and Parameter Setting

The experimental environment was a PC with the following configuration: Windows
10 64 bit, Intel Core i7–7500 U CPU@2.70 GHz, 4 GRAM, simulation using Anaconda
Navigator3 (Jupyter notebook), and python 3.7 for the experimental platform.

The random forest model and LightGBM model selected in this study both contain
more parameters; so, the Bayesian optimization method was selected to find the best of
the main hyperparameters in the random forest and LightGBM models, where the best
hyperparameter combinations of the optimized random forest model are shown in Table 2,
and the best hyperparameter combinations of the LightGBM model are shown in Table 3.

Table 2. Optimal hyperparameters of the random forest model.

Name Meaning Value

n_estimators Tree number 949
max_depth Maximum depth of tree 24

max_features Number of tree features 0.5
min_samples_split Conditions limiting the continuation of subtree division 4
min_samples_leaf Minimum number of samples of leaf nodes 4

Table 3. Optimal hyperparameters of the LightGBM model.

Name Meaning Value

num_boost_round Iteration number 1350
max_depth Maximum depth of tree 16

feature_fraction Select the set scale feature to build tree 0.84
bagging_fraction Proportion of data used in each iteration 0.73

min_child_weight Sum of the minimum leaf node weights 16
reg_alpha L1 Regularization 0.27

reg_lambda L2 Regularization 0.33
learning_rate Learning Rate 0.01

The hybrid learning model was obtained by model integration with the expression:

PM2.5Hybrid Model = 0.4659PM2.5RF + 0.6231PM2.5LightGBM − 4.1297 (7)
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3.1.2. Analysis and Comparison of Models with Different Variables Entered

In order to verify the validity of the proposed model, different variables were entered,
as shown below, for comparative analysis.

Figure 6 shows the model performance estimates based on TOAR and AOD, with and
without the inclusion of wavelet decomposition and meteorological element data. Table 4
shows the design and performance of the model. Figure 6a,b show the models with both
meteorological elements and wavelet decomposition; the R2, RMSE, and MAE of Figure 6b
were 0.85, 14.53, and 8.48, respectively. Compared with Figure 6b, the R2, RMSE, and MAE
of Figure 6a were 0.91, 11.60, and 7.34, respectively, indicating that the TOAR-based model
can effectively improve the PM2.5 prediction accuracy, which is due to the use of TOAR
data, avoiding the uncertainty in the AOD inversion process.

Table 4. Model design and performance.

Feature Wavelet
Decomposition

Meteorological
Elements R2 RMSE MAE

(a) TOAR yes yes 0.9138 11.6008 7.3444
(b) AOD yes yes 0.8507 14.5302 8.4794
(c) TOAR no yes 0.9061 12.1086 7.8400
(d) AOD no yes 0.8430 14.8983 8.9637
(e) TOAR yes no 0.8205 15.9296 9.6845
(f) AOD yes no 0.8149 17.0038 10.4776
(g) TOAR no no 0.8030 16.6905 10.3785
(h) AOD no no 0.8095 17.2508 10.8727

In the absence of meteorological elements, the prediction performance of each model
decreased, but the prediction accuracy of PM2.5 using wavelet decomposition was higher
than that of the model without wavelet decomposition, for example, in Figure 6e,g, because
wavelet decomposition can separate high-frequency signals with high-frequency detail
features from trending low-frequency signals, thus obtaining more data features and
decomposing PM2.5 data into more stable and regular subseries.

3.1.3. Analysis and Comparison of Different Models

To further demonstrate the reliability of the model proposed in this study, we com-
pared the cross-validation results of the proposed model with the more popular regression
models currently available, including multiple linear regression (MLR), geographically
and temporally weighted regression, random forest, LightGBM, XGBoost, CatBoost, and
DBN. The above model was used to construct PM2.5 concentration prediction models based
on TOAR, while adding wavelet decomposition and meteorological elements to estimate
PM2.5 concentrations in the Beijing–Tianjin–Hebei region in 2020. As shown in Table 5,
the PM2.5 prediction accuracy of the machine learning models was higher than that of the
multiple linear regression and geographically and temporally weighted regression models,
and the advantage of the random forest over other tree-based models was that the number
of trees in the forest was minimal, and LightGBM required less memory and less time than
the other models. Therefore, in this study, Random Forest and LightGBM were selected to
build a hybrid model, which obtained a higher prediction accuracy than other machine
learning models, with the highest R2 and the lowest RMES and MAE.
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Table 5. Comparing the performance of different models for PM2.5 concentration estimation in the
Beijing–Tianjin–Hebei region in 2020.

Model R2 RMSE MAE

MLR 0.2440 34.4142 23.3809
GTWR 0.3193 32.6560 21.7422

RF 1 0.8892 13.1518 8.0969
LightGBM 0.8943 12.8470 8.5899

WD 2 + XGBoost 0.8897 13.1197 8.4524
WD + CatBoost 0.8801 13.6810 8.5159

DBN 0.8596 14.7267 9.7049
This study 0.9090 12.3642 7.3717

1 RF: Random Forest. 2 WD: Wavelet Decomposition.

At the same time, we selected studies that also used MODIS sensors for PM2.5 daily
concentration estimation for comparative analysis (Table 6). It can be seen from Table 6 that
(a) our study was higher than other studies ([20,22,23,33,42,43]) in spatial resolution (1 KM);
(b) at present, most studies were based on AOD for PM2.5 concentrations estimation, and
we used TOAR as the main parameter for PM2.5 concentration estimation. In terms of
other studies with the same 1 KM resolution, the prediction accuracy of this study was
higher than that of most existing studies ([27,32,44,45]). The results show that the satellite
TOAR-based hybrid learning model proposed in this study outperformed most models in
the estimation and prediction of PM2.5 concentrations.

Table 6. Comparison of the performance of different models for PM2.5 daily concentration estimation
based on MODIS sensor.

Model Primary
Predictor

Spatial
Resolution Scale

Performance
Reference

R2 RMSE MAE

Two-stage AOD 10 KM YRD 1 0.78 19.18 — Hua et al. (2019) [42]
RF AOD 10 KM BTH 2 0.84 25.32 — Li et al. (2019) [23]

GTWR AOD 3 KM China 0.80 18.00 12.03 He et al. (2018) [43]
IGTWR AOD 3 KM BTH 0.84 27.84 — He et al. (2018) [20]

WT + XGBoost AOD 3 KM YRD 0.87 12.83 8.97 Wang et al. (2022) [33]
LME AOD 1 KM BTH 0.85 21.49 15.26 Xue et al. (2021) [44]
STRF AOD 1 KM China 0.85 15.57 9.77 Wei et al. (2019) [45]

WT + CatBoost AOD 1 KM BTH 0.88 17.79 — Ding et al. (2021) [32]
SIDLM TOAR 3 KM China 0.70 15.30 — Yan et al. (2021) [22]
DBN TOAR 1 KM Wuhan 0.87 9.89 — Shen et al. (2018) [27]

This study TOAR 1 KM BTH 0.91 12.36 7.37 —
1 YRD: Yangtze River Delta region. 2 BTH: Beijing–Tianjin–Hebei region.

3.2. Spatial and Temporal Distribution of PM2.5 Concentrations
3.2.1. Seasonal Distribution

In order to better observe the evolution of PM2.5 concentrations, the four-season
distribution of PM2.5 concentrations in the Beijing–Tianjin–Hebei region in 2020 was studied.
Figure 7 shows the seasonal distribution of PM2.5 concentrations observed at 80 ground-
based monitoring stations in the Beijing–Tianjin–Hebei region throughout the study period,
with March–May in spring, June–August in summer, September–November in autumn,
and December–February in winter. The PM2.5 concentrations at most monitoring points
south of Yanshan Mountain and Taihang Mountain were higher than those in the northern
part of the mountains, firstly, because of the blocking effect of the mountains, resulting
in a lower diffusion of pollutants and, secondly, because of the higher altitude and fewer
human activities, thus leading to a reduction in pollutant emissions.
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From Figure 7, it can be seen that the PM2.5 concentrations in the Beijing–Tianjin–Hebei
region had obvious seasonal differences, with the highest concentration in winter, which
was significantly higher than the other three seasons, with the lowest concentration in
summer. The reasons for this include the rapid growth in pollutants in winter due to the
use of heating, which leads to the burning of coal. Meanwhile, the model had comparable
effects using TOAR and AOD in spring, summer, and autumn, but the prediction model
using AOD had larger errors in winter, which is due to the seasonal limitation of the
inversion method of AOD, especially in winter. As can be seen from Figure 8, the R2,
RMSE, and MAE using TOAR were better than the model using AOD under the same
conditions. This is due to two main problems with MODIS-based AOD products at present:
first, as a sensor on a polar-orbiting satellite, AOD monitoring information can only be
obtained twice a day; second, because the inversion of AOD is affected by seasons and
regions. Statistics show that the annual average coverage of AOD in the Yangtze River
Delta region of China was only 40% in 2013–2014 and only 25% in summer, due to the
influence of cloud cover and snow accumulation [46]. In contrast, TOAR from satellites was
used in this study for PM2.5 concentration estimation directly, which effectively avoided
the intermediate process of AOD inversion, and the temporal resolution of TOAR is hourly.
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Therefore, TOAR has a wider spatial coverage compared with AOD, and in the areas where
AOD is missing, TOAR can be used to better predict PM2.5 concentrations and provide
more reliable prediction results.
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Figure 8. Density scatter plots of PM2.5 concentrations by seasonal cross-validation results in 2020.
TOAR-based on the left and AOD-based on the right, (a,b) spring, (c,d) summer, (e,f) autumn, and
(g,h) winter; the dashed line is the 1:1 line, and the solid line is the fitted line.
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3.2.2. PM2.5 Concentrations in Selected Key Regions

Three pollution hotspots in the Beijing–Tianjin–Hebei region, namely Beijing, Tianjin,
and Shijiazhuang, were selected to further analyze the regional spatio–temporal estimation
capability of the proposed hybrid learning model. Among the three regions, the annual
average PM2.5 concentrations were highest in Shijiazhuang (52.98 µg/m3), followed by
Tianjin with annual average PM2.5 concentrations of 49.93 µg/m3 and the lowest annual
average concentration in Beijing (39.07 µg/m3); Figure 9 shows the daily observed PM2.5
time series and the predicted PM2.5 concentrations values obtained for the three polluted
regions in 2020, and the results show that the proposed hybrid model accurately estimated
PM2.5 concentrations in all monitoring stations, even when there was severe pollution.
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Figure 9. Time series of observed (blue) and estimated (red) daily PM2.5 concentrations in 2020.
(a) Beijing, (b) Tianjin, and (c) Shijiazhuang.

Daily PM2.5 concentrations can reveal more details of changes than annual average
PM2.5 concentrations and seasonal average PM2.5 concentrations. We chose the day with
the highest PM2.5 concentrations in the three regions in 2020 and analyzed it together with
meteorological elements. The meteorological elements included boundary layer height,
surface pressure, and temperature, which are highly correlated with PM2.5 concentrations.
Figure 10 shows the PM2.5 concentrations and the corresponding meteorological conditions
in Beijing (12 February 2020), Tianjin (27 January 2020), and Shijiazhuang (15 January
2020), respectively. The highest annual PM2.5 concentrations in all three regions were in
winter, which coincides with the seasonal characteristics analyzed in Figure 7. As shown
in Figure 10, the model-estimated PM2.5 concentrations were highly correlated with the
meteorological conditions, and the trend of PM2.5 concentrations increased with the increase
in surface pressure, temperature, and boundary layer height.
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Figure 10. Pollution in Beijing (12 February 2020), Tianjin (27 January 2020), and Shijiazhuang
(15 January 2020). (a,c,e) Depict the boundary layer height and surface pressure in the three regions.
The black curve represents the boundary layer height contour (unit: m), and the background rep-
resents the surface pressure. (b,d,f) Depict the temperature and PM2.5 concentrations estimated by
the hybrid model for the three regions, with the black curves representing the temperature contours
(unit: K), and the background represents the PM2.5 concentrations.

4. Discussion

In this study, we proposed a hybrid learning model, which first performed wavelet
decomposition of PM2.5 observations and then constructed an integrated model using
Random Forest and LightGBM. The model inputs combined satellite TOAR, meteorological
elements, and elevation data and were examined in time and space on daily and seasonal
scales for PM2.5 concentration estimation in the Beijing–Tianjin–Hebei region. The results
showed that the estimated and true values were highly consistent, and the time-based cross-
validation R2, RMSE, and MAE were 0.91, 11.60, and 7.34, respectively. It can be concluded
from Table 4 that the model effect after adding wavelet decomposition was significantly
better than without it, which is due to the fact that adding wavelet decomposition can
make full use of the high-frequency and low-frequency components of the PM2.5 data.
We used a total of seven meteorological elements for model training, and the results
showed that the boundary layer height was the most important meteorological predictor,
followed by surface pressure and temperature. By adding meteorological elements as
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auxiliary parameters for model construction, it was shown that auxiliary data such as
surface pressure and temperature play an important role in PM2.5 estimations.

Satellite data have now been widely used to estimate ground-based PM2.5 concentra-
tions using various models to construct the relationship between satellite data and PM2.5.
However, it can be seen from Figure 7 that the estimation of PM2.5 concentrations using
AOD and TOAR, respectively, had the most significant error in winter, and it can be seen
from Figure 8 that during the winter period, the R2 of the prediction performance using
TOAR improved by 0.02, and the RMSE and MAE decreased by 2.97 and 2.54, respec-
tively, compared with that using AOD. This is due to the limited coverage of AOD and
the vulnerability to external conditions resulting in missing data. The satellite TOAR can
effectively compensate for the lack of spatial coverage of AOD and the limitation of the
inversion method by replacing AOD for PM2.5 concentration estimation. Therefore, we
selected TOAR as the satellite data for estimating PM2.5.

Based on the results of the model, we analyzed the spatial and temporal characteristics
of PM2.5 concentrations in the Beijing–Tianjin–Hebei region by season, with the lightest pol-
lution in summer, the most serious pollution in winter, and spring and autumn in between;
meanwhile, three more seriously polluted areas (Beijing, Tianjin, and Shijiazhuang) were
selected to analyze the trends of daily PM2.5 concentrations over one year, and they were
further studied to conclude that PM2.5 concentrations and meteorological elements are
highly correlated. Compared with previous studies, the proposed hybrid learning model
outperformed most advanced statistical models and machine learning models in terms of
prediction performance, running speed, and memory consumption. Therefore, the hybrid
learning model using TOAR and correlation variables can be a good alternative to AOD for
PM2.5 high-precision predictions, which is useful for pollution prevention and control in
the Beijing–Tianjin–Hebei region.

At the same time, this study also had certain limitations: (a) the research used the
data of state-controlled sites, which are mainly distributed in the central areas of the city
or in the more polluted areas; so, the model validation was also based on city center
sites. In future research, the provincial-controlled sites and national-controlled sites will
be used as research data to improve the regional representativeness of the sample and
the generalization ability of the model; (b) PM2.5 concentrations are affected by many
factors, such as population density, traffic flow, and Normalized Difference Vegetation
Index (NDVI), etc.; these influencing factors were lacking in this study. In future research
on PM2.5 concentration estimation, data from more sources will be collected, and various
factors will be comprehensively considered.

5. Conclusions

Here, we proposed a hybrid learning model that used satellite TOAR, meteorological
elements, and elevation data to predict daily PM2.5 concentrations in the Beijing–Tianjin–
Hebei region. After experimental verification, we drew the following conclusions.

(1) Using satellite TOAR instead of AOD to directly estimate PM2.5 concentrations enables
a higher prediction accuracy to be obtained.

(2) The hybrid learning model proposed in this study had high prediction accuracy
and universality and was suitable for near-ground PM2.5 concentrations estimation:
adding wavelet decomposition to the model extracted periodic features and random
features of the original time series; using the fusion of two machine learning models
not only took advantage of the minimum number of trees established by the random
forest model but also took into account that the LightGBM model required less running
memory and running time.
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To summarize, satellite TOAR replaced AOD to estimate ground PM2.5 concentra-
tions, avoided the intermediate process of AOD inversion, and effectively made up for the
low space–time coverage of AOD. Hybrid learning models can handle nonlinear relation-
ships between factors well, outperforming most advanced statistical models and machine
learning methods. In future research, more parameters closely related to PM2.5 will be
considered to further improve the performance of the model, and the model can also be
applied to the concentration estimation of other air pollutants, such as SO2, NO2, etc.
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