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Abstract: In the context of improving the dimensioning of observation and telecommunication, the
characterization of the propagation canal is very important. Thus, accurate models of propagation
phenomenona in their environment and above a rough surface (maritime or terrestrial) are of major
interest for many applications (such as radar, communications, and teledetection). To provide
solutions to this problem, in this paper, we propose a fast, memory-efficient, and accurate asymptotic
method for 2D tropospheric propagation for a large band of frequency that accounts for relief, as well
as ground composition and roughness. This latter is a two-way split-step wavelet scheme with an
intrinsic stopping criterion. For overseas propagation, roughness effects are considered through a
hybrid method. A complete theoretical comparison with SSF in terms of memory and time efficiency
is proposed. Simulations in various environments (ground, sea, and snow), as well as different
frequencies (UHF, S, and X-band) are performed to validate the method and highlight its advantages.
To highlight the interest of the developed methodology, this latter is applied to different real-life
applications, such as the prediction of radar coverage and the optimization of an antenna location.

Keywords: tropospheric propagation; split-step method; wavelet; rough surface; atmospheric duct

1. Introduction

Accurate modeling of tropospheric long-range propagation is important for many
applications in surveillance, communication, and remote sensing, for instance, the
optimization of an antenna position based on the location conditions. This is also
particularly important for predicting the coverage of new systems or the impact of
man-made structures on the coverage of existing systems (e.g., the impact of solar
panels or wind turbines on system performance) [1]. Fast and accurate modeling of
the electromagnetic wave propagation is also important for inverse problems such as
refractivity from clutter (RFC) [2,3] or radio-occultation [4,5]. In this context, one must
consider different interactions of electromagnetic waves with the propagation medium,
such as relief, atmospheric ducts, or rough surfaces.

Due to the mesh-size limitation, rigorous methods are not suitable. Indeed, the
discretization steps must be of the order λ/10 for methods such as the finite difference
time domain [6], the method of moments [7], or the finite element [8]. Assuch, we use an
asymptotic method. Ray-based methods [9] could be thought of, since they are accurate and
model a wide range of physical phenomenon, such as the diffraction effects [10], but in our
case they are limited due to the caustic problem, the shadow area problem, or the number
of rays needed to account for all the physical phenomenon [11,12]; whereas the relief is a
limitation for the Gaussian beam method [13,14]. Thus, we use an asymptotic model based
on the parabolic wave equation (PWE) [15–17], which is adapted here, and commonly
used in this context. As a matter of fact, the effects of the refraction, terrain, relief, and
diffraction are considered in this model [16,17]. This latter is based on a simplification of the
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Helmholtz equation by only considering the forward propagation in a paraxial cone [16,17].
Therefore, no backward propagation is introduced in the model.

The two main computational schemes commonly used to solve the PWE are either a
finite difference (FD) [18] one or the split-step Fourier (SSF) method [16,17]. The latter
is widely used in our context, since it allows wide steps in the propagation direction.
Indeed, with the FD scheme, a mesh size of λ [17] is required, while, with SSF, the step
size in the propagation direction is of order the 100λ [17]. In this scheme, the propagation
is performed in two steps. First, the field is propagated through a layer of free space
in the spectral domain. Second, the effects of refraction are considered in the spatial
domain through a phase screen [17]. The discrete mixed Fourier transform [19,20] allows
us to take into account impedance ground conditions. The relief can also be considered
with different methods [17,21,22], such as the staircase model [17]. To avoid spurious
solutions, a self-consistent algorithm has been proposed [23]. Furthermore, to overcome
the problem of the backward propagation, a two-way SSF [24–26] algorithm has been
introduced, allowing us to precisely consider multiple reflections and multi-path effects.

Recently, a wavelet-based scheme has been developed in 2D [27–30] and 3D [31,32] to
improve the memory efficiency of the method and to accelerate it to propagation. This latter
follows the same steps as SSF, but the free-space propagation step is performed in the wavelet
domain instead of the Fourier one. Indeed, the lower complexity of the fast wavelet transform
(FWT) [33] over the fast Fourier transform (FFT) and the compression performed on the wavelet
coefficients allow us to obtain an efficient method [29].

The objective of this article is to propose a fast, memory efficient, and reliable asymp-
totic model for 2D tropospheric electromagnetic wave propagation for a large band of
frequencies that accounts for relief, ground composition and roughness, and refraction.
The contributions are thus threefold. First, a two-way SSW scheme is proposed, which
departs from the two-way SSF method [25,26], indeed the stopping criteria are shown to
be intrinsic here. Second, the hybrid approach proposed in [34] to take into account the
ground roughness effects is introduced into SSW. Third, numerical tests are proposed to
validate and test the method related to practical problems, such as a radar coverage or the
optimization of an antenna location.

The remainder of this article is organized as follows. Section 2 introduces the method.
Firstly, the model and the discretization are explained. Secondly, a brief reminder of the
1D discrete wavelet transform is performed. Thirdly, an overview of the SSW scheme is
provided. First, SSW is described for solving the one-way PWE. Second, the method is
generalized for the two-way case. Third, the hybrid approach to consider the rough sea sur-
face is introduced. Finally, a comparison between SSF and SSW in terms of the complexity
and of the memory usage is proposed. Section 3 is devoted to the numerical experiments
in various conditions. Section 4 concludes the paper and discusses the advantages and
limitations of the proposed method. Finally, perspectives for future works are outlined.

2. Materials and Methods
2.1. Description of the Propagation Model and Discretization

In this section, we first describe the hypothesis, the domain, and its discretization.
Then, the two-way parabolic wave equation model is introduced. In what follows, we
assume a exp(jωt) time dependence and a slowly varying refractive index n. Moreover,
with the studied frequency range, we assume no ground-wave propagation.

2.1.1. Domain and Discretization

In this article, we study the propagation over the ground, which is at z = 0, along the
x-direction. Thus, the usual 2D Cartesian coordinate system (x, z) is used, with z as the
altitude. We assume that the source is placed at xs ≤ 0, and the field is thus computed in
the domain [0, xmax]× [0, zmax]. In this context, the field can be decomposed into transverse
electric (TE) or transverse magnetic (TM) components. In this work, only the TE component
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is studied, since the computations remain the same for the TM case. The TE part of the field
is denoted by ψ and is a solution of the Helmholtz equation.

Next, for obvious numerical reasons, the domain must be discretized. First, a sampling
along the z-axis is performed as follows:

z[pz] = ∆zpz with pz ∈ {0, · · · , Nz}, (1)

where Nz corresponds to the number of discretization points, and ∆z = zmax/Nz the
vertical step. At a position x, the discrete version of a field ψ at altitude pz is denoted by
ψx[pz]. Second, a mesh along the propagation direction x is also performed with a step ∆x
and a number of points Nx.

2.1.2. Parabolic Wave Equation Model

To study the tropospheric long-range propagation, a convenient model is the
parabolic wave equation (PWE) [17]. By only accounting for the forward propagation
in a paraxial cone along the propagation direction, this asymptotic model reduces the
Helmholtz equation [16,17] as follows:

∂u f

∂x
= −jk0

(√
1
k2

0

∂2

∂z2 + 1− 1

)
u f − jk0(n− 1)u f , (2)

with u f being the reduced field in the forward direction and k0 the free-space wave number.
Note that Equation (2) corresponds to the wide angle PWE [17], with a paraxial cone of
almost 40◦. Nevertheless, one of the main limitations of this model is that it does not
account for backward propagation. Thus, a two-way version of the PWE has been proposed
in [24]. This latter is given by the system of equations:

∂u f

∂x
= −jk0

(√
1
k2

0

∂2

∂z2 + 1− 1

)
u f − jk0(n− 1)u f (3)

∂ub
∂x

= jk0

(√
1
k2

0

∂2

∂z2 + 1− 1

)
ub + jk0(n− 1)ub, (4)

where ub corresponds with the backward propagation term, as defined in [24–26], and only
appears when reaching an obstacle, where reflections are introduced. It is important to note
that the backward and forward equations are the same within the sign of k0. Therefore, for
these two equations, a two-way model is introduced, which allows us to take more precisely
into account the reflection on obstacles along the propagation [26]. In the following sections,
a numerical scheme to efficiently solve these equations is proposed.

2.2. Brief Reminder on the 1D Discrete Wavelet Transform

Since wavelets are at the center of the SSW propagation method, in this section, we
provide a brief overview of the 1D multilevel discrete wavelet transform (DWT). For more
information, the interested reader is referred to [33].

In the DWT, wavelets are used as the decomposition basis in place of the Fourier atoms
for the Fourier transform. In a few words, wavelets correspond to short-length oscillating
functions located both in space and frequency.

To perform the DWT, first a wavelet family is constructed. This family leans on a
mother wavelet, denoted by ψ, of zero mean. This latter is then dilated on L levels in
order to cover the spectrum. Indeed, with L increasing, the lower parts of the spectrum are
covered. This function is also translated by p to cover the spatial domain. The dilated and
translated functions are part of the family denoted by:

F =
{

ψl,p

∣∣∣(l, p) ∈ [1, L]×Z
}

, (5)
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where Z corresponds to the set of relative integers. In order to cover the lowest part of the
spectrum and the continuous part, the scaling function φL,p of non-zero mean is added to
the family. Thus, an orthonormal basis is obtained. An example of the spatial and spectral
coverage of this multi-resolution basis is pictured in Figure 1. In Figure 1a, the spatial
coverage of wavelets of each level is shown, while in Figure 1b the spectral coverage for
each level is plotted.

(a)

0 kmaxz /16 kmaxz /8 kmaxz /4 kmaxz /2
kz

0

1

Am
pl
itu

de

| ̂ϕ| | ̂ψ̂| | ̂ψ2| | ̂ψ1|

(b)

Figure 1. Example of a wavelet basis. (a) In the spatial domain. (b) Spectral coverage.

We can now decompose the reduced field on this basis through the DWT [33]
as follows:

ux[·] =
Nz/2L−1

∑
p=0

aL,pφL,p[·] +
L

∑
l=1

Nz/2l−1

∑
p=0

dl,pψl,p[·]. (6)

In this equation aL,p represents the approximation coefficients and corresponds to the
decomposition on the scaling function. The details coefficients, denoted by dl,p, correspond
to the decomposition of the field on the family F . Finally, Nz/2l − 1 corresponds to the
number of coefficients for each level; thus, Nz must be a power a of 2 for the SSW method.
In the rest of this paper, the wavelet decomposition is denoted by W.

To compute the approximation and details coefficient, an efficient method is the fast
wavelet transform (FWT) [33]. This latter is of complexity O(Nz), lower than the FFT.

An important property of the wavelets for the FWT is the number of vanishing moments,
nv. A smooth signal is described with fewer coefficients, with nv increasing [33]. Thus, few
coefficients are needed to describe the field, and they mostly describe its discontinuity [33,35].
A compression, denoted by CV , with hard threshold V is thus applied on the decomposition
only to keep the important information. Finally, different wavelet families can be used for
the decomposition. Here, the symlet family, which is almost symmetric with nv = 6, and a
maximum level of decomposition L = 3 are chosen. For more information about these choices,
the reader is referred to [28].

2.3. Two-Way SSW over Rough Surfaces

In this section, the computational method is developed. First, a reminder of the one-
way SSW algorithm is provided. Second, its generalization to solve the two-way PWE is
introduced. Third, we remind the reader of the hybrid approach of [34] to treat rough sea
surfaces and incorporate them to SSW. Finally, a theoretical comparison of the complexity
and the memory usage between SSF and SSW is proposed.
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2.3.1. Overview of the One-Way SSW Scheme

Before describing the two-way scheme, a brief reminder of the conventional one-
way SSW method [29] is provided. This latter is an iterative method that computes the
propagation, marching in on distances from the source. A step of propagation from x to
x + ∆x is described through the following four steps:

1. The FWT, operator W, and the compression operator with threshold Vs, denoted by
CVs , are applied to the reduced field ux to obtain a sparse set of wavelet coefficients:

Ux = CVs Wux. (7)

Thus, only the coefficient of the field higher than Vs is kept, leading to a faster
propagation.

2. The wavelet coefficients are propagated through a free-space layer from x to x + ∆x
using the sparse wavelet-to-wavelet propagator, denoted by P:

Ux+∆x = PUx. (8)

Contrary to SSF, where a diagonal operator is used for the free-space propagation of
plane wave, here, a wavelet-to-wavelet propagator is needed. Thus, we are required
to use the method described in [29] to compute the propagation step in the wavelet
domain. In a few words, a minimal number of wavelet propagations on one step are
computed using the SSF scheme. The sparse wavelet decomposition of these local
propagations, using an FWT and compression with threshold Vp , is then stored in
a set of local propagators. This latter is pre-computed but can be computed again
throughout the propagation if needed [29]. After that, this set is used to obtain all the
local propagations associated with all of the non-zero wavelet coefficients of the field,
which are then summed to obtain the vector of the propagated wavelet coefficients
Ux+∆x.

3. The free-space propagated field is then obtained through an inverse FWT as follows:

u f s
x+∆x = W−1Ux+∆x. (9)

4. Finally, the effects of the environment are accounted for in the spatial domain. In
particular, the refraction effects from the atmosphere are computed through a phase-
screen operator [16], denoted by R, as follows:

ux+∆x = Ru f s
x+∆x. (10)

The operator R is a diagonal and accounts for the refraction at each step. Its elements
are defined as:

R[pz, pz] = exp(−jk0(n[pz]− 1)∆x). (11)

These steps have been described assuming no ground conditions. To account for the
ground effects, the local image method [30] is used here. As a matter of fact, given the
local aspect of the wavelets, the local image method allows us to consider the ground with
only Nim � Nz more coefficients, whereas adding Nz coefficients would be needed with
the usual image method. Indeed, a local replica of the field multiplied by the reflection
coefficient Z0 is generated. Then, the total field corresponding to the field in the computa-
tional domain and in the thin image layer is propagated in one step. Then, only the field in
the computational domain is kept. Thus, by choosing Nim wisely, no parasite reflections
reach the computational domain. Note that this latter value is calculated as the maximum
support of the wavelets after one step of propagation. Since the support of a wavelet is
very small compared to the domain size, this method is thus efficient. Finally, the relief is
considered through the staircase model [17].
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2.3.2. Generalization to the Two-Way SSW

In this part, the generalization to solve the two-way PWE is introduced. Briefly, it
corresponds to applying the one-way SSW algorithm by switching back and forth between
the forward and backward propagations when reaching obstacles.

First, as mentioned before, the forward field u f is propagated with a step ∆x using the
one-way SSW. Second, the backward field ub propagated along the axis x with a step −∆x.
Since the only difference between (3) and (4) is the sign of k0, and, furthermore, the sign for
the propagation step is also changed between forward and backward propagations, the
propagator remains the same for both u f and ub [26].

Therefore, when reaching an obstacle, the backward field is initiated and propagated
toward the opposite direction using the same one-way SSW computational scheme. This
technique allows us to consider more accurately multiple reflections and the multi-path
effect with the PWE [24], but the computation time and the memory load are increased.

As mentioned above, the retro-propagated field needs to be initiated. To do so, we use
the conditions at the obstacle position xo. Since the staircase model is used, the condition
on the transverse component gives the following equation at the obstacle:

exp(jk0xo)u f (xo) + exp(−jk0xo)ub(xo) = t exp(jk0xo)u f (xo), (12)

with t =
√

1− r2 as the transmission coefficient and r as the Fresnel reflection coefficient.
Note that if the transverse condition of the obstacle corresponds to a PEC, then t = 0 and
the reflection is the total as mentioned in [24,26]. Thus, when reaching an obstacle, the
previous equation allows us to compute the initialization of the retro-propagated field.
Note that, since the staircase model is used here, the corner diffraction is ignored [26].

Then, to reduce the amount of computations and thus, the computation time, a
stopping criterion must be introduced [25,26]. Using the compression introduced through
the wavelet decomposition, we show that the stopping condition is intrinsic here, differing
from [25,26] and using an advantage of the wavelet transform.

To prove this proposition, we use properties of the wavelet decomposition [33,36]. First, let
us introduce the operator norm, which is defined as:

‖P‖op = sup
u 6=0

‖Pu‖2

‖u‖2
. (13)

Second, if the propagation is performed in free space, with not-evanescent waves and
no boundaries, then we have:

‖Pu‖2 = ‖u‖2, (14)

since the energy remains the same in the domain. Otherwise, the energy can only leave
the domain, in the apodization area for example, or remain constant, thus in all generality
we have:

‖P‖op ≤ 1. (15)

Note that this result is straightforward considering the 1/
√

r decrease of the field
magnitude (2D Green’s function). Therefore, it follows for the reduced field that:

∀n ≥ 0, ‖un‖2 ≤ ‖u0‖2. (16)

This means that propagated fields always have a norm less or equal to the previous
fields and, in particular, the initial field. Next, the Moyal relation [33] is used to obtain a
condition on the wavelet coefficients of the field as follows:

∀n ≥ 0, ‖Un‖2 ≤ ‖U0‖2. (17)

Now recall that a compression with a hard threshold is performed at each step with
SSW. The threshold is expressed as follows:
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Vs = vs‖U0‖∞. (18)

Thus, the normalized threshold vs has the same effect as the stopping criterion used
in [26]. Moreover, throughout the propagation, this latter value can be changed to reduce
the number of backward propagations and thus the computational time. Additionally, a
theoretical formula has been obtained to assess the error of compression of SSW with the
number of iterations [37].

In conclusion, in SSW the two-way generalization is performed by propagating the
backward field initiated with the condition with the one-way SSW method (12) when reach-
ing an obstacle. The stopping criterion here is implicit with the compression performed on
the wavelet coefficients. This numerical method is used for large-scale obstacles, such as
knife-edge or relief, to account for the multi-path effect and reflections; it is not used for
small scale obstacles, such as sea waves, where this effect is negligible.

2.3.3. Introduction of Rough Surfaces

In this section, we introduce the hybrid method to model a rough sea surface
of [34] in SSW.

The main idea of the method is to also consider the sea surface geometry and not just
an attenuation through a roughness parameter in the reflection coefficient.

To consider the sea effect, one uses the sea spectrum, denoted by Sz, such as the Pierson–
Moskowitz [38] one or the Elfouhaily [39] one. An example of this latter one is pictured
in Figure 2. In this paper, the latter is considered, since it is the more accurate regarding
the experimentation data. When considering snowy clutter, a Gaussian spectrum [40] is
used as in [41]. In a normal approach, this spectrum is used to compute the roughness
coefficient with the Ament [42] or Miller and Brown [43] ones. Thus, roughness surfaces
are only accounted for through an attenuation coefficient, and no shadowing effects are
considered. In the hybrid method [34], the sea spectrum is divided into two parts. The
lowest part allows us to compute the geometry of the sea surface, while the higher part is
used to calculate a new roughness coefficient. In the following, we only use the Miller and
Brown one, since this is more accurate.

Figure 2. Splitting of the Elfouhaily spectrum. The red and blue parts correspond to the high and
low roughness parts, respectively.

For better readability, the method is explained for rough sea surfaces, but the approach
remains the same for any other rough surfaces, such as a snow clutter. Firstly the Elfouhaily
spectrum is divided in two from the propagation parameters. The division limit is given by:

kmax = Nx
2π

xmax
. (19)
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This limit is shown in Figure 2.
First, we consider the part below the limit kmax, in blue in Figure 2. This lower part of

the spectrum is used to generate a random sea surface as follows. A random altitude profile
is generated as a Gaussian white noise vector B of size Nx. Then, this latter is convolved to
the inverse Fourier transform of the square root of the sea spectrum,

√
Sz corresponding to

sea waves, to obtain a random sea surface geometry along the propagation axis x. Note
that, for efficiency, the convolution is performed as a product in the spectral domain. Thus,
the sea surface geometry z, corresponding to the altitude at each point on the axis x, is
given by:

z(x) = F−1
(√

SzF(B(x))
)

, (20)

with F being the Fourier transform operator and F−1 its inverse. Therefore, using (20)
random sea surface geometries are generated. Second, the higher part of the spectrum is
used to compute the attenuation coefficient as follows, see the red part of Figure 2. The
new standard deviation of the low roughness waves is computed with:

hsc = 4

√∫ ∞

kmax
Sz(k)dk. (21)

This is used to compute a new Miller and Brown roughness coefficient ρ [34], which is
defined as:

ρ = exp
(

γ2
r

2

)
I0

(
γ2

r
2

)
, (22)

with γr = 2khsc sin(α), where α is the grazing angle, and I0 is the modified Bessel function
of order 0. The coefficient ρ corresponds to an attenuation due to the roughness of the sea
surface. Finally, the reflection coefficient Z for the local image method is computed as:

Z = ρZ0, (23)

with Z0 being the Fresnel reflection coefficient, see Section 2.3.
This method allows us take both the geometry of the surface, the shadowing effects

due to the waves, and the roughness and attenuation of the sea into account. This latter
factor can also be used to consider terrain roughness with the Gaussian spectrum [40,41].
Note that the surfaces are randomly generated, thus Monte Carlo simulations are used to
obtain the effect of the sea on the field in given conditions.

2.3.4. Comparison of SSW and SSF

In this section, a complete comparison between SSF and SSW in terms of complexity
and memory usage is performed.

First, we denote by Ns and Np the number of non-zero coefficients of Ux and P. They
correspond to:

Ns = ]{Ux[i]/ ∀0 ≤ i ≤ Nz, Ux[i] 6= 0}, (24)

Np = ]{P[i, j]/ ∀(i, j) ∈ [0, Nz]
2, P[i, j] 6= 0}. (25)

Given that the signals we are dealing with are smooth functions, these numbers are
very low compared to Nz and N2

z , respectively. Moreover, they can be approximated
through the formula given in [35]. Using this, and since the signals we are dealing with are
smooth, one can see that, for example, Ns is of the order of 10 coefficients. Therefore, in
practice with an appropriate threshold we have:

Ns � Nz and Np � Nz. (26)

This result has been validated through numerical simulations in [28].
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Second, we can compare the memory usage of both methods for each propagation step.
In SSF, we need to store the diagonal operator of propagation; thus, we have NSSF

p = Nz.
We also need to store the spectral transformation of the field corresponding to NSSF

s = Nz.
Thus, in terms of memory efficiency, SSW is better than SSF, given that a good compression
is performed.

Third, the complexities of both methods are compared for one step of propagation. On
one hand, the complexity of the SSF method corresponds to the sum of the complexity of
the FFT, the propagation step, and the inverse FFT. This leads to a complexity of:

O(Nz log (Nz)) +O(Nz) +O(Nz log (Nz)) = O(Nz log (Nz)). (27)

On the other hand, the complexity of SSW corresponds to:

O(Nz) +O
(

NsNp
)
+O(Nz) = O

(
NsNp

)
. (28)

Thus, since NsNp ≤ Nz, when a good compression is applied, the complexity of SSW
is also lower than the one of SSF.

Therefore, SSW is theoretically better than SSF in terms of both memory and time
efficiency, which is useful in our context. Indeed, Monte Carlo simulations are needed to
compute the effects of the sea on the propagation. It is also necessary for the generalization
to 3D [31,32].

3. Results

In this section, numerical simulations are performed. First, we validate the one-way
and two-way SSW computational schemes. Second, a propagation test with knife-edge
obstacles in the S-band is performed to compare the results to [25,26]. Next, the SSW
scheme with the hybrid method is validated with two different scenarios: propagation in a
maritime environment and propagation over snowy clutter. Finally, the method is applied
on different problematic scenarios, such as the prediction of a radar coverage, optimization
of an antenna location, and as the direct method in the RFC context. All these tests are
performed at different frequency ranges.

3.1. Validation of SSW

In this section, we aim to validate one-way SSW by comparing the results to the exact
solution for a complex source point (CSP) [13].

Therefore, the propagation from a CSP at f0 = 300 MHz is studied along the x axis.
The computations are performed in a domain of size x ∈ [0, 4000] m and z ∈ [0, 2048] m.
The steps are ∆x = 50 m and ∆z = λ/2 = 0.5 m along the x and z axes. The source is placed
at xs = −50 m and zs = 1024 m with a width of W0 = 5 m. For comparison with the exact
solution, we assume n = 1, and the domain has been defined such that the propagation
can never reach the ground. The thresholds in SSW are set so as to obtain a maximum
compression error of −20 dB at the end.

The results are plotted in Figure 3a–c. In the first image, Figure 3a, we have plotted
the propagation obtain with SSW. Figure 3b shows the difference between SSW and the
exact solution on the computational domain. The last, Figure 3c, pictures the fields at the
last iterations obtained with SSW and the exact solution.

In Figure 3b, it can be seen that the error between the exact solution and SSW is below
−20 dB, which is negligible, as expected. Moreover, the error is mainly outside a cone along
the propagation direction, which is due to the paraxial approximation, the compression
introduced in SSW, and also to the mesh size as mentioned in [44]. Moreover, one can see in
Figure 3c that both fields are matching on the last iteration until −50 dB. Thus, the one-way
SSW scheme works well.

Furthermore, in this case, the propagation for 80 iterations has been performed in 1 s,
and the memory size of the propagator is of the order 1 kB, showing that the method is
also efficient. Further studies have been carried out in [28,44] to validate the method; these
show the effects of the different parameters.
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(a) (b)

(c)

Figure 3. Propagation in free space for comparison with the exact analytical solution of the CSP.
(a) Normalized field obtained with SSW. (b) Normalized difference between SSW and the analytical
solution. (c) Comparison of the exact solution and of the field obtained with SSW at the last iteration.
(a) Normalized reduced field u (dB) obtained with SSW. (b) Normalized difference between SSW and
the exact solution. (c) Exact solution and field obtained with SSW at the last iteration.

In conclusion, the one-way SSW works well and is efficient in terms of both computa-
tion time and memory usage.

3.2. Validation of the Two-Way SSW

In this section, we validate the two-way SSW method. To do so, a plane wave at
f0 = 300 MHz (UHF-band) is propagated in the x direction until a PEC of the size of the
computational domain is reached. We expect that the total field will be negligible.

For this scenario, the domain is of size xmax = 1000 m and z ∈ [0, 1024] m. The mesh
size is ∆x = 50 m along the x-axis and ∆z = λ/2 along the z-axis. A PEC wall of 1024 m is
placed at xo = xmax. Until this obstacle, we propagate in free-space. Thus, an apodization
window below and above the computational domain is used to avoid parasite reflections.
In addition, to validate the two-way method, we assume n = 1 to only account for the
propagation scheme. We plot the normalized total field in dB, sum of the incident and
reflected fields, in Figure 4.

As can be seen in Figure 4, the total field is negligible in the propagation domain, as
expected. Indeed, at the PEC wall, where the reflections begin, it is below −60 dB, while
increasing to below −35 dB at the origin of the domain. Thus, the two-way version of SSW
works well in a canonical test.
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Figure 4. Normalized reduced field (dB) obtained with SSW.

3.3. Propagation over Two Knife-Edge Obstacles

Now that two-way SSW has been validated, the method is used to compute the
propagation over the ground, while considering two knife-edge obstacles, as in [25,26].

Here, the propagation from a complex source point [13] in the S-band, f0 = 3 GHz,
is studied. The source is placed at xs = −50 m and zs = 50 m with a width of W0 = 5 m.
The computation domain is (x, z) ∈ [0, 60,000] × [0, 512] m2. The steps along both axes are
∆x = 200 m and ∆z = 0.1 m. To validate the method in this case, a PEC ground condition is
considered, and we assume n = 1. We also consider two knife-edge reliefs placed at 20 km
and 40 km at altitude 100 m and 150 m, respectively. Here, the thresholds are set using
the theoretical formula in [37], such that a maximum error of −20 dB with SSF is obtained.
Note that the thresholds also correspond to the implicit stopping criterion of SSW.

The normalized reduced field obtained with the two-way SSW method is plotted in
Figure 5b. The results for the one-way version of SSW are also picture in Figure 5a in order
to compare both results.

(a) (b)

Figure 5. Propagation of the normalized field u (in dB) computed with the one-way and two-way
SSW, respectively. (a) One-way SSW. (b) Two-way SSW.

First, the error between the one-way SSW and SSF is below −45 dB, as expected.
Second, with the one-way method, see Figure 5a, only the forward propagation is computed.
Thus, the reliefs induce only shadow areas and diffraction in the propagation direction.
As can be seen in Figure 5b, with the two-way algorithm, we also consider the reflections
due to the relief. Therefore, the multi-path effect in between the relief is considered here,
but the computation time is increased to account for all the backward propagations. Note
that only the implicit stopping criterion has been used here, even if the multiple reflections
between both obstacles are considered. Additionally, the results are in line with those
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obtained in [26], showing that the method works well. Therefore, if we want to accurately
compute the coverage of a given antenna while accounting for complicated structures, the
two-way version is better. Nevertheless, if the computation is limited, for example in the
RFC inversion problem, or if only the last iteration is needed, we can use the one-way
version of SSW.

3.4. Propagation above the Sea

In this section, we validate the one-way SSW method with the hybrid approach for the
propagation in a maritime environment. The results are thus compared to the ones obtain
with SSF [34,41].

In this scenario, we model the propagation from the Saint-Mathieu Lighthouse (Plougour-
den in France) and the airport of Ouessant (France) at f0 = 9 GHz (X-band). The considered
source is a CSP placed at (xs, zs) = (−50, 2) m, and its width is W0 = 2 m. The relief
between the source and ending points is obtained through the data provided by the “Insti-
tut Nationale de l’Informations Géographique et Forestière” (IGN) [45]. Thus, the islands
between both places are also considered, such as the island of Molène.

The computational domain is of size [0, 26,000] × [0, 123] m2. The mesh sizes are
∆x = 50 m and ∆z = 0.03 m along the x and z axes, respectively. For the different ground
conditions, we consider the parameters of a dry ground (εr = 20 and σr = 0.02 S/m), for
the terrain, and of the water (εr = 80 and σr = 5 S/m), for the sea surface. We generate the
sea surface geometry using the hybrid approach described in Section 4. A wind speed of
U10 = 10 m/s is considered. We also consider an evaporation duct at the sea surface [46]. The
wavelet parameters remain the same for this test.

The results are plotted in Figure 6. Figure 6a shows the propagation of the reduced
field u computed with SSW. In Figure 6b, we show the normalized difference between SSW
and SSF along the propagation.

(a) (b)

Figure 6. Propagation above a rough sea surface. (a) Propagation of the normalized field u (in dB).
(b) Normalized difference between SSW and SSF.

First, in Figure 6, one can see that we account for both the effects of the refraction and
of the sea surface geometry. Indeed, the electromagnetic waves are straight-lined near the
sea, in the surface duct. In addition, one can also note the effects of the surface geometry
with the diffractive pattern in the propagation. Second, the error is below −45 dB. Thus,
the SSW with the hybrid approach is validated in this case. Furthermore, the results are in
line with those obtained in [34,41]. Finally, only one simulation has been performed here.
Since the sea surface generation is random, a Monte-Carlo approach should be considered
and is performed in Sections 3.7 and 3.8.

To conclude, we note that using this approach allows us to model more precisely the
effects of the sea. This is of high importance for the RFC inverse problem [2,3], where an
accurate and fast forward model is needed. This latter is studied in Section 3.8 for various
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sea conditions. This is also of serious concern for the prediction of radar coverage and
optimization of antenna location near the sea, as will be seen in Section 3.7.

3.5. Two-Way Propagation in Snowy Condition

In this section, we test the SSW method while considering snowy ground conditions [41].
In this scenario, we study the propagation from a CSP in the UHF-band ( f0 = 500 MHz)

over a snowy ground. The snow dielectric parameters are taken from [47], so as to compute
the reflection coefficient for the local image method. Therefore, we have εr = 30 and
σr = 3× 10−5 S/m. The hybrid method is used to take into account both the snow surface
and the attenuation. A triangular relief is also considered.

The source of the parameters remain the same, except that the source altitude is
zs = 70 m. Finally, the computations are performed in the following domain: (x, y) ∈
[0, 15,000] × [0, 308] m2. The mesh sizes along x and z are ∆x = 50 m and ∆z = 0.3 m.
The propagation is computed both with the one-way and two-way SSW methods. For the
two-way method, to avoid unnecessary computations, backward computations are only
computed for reliefs of more than 2 m in altitude. Finally, the wavelet parameters remain
the same.

The results are plotted in Figures 7 and 8, for the propagation computed with one-way
and two-way SSW, respectively. The normalized reduced field on the overall domain
is shown.

First, one can note the interest of using the hybrid approach. Indeed, the effect of
the roughness of the snow clutter can be seen as an interference pattern due to the relief
introduced by the snow surface. Second, for both methods, as expected, the results beside
the triangular relief are the same. Nevertheless, in front of the relief, the two-way method
allows us to consider the reflection toward the source. Thus, we have obtained an accurate
propagation method in various environments.

Figure 7. Propagation over a rough terrain obtained with one-way SSW.
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Figure 8. Propagation over a rough terrain obtained with two-way SSW.

3.6. Application to the Prediction of Radar Coverage

In this numerical experiment, the two-way SSW method is applied to predict the
coverage of the Toulouse airport radar (France) in one direction.

To do so, we model the antenna propagation pattern as a CSP [13] in the VHF band (at
f0 = 300 MHz). The parameters of the source are as follows: xs = −50 m, zs = 10 m and
W0 = 5 m. The 2D propagation between the Toulouse airport and Montauban is modeled
here with the two-way SSW method and the SSF scheme in order to compare them. The relief
between the two places is taken into account using IGN data [45]. To account for a realistic
effect, a tropospheric duct modeled with a tri-linear profile of refraction [46] is accounted for.
The parameters for M are M0 = 330 M-units, zb = 300 m, and zt = 250 m, and the gradients
are c0 = 0.118 M-units/m and c2 = −0.5 M-units/m; see Figure 9 for a presentation of
the parameters.

Figure 9. Tri-linear profile of atmosphere.

This latter models a tropospheric duct as a three layers refractive index that varies
linearly in each layer with a different gradient. Thus, zb corresponds to the altitude until
the first change of gradient from c0, positive, to c2, negative, and zt to the transition altitude,
with zb + zt the altitude of the second change of gradient from c2 to c0.
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The computational domain is of size x ∈ [0, 42,000] m and z ∈ [0, 512] m and sampled
with steps ∆x = 100 m and ∆z = 0.5 m. We consider a dielectric ground condition of
parameters εr = 20 and σr = 0.02 S/m, which correspond to the conditions of a dry ground.
Finally, the wavelet parameters remain the same.

For this scenario, we first plot in Figure 10a,b the field computed with the one-way and
two-way schemes, respectively. Second, the normalized difference between both schemes
is pictured in Figure 11.

(a) (b)

Figure 10. Prediction of the radar coverage for the Toulouse airport using the one-way and two-way
methods. (a) One-way method. (b) Two-way method.

Figure 11. Normalized difference between the one-way SSF and two-way SSW schemes along
the propagation.

Figure 10 shows the differences in the prediction of the radar coverage between the
one-way and two-way methods. Indeed, in between both reliefs the two-way SSW scheme
takes into account the backward propagation. Thus, an interference pattern appears, but no
shadowy areas above 300 m appear due to the multiple reflections, which is very important
in the context of radar coverage. Therefore, a landing plane, such as the gray one, is spotted
by the radar. Otherwise, after 20 km, one can see that both methods give the same result.
Moreover, the difference between both methods is small, as can bee seen in Figure 11. Thus,
even with the reflections, an airplane can be spotted.

Note that, as pictured in Figure 11, the difference between both schemes is localized in
between the relief, as expected, and is of order −10 dB, which is small. Moreover, the error
after the second relief is due to the compression introduce in SSW. Therefore, the choice
between the two-way and one-way schemes to predict radar coverage mostly depends on
the environment. If more reliefs, such as metallic structures, are considered, then reflections
are important and should be considered even if the computation time increases.
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Nevertheless, this scenario shows that the method works well and is useful to compute
radar coverage in given conditions.

3.7. Application to the Optimization of an Antenna Location

We now study the propagation in a maritime environment, as in [34,41]. In particular,
we apply the SSW method with the hybrid approach for the sea to optimize the antenna
location for given conditions.

For the following tests, the propagation is studied in the X-band with f0 = 9 GHz.
The source is placed in the harbor of Toulon (France). Thus, the propagation is modeled
above the Mediterranean sea until 20 km from the source. The propagation domain is,
thus, of size x ∈ [0, 20,000] m and z ∈ [0, 125] m. The considered source is a CSP placed at
xs = −50 m with a width of 2 m. The altitude of the source above the ground will vary
along the numerical tests and is the parameter to be optimized here. The goal is to obtain
the best possible coverage. The steps are as follows: ∆x = 50 m and ∆z = 0.03 m.

The sea dielectric parameters are εr = 80 and σr = 5 S/m [47]. Sea surfaces and the
attenuation parameters are computed through the hybrid approach using the Elfouhaily
spectrum. We consider a wind speed of U10 = 10 m/s. Since the surface generation is
random, 50 Monte-Carlo simulations are performed.

We also consider a tropospheric duct above the sea, modeled with a tri-linear atmo-
spheric index [46]. The parameters are as follows: M0 = 330 M-units, zb = 20 m, and
zt = 50 m, and the gradients are c0 = 0.118 M-units/m and c2 = −0.5 M-units/m. The
wavelet parameters remain the same.

We first consider an antenna located zs = 5 m above the ground. In this case, the
predicted coverage is plotted in Figures 12 and 13. In these figures, we plot the mean of
the sum of the 50 reduced fields obtained through the Monte-Carlo simulations and the
worst-case scenario in terms of ship detection, respectively.

From the results pictured in Figures 12 and 13, we can conclude there is a shadowy
area at 15 km where ships would not be spotted, as pictured with a gray ship that can not
be seen. Thus, the coverage of this antenna needs to be improved. In order to do so, we
change the antenna location to zs = 20 m above the ground.

Figure 12. Mean reduced field over 50 Monte-Carlo simulations computed with the SSW method. In
this case the source is placed zs = 5 m above the ground.
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Figure 13. Worst-case scenario for the antenna coverage in terms of ship detection. In this case the
source is placed zs = 5 m above the ground.

As before, we plot in Figure 14 the mean of the sum of the field obtained through
50 Monte-Carlo simulations with the SSW scheme. As before, we also plot the worst-case
scenario in Figure 15 to verify that a ship will still be detected.

Figure 14. Mean reduced field over 50 Monte-Carlo simulations computed with the SSW method. In
this case the source is placed zs = 20 m above the ground.

The first conclusion from Figure 14 is that, by changing the antenna location, shadowy
areas are no longer seen around the sea, even in the worst case scenario, see Figure 15.
Therefore, any ship, such as the gray one, can be spotted in this case. Nevertheless, in this
case, the propagation is more stuck in the tropospheric duct, and less energy exists above
60 m. This is not a problem in our context (ship detection).

This scenario shows that the method is also useful for the optimization of an antenna’s
location. Obviously more tests in different conditions should be performed to conclude
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on the final antenna position. Furthermore, if the antenna altitude can be changed, this
method allows us to find a good position given the location conditions.

Figure 15. Worst-case scenario for the antenna coverage computed with the SSW method. In this case
the source is placed zs = 20 m above the ground.

3.8. Forward Model for the RFC Problem

In this last numerical test, we study the propagation above the sea from the antenna
of a ship, which corresponds to the forward model of RFC [2,3]. The main objective is to
show that the surface geometry must be taken into account in this context. Thus, different
conditions of wind to generate the sea surface are studied. Moreover, in the RFC scenario,
the goal is to have a fast forward model, thus we use the one-way SSW scheme.

Here, the propagation above the sea from a CSP at f0 = 9 GHz (in line with the
frequency used in RFC [48]) is modeled. The sea surface is generated through the hybrid
approach of Section 2.3 for different wind speeds U10 ∈ [5, 10, 15, 20] m/s.

For all wind conditions, the following parameters are the same. The source is located
at xs = −50 m and zs = 10 m above the ground (on the top of the ship). Its width is
W0 = 2 m. The computational domain is of size (x, y) ∈ [0, 20,000] × [0, 123] m × m.
The discretization is performed with steps ∆x = 50 m and ∆z = 0.03 m. We consider an
impedance ground condition of parameters εr = 80 and σr = 5 S/m that corresponds to the
parameters of water. We also consider a surface duct of 20 m. The wavelet parameters are
the same as in the previous tests. Finally, for each wind speed, 50 Monte-Carlo simulations
are performed.

In Figure 16a–d, we plot the means of the propagated field over all Monte-Carlo
simulations for the different wind speeds U10 ∈ [5, 10, 15, 20] m/s, respectively.

Figure 16 shows the effects of different sea surfaces geometry on the propagation
of electromagnetic waves. Indeed, for different wind speeds the sea waves are stronger,
thus the propagation is affected. As can be seen, the radiation lobes throughout the
propagation are different between the four figures (a) through (b). As a matter of fact, the
more the wind speed increases, the fewer lobes are presents, but the first lobe becomes
larger. As can be seen in Figure 16d, we only have one lobe for a high wind speed. In
the RFC scenario [2,3], we measure the field at the last iteration in order to retrieve the
refractive index. Thus, if the sea geometry is not accounted for, one can see that error
would be introduced in the forward model.
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(a) (b)

(c) (d)

Figure 16. Means of the propagated fields over 50 Monte-Carlo simulations for different wind speeds.
(a) U10 = 5 m/s. (b) U10 = 10 m/s. (c) 15 m/s. (d) 20 m/s.

4. Discussion

Characterizing the propagation canal is very important for many applications, such as
radar, teledetection, or communications. In this context, one needs to model the long-range
propagation in the troposphere while accounting for the relief and the ground composi-
tion and roughness. Thus, fast, accurate, and memory-efficient computational methods
are needed. To improve the accuracy of the existing SSW method, we have introduced
here a two-way version of SSW in order to consider back-propagations. Furthermore, a
hybrid approach to consider rough surfaces has been introduced to SSW. In addition, this
method is better both in terms of memory efficiency and computation time than the usual
SSF method.

First, the two-way PWE has been introduced. This allows us to take into account
both the forward and backward propagations, while the usual PWE only considers the
forward part. Second, the SSW scheme is introduced to solve the two-way PWE. We
show that no explicit stopping criterion is needed, since the compression introduced in the
wavelet decomposition works as an implicit stopping criterion. A complete comparison
between SSF and SSW in terms of time and memory efficiency is proposed. This shows
that, with good compression, SSW is better than SSF in both parameters. Finally, numerical
experiments are performed. They allow us to validate the method and show that two-
way SSW works well in various conditions (relief, sea, snow) and at various frequencies
(UHF-band, S-band, X-band). Applications of the method in different scenarios, such as the
optimization of an antenna location or the prediction of radar coverage, are also proposed.

We have thus shown that the newly developed two-way SSW is efficient for modeling
the tropospheric long-range propagation in various environments and useful for different
applications. Indeed, the low complexity of the wavelet transform and the compression
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introduced in SSW allow us to obtain an accurate and a memory- and time-efficient numeri-
cal scheme. Additionally, using the wavelet properties, the stopping criterion for backward
propagation is implicit and can be changed throughout the propagation, departing from
the two-way SSF. This adds versatility to the method. Furthermore, ground conditions and
roughness are considered with this scheme, with no cost on the computation time.

Nevertheless, this method has limitations. First, the complexity and memory usage
rely mostly on the compression. Thus, if the signal we are dealing with is not smooth, then
the computation time increase. In addition, taking into account the backward propagations
with the two-way SSW scheme increases the computation time. Thus, given the scenario
and the accuracy needed, a choice between the one-way or two-way computational method
must be performed. Secondly, the method solves the wide-angle PWE, and the results are
valid in a cone of around 40◦. Third, the reliefs considered are limited in slope, since the
method is (for now) only developed for the staircase model. More reliable models of terrain
are under study, but this induces a change in the wavelet-to-wavelet propagator and in the
initial condition for the two-way SSW method. Finally, some physical phenomena are not
considered, such as the diffusion or complex interaction of the electromagnetic waves with
the sea waves.

Further works include more numerical tests. This could also lead to a basis of numer-
ous computed propagations for different inputs (ground condition, sea surface geometry,
refraction, etc.), which could be useful for inverse-problem or artificial intelligence-based
propagation schemes [49]. We are also investigating how to efficiently parallelize the
two-way version of SSW. Furthermore, other applications of this method should be stud-
ied, such as the ionospheric propagation with SSW [50]. We are also investigating a
hybridization of SSW with a wavelet-based method of moments (MoM) [51], similar to
SSF with the MoM [52], for a better accuracy when dealing with relief and man-made
structures. To conclude, the generalization of the approach to 3D [31,32] would be an
evolution of the proposed work.
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3. Karabaş, U.; Diouane, Y.; Douvenot, R. A variational adjoint approach on wide-angle parabolic equation for refractivity inversion.

IEEE Trans. Antennas Propag. 2021, 69, 4861–4870. [CrossRef]
4. Kuo, Y.H.; Wee, T.K.; Sokolovskiy, S.; Rocken, C.; Schreiner, W.; Hunt, D.; Anthes, R. Inversion and error estimation of GPS radio

occultation data. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 507–531. [CrossRef]
5. Zeng, Z.; Sokolovskiy, S.; Schreiner, W.S.; Hunt, D. Representation of vertical atmospheric structures by radio occultation

observations in the upper troposphere and lower stratosphere: Comparison to high-resolution radiosonde profiles. J. Atmos.
Ocean. Technol. 2019, 36, 655–670. [CrossRef]

6. Taflove, A.; Hagness, S.C.; Piket-May, M. Computational electromagnetics: The finite-difference time-domain method. Electr.
Eng. Handb. 2005, 3, 629–670.

7. Gibson, W.C. The Method of Moments in Electromagnetics; Chapman and Hall: London, UK; CRC Press: Boca Raton, FL, USA, 2021.
8. Jin, J.M. The Finite Element Method in Electromagnetics; John Wiley & Sons: Hoboken, NJ, USA, 2015.
9. Štumpf, M.; Adrianus, T.; Vandenbosch, G.A. Generalized ray theory for time-domain electromagnetic fields in horizontally

layered media. IEEE Trans. Antennas Propag. 2013, 61, 2676–2687. [CrossRef]
10. Borovikov, V.A.; Borovikov, V.A.; Kinber, B.Y.; Kinber, B.E. Geometrical Theory of Diffraction; Number 37; IET: Hertfordshire,

UK, 1994.

http://doi.org/10.1109/TAES.2017.2650058
http://dx.doi.org/10.1029/2002RS002640
http://dx.doi.org/10.1109/TAP.2021.3060073
http://dx.doi.org/10.2151/jmsj.2004.507
http://dx.doi.org/10.1175/JTECH-D-18-0105.1
http://dx.doi.org/10.1109/TAP.2013.2242835


Remote Sens. 2022, 14, 2686 21 of 22

11. Deschamps, G.A. Ray techniques in electromagnetics. Proc. IEEE 1972, 60, 1022–1035. [CrossRef]
12. Bouche, D.; Molinet, F.; Mittra, R. Asymptotic Methods in Electromagnetics; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2012.
13. Deschamps, G.A. Gaussian beam as a bundle of complex rays. Electron. Lett. 1971, 7, 684–685. [CrossRef]
14. L’Hour, C.A.; Fabbro, V.; Chabory, A.; Sokoloff, J. 2-D propagation modeling in inhomogeneous refractive atmosphere based on

Gaussian beams Part I: Propagation modeling. IEEE Trans. Antennas Propag. 2019, 67, 5477–5486. [CrossRef]
15. Leontovich, M.A.; Fock, V.A. Solution of the problem of propagation of electromagnetic waves along the earth’s surface by the

method of parabolic equation. J. Phys. USSR 1946, 10, 13–23.
16. Kuttler, J.R.; Dockery, G.D. Theoretical description of the parabolic approximation/Fourier split-step method of representing

electromagnetic propagation in the troposphere. Radio Sci. 1991, 26, 381–393. [CrossRef]
17. Levy, M. Parabolic Equation Methods for Electromagnetic Wave Propagation; Number 45; IET: Hertfordshire, UK, 2000.
18. Lee, D.; Botseas, G.; Papadakis, J.S. Finite-difference solution to the parabolic wave equation. J. Acoust. Soc. Am. 1981, 70, 795–800.

[CrossRef]
19. Dockery, D.; Kuttler, J.R. An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave

equation. IEEE Trans. Antennas Propag. 1996, 44, 1592–1599. [CrossRef]
20. Kuttler, J.R.; Janaswamy, R. Improved Fourier transform methods for solving the parabolic wave equation. Radio Sci. 2002,

37, 1–11. [CrossRef]
21. Barrios, A.E. A terrain parabolic equation model for propagation in the troposphere. IEEE Trans. Antennas Propag. 1994, 42, 90–98.

[CrossRef]
22. Janaswamy, R. A curvilinear coordinate-based split-step parabolic equation method for propagation predictions over terrain.

IEEE Trans. Antennas Propag. 1998, 46, 1089–1097. [CrossRef]
23. Zhou, H.; Chabory, A.; Douvenot, R. A 3-D split-step Fourier algorithm based on a discrete spectral representation of the

propagation equation. IEEE Trans. Antennas Propag. 2017, 65, 1988–1995. [CrossRef]
24. Ozgun, O. Recursive two-way parabolic equation approach for modeling terrain effects in tropospheric propagation. IEEE Trans.

Antennas Propag. 2009, 57, 2706–2714. [CrossRef]
25. Ozgun, O.; Apaydin, G.; Kuzuoglu, M.; Sevgi, L. Two-way Fourier split step algorithm over variable terrain with narrow and

wide angle propagators. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium, Toronto,
ON, Canada, 11–17 July 2010; pp. 1–4.

26. Ozgun, O.; Apaydin, G.; Kuzuoglu, M.; Sevgi, L. PETOOL: MATLAB-based one-way and two-way split-step parabolic equation
tool for radiowave propagation over variable terrain. Comput. Phys. Commun. 2011, 182, 2638–2654. [CrossRef]

27. Iqbal, A.; Jeoti, V. A novel wavelet-Galerkin method for modeling radio wave propagation in tropospheric ducts. Prog.
Electromagn. Res. B 2012, 36, 35–52. [CrossRef]

28. Zhou, H.; Douvenot, R.; Chabory, A. Modeling the long-range wave propagation by a split-step wavelet method. J. Comput. Phys.
2020, 402, 109042. [CrossRef]

29. Bonnafont, T.; Douvenot, R.; Chabory, A. A local split-step wavelet method for the long range propagation simulation in 2D.
Radio Sci. 2021, 56, e2020RS007114. [CrossRef]

30. Zhou, H.; Chabory, A.; Douvenot, R. A Fast Wavelet-to-Wavelet Propagation Method for the Simulation of Long-Range
Propagation in Low Troposphere. IEEE Trans. Antennas Propag. 2021, 70, 2137–2148. [CrossRef]

31. Bonnafont, T.; Douvenot, R.; Chabory, A. Split-step wavelet with local operators for the 3D long-range propagation. In
Proceedings of the 2021 15th European Conference on Antennas and Propagation (EUCAP), Dusseldorf, Germany, 22–26 March
2021; pp. 1–5.

32. Bonnafont, T.; Douvenot, R.; Chabory, A. 3D split-step wavelet method for the propagation over impedance ground condition. In
Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI
GASS), Rome, Italy, 28 August–4 September 2021; pp. 1–4.

33. Mallat, S. A Wavelet Tour of Signal Processing; Elsevier: Amaterdam, The Netherlands, 1999.
34. Benhmammouch, O.; Khenchaf, A.; Caouren, N. Modelling roughness effects on propagation of electromagnetic waves in a

maritime environment: A hybrid approach. IET Radar Sonar Navig. 2011, 5, 1018–1025. [CrossRef]
35. Nielsen, O.M. Wavelets in Scientific Computing. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 1998.
36. Cohen, A. Numerical Analysis of Wavelet Methods; Elsevier: Amsterdam, The Netherlands, 2003.
37. Bonnafont, T.; Douvenot, R.; Chabory, A. Determination of the thresholds in split-step wavelet to assess accuracy for long-range

propagation. Radio Sci. Lett. 2021, 3, 1–5.
38. Pierson, W.J., Jr.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of SA

Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [CrossRef]
39. Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D. A unified directional spectrum for long and short wind-driven waves.

J. Geophys. Res. Ocean. 1997, 102, 15781–15796. [CrossRef]
40. Brown, G.S. Backscattering from a Gaussian-distributed perfectly conducting rough surface. IEEE Trans. Antennas Propag. 1978,

26, 472–482. [CrossRef]
41. Benhmammouch, O.; Vaitilingom, L.; Khenchaf, A.; Caouren, N. Electromagnetic waves propagation above rough surface:

Application to natural surfaces. Piers Online 2008, 4, 775–780. [CrossRef]

http://dx.doi.org/10.1109/PROC.1972.8850
http://dx.doi.org/10.1049/el:19710467
http://dx.doi.org/10.1109/TAP.2019.2911345
http://dx.doi.org/10.1029/91RS00109
http://dx.doi.org/10.1121/1.386918
http://dx.doi.org/10.1109/8.546245
http://dx.doi.org/10.1029/2001RS002488
http://dx.doi.org/10.1109/8.272306
http://dx.doi.org/10.1109/8.704813
http://dx.doi.org/10.1109/TAP.2017.2671018
http://dx.doi.org/10.1109/TAP.2009.2027166
http://dx.doi.org/10.1016/j.cpc.2011.07.017
http://dx.doi.org/10.2528/PIERB11091201
http://dx.doi.org/10.1016/j.jcp.2019.109042
http://dx.doi.org/10.1029/2020RS007114
http://dx.doi.org/10.1109/TAP.2021.3118821
http://dx.doi.org/10.1049/iet-rsn.2009.0078
http://dx.doi.org/10.1029/JZ069i024p05181
http://dx.doi.org/10.1029/97JC00467
http://dx.doi.org/10.1109/TAP.1978.1141854
http://dx.doi.org/10.2529/PIERS080119075531


Remote Sens. 2022, 14, 2686 22 of 22

42. Ament, W. Toward a theory of reflection by a rough surface. Proc. IRE 1953, 41, 142–146. [CrossRef]
43. Brown, R.M.; Miller, A.R. Geometric-Optics Theory for Coherent Scattering of Microwaves from the Ocean Surface; Technical Report;

Naval Research Lab: Washington, DC, USA, 1974.
44. Bonnafont, T. Modeling the Atmopsheric Long-Range Electromagnetic Waves Propagation in 3D Using the Wavelet Transform.

Ph.D. Thesis, Université Toulouse, Toulouse, France, 2020.
45. Elevation Lines Data of the “Institut nationale de l’informations Géographique et Forestière” (IGN). Available online: https:

//www.geoportail.gouv.fr/ (accessed on 3 May 2022).
46. Gossard, E.E.; Strauch, R.G. Radar Observation of Clear Air and Clouds; Elsevier: Amsterdam, The Netherlands, 1983.
47. Evans, S. Dielectric properties of ice and snow—A review. J. Glaciol. 1965, 5, 773–792. [CrossRef]
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