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Abstract: Landslides that occur in the littoral zone of a reservoir can directly damage the hydraulic
structures and threaten the lives and property around the reservoir. Due to the spatial variability and
heterogeneities of rock mass, a limited amount of data obtained from laboratory and in situ tests
cannot comprehensively characterize the mechanical properties of rock and soil masses. Therefore,
displacement back analysis is often performed to determine the mechanical parameters of rock
and soil masses. The spaceborne Interferometric synthetic aperture radar (InSAR) has proved to
be a powerful tool for geodesy in the measurement of landslide movement. However, InSAR can
only measure the surface motion of the landslide without the subsurface information. This study
uses multi-source monitoring data in the landslide displacement back analysis, including surface
InSAR and an internal borehole inclinometer. The identified material parameters and finite element
simulation are used to predict the landslide deformation. The case study of the Cheyiping landslide
located in the Lancang River basin demonstrates the necessity and feasibility of using multi-source
monitoring data in landslide displacement back analysis. The Cheyiping landslide is currently in
the creep deformation stage. The decrease in shear strength of rock masses due to the rheological
deformation and the change in reservoir water level are the internal and external factors leading
to excessive landslide deformation. The numerical modeling can accurately simulate the landslide
movement using the identified material parameters. By combing multi-source monitoring data and
numerical modeling, the reservoir landslide deformation analysis can help evaluate the landslide
deformation state and stability, which is vital for reservoir risk mitigation and the sustainable
development of hydropower resources.

Keywords: reservoir landslide; multi-source monitoring data; InSAR; displacement back analysis;
numerical modeling

1. Introduction

At present, more and more high dams have been built on the mountainous rivers of
China. The dam reservoir impoundment could influence the slope stability, reactivate an-
cient landslides, and even trigger new ones [1–4]. Due to reservoir water level fluctuations,
bank erosion such as landslide and bank collapse has also become a major concern in these
areas, threatening the safety of hydraulic structures and the lives and property around the
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reservoir [5–7]. For example, several landslides occurred during the dam construction and
the subsequent reservoir storage of the Miaowei Hydropower Station located in Lancang
River, causing economic losses of over 110,000,000 CNY ($17,300,000 USD) [8,9]. It has
been reported that there are many risks of landslides in the Lancang River basin [10,11].
To avoid landslide disasters, reduce economic losses, and avoid casualties, landslide risk
management has been changed from passive management to active prevention and control.
One of the most important measures in preventing large-scale landslides is to accurately
and timely grasp the development tendency of slope deformation.

For many reasons, accurate landslide displacement measurement and prediction is
a challenging task. Since the last decade of the twentieth century, the use of satellite re-
mote sensing techniques for geohazard prevention, mapping, and monitoring has grown
significantly, contributing to landslide risk reduction, impact assessments, and disaster
responses [12,13]. The Interferometric Synthetic Aperture Radar (InSAR) time-series tech-
nique allows for remote detection and characterization of ground surface displacements
with subcentimeter precision and high spatial resolution [14–17]. Using InSAR for land-
slide monitoring, deformation information can be acquired in a wide range, long time
series, and with high accuracy. Therefore, the InSAR measurement can not only provide
spatial information of the landslide deformation but also be used in landslide displacement
prediction. Using the monitoring data, many data-driven models have been built to pre-
dict landslide displacement, such as artificial neural networks [18,19], random forest [20],
extreme learning machine [21], particle swarm optimization support vector machine (PSO-
SVM) [22], the Newmark model [23–25], the data mining method [26], as well as some
hybrid models [27–29]. However, these models do not use information other than the defor-
mation monitoring data itself, leading to model overfitting and low landslide deformation
prediction accuracy [30]. Thus, in an attempt to overcome this problem, some researchers
have used the numerical modeling method to analyze landslide deformation [31–34].

Due to the spatial variability and heterogeneities of rock and soil masses, only a
limited amount of data obtained from laboratory and in situ tests cannot comprehensively
characterize the mechanical properties of rock and soil masses [35,36]. Thus, using the
material parameters obtained either from laboratory or in situ tests cannot accurately
simulate the landslide deformation [37]. In some cases, even the physical and mechanical
parameters of rock and soil masses are not available [38–41]. The displacement back
analysis method is therefore commonly employed to identify the material parameters
and assess landslide safety [42–48]. However, previous studies only use either surface
or internal deformation monitoring data in the displacement back analysis. For example,
Ishii et al. reported a displacement back analysis for estimating the strength parameters
of the landslide mass using the displacement data monitored by ground extensometers
installed in boreholes [46]. Huang and Li used a displacement back analysis method to
determine the mechanical parameters of the rock-soil mixture of the Wujiang landslide
using the observed displacement of borehole inclinometers [47]. Ma et al. utilized the
displacement back analysis method to determine the mechanical parameters of landslide
bodies using the InSAR measurements [48]. As either surface or internal deformation
monitoring data alone cannot fully reflect the landslide deformation state, the material
parameters identified by the displacement back analysis method may not accurately reflect
the mechanical properties of the landslide materials. Furthermore, the realistic three-
dimensional (3D) landslide was largely simplified as a two-dimensional (2D) finite element
model, which may also undermine the rationality of these studies [49,50].

In this study, we utilize multi-source deformation monitoring data and 3D finite
element method (FEM) simulation in landslide displacement back analysis and deforma-
tion prediction. The Cheyiping landslide located in the Lancang River basin is used to
demonstrate the necessity of this study. The rheological deformation is considered in the
finite element simulation to predict the long-term displacement of the Cheyiping landslide.
The displacement time series obtained by InSAR measurements and internal borehole
inclinometers are used to determine the elasto-viscoplastic parameters of rock and soil
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masses. Based on the InSAR measurements and numerical modeling, we analyzed the de-
formation pattern and the deformation stage that the landslide is undergoing. Furthermore,
the advantages of landslide displacement back analysis using both surface and internal
monitoring data were verified by comparing them with Global Navigation Satellite System
(GNSS) and borehole data.

2. Study Area

The Cheyiping landslide is located in the upper reaches of the Lancang River, Lanping
County, the central area of the World Natural Heritage of Three Rivers Parallel. It is a typical
recurrence reservoir landslide and is about 39 km away from the Huangdeng Hydropower
Station (Figure 1a). It has a width of approximately 600 m and a length of about 1300 m,
with a height difference from crown to toe exceeding 700 m, and the left and right sides are
bounded by gullies (Figure 1b–e). The borehole data indicate that the landslide thickness is
between 20 and 70 m, and the landslide volume is about 20 million m3. The upper and lower
parts of the landslide are relatively steep, while the middle part where Cheyiping village
is located is relatively gentle. Figure 1f shows the geological cross section along profile
1-1′. According to field investigation, the landslide material mainly consists of quaternary
deposits with silty clay and fragmented rubble. The silty mudstone, argillaceous siltstone,
and sandstone of the Middle Jurassic Huakaizuo Formation (J2h) constitute the underlying
bedrock of the landslide [51]. According to the Varnes classification system [52,53], the
Cheyiping landslide can be classified as a translational rockslide. The excessive landslide
movement causes damage to the houses and other facilities on the slope (Figure 2).

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 22 
 

 

displacement time series obtained by InSAR measurements and internal borehole incli-
nometers are used to determine the elasto-viscoplastic parameters of rock and soil masses. 
Based on the InSAR measurements and numerical modeling, we analyzed the defor-
mation pattern and the deformation stage that the landslide is undergoing. Furthermore, 
the advantages of landslide displacement back analysis using both surface and internal 
monitoring data were verified by comparing them with Global Navigation Satellite Sys-
tem (GNSS) and borehole data. 

2. Study Area 
The Cheyiping landslide is located in the upper reaches of the Lancang River, 

Lanping County, the central area of the World Natural Heritage of Three Rivers Parallel. 
It is a typical recurrence reservoir landslide and is about 39 km away from the Huangdeng 
Hydropower Station (Figure 1a). It has a width of approximately 600 m and a length of 
about 1300 m, with a height difference from crown to toe exceeding 700 m, and the left 
and right sides are bounded by gullies (Figure 1b–e). The borehole data indicate that the 
landslide thickness is between 20 and 70 m, and the landslide volume is about 20 million 
m3. The upper and lower parts of the landslide are relatively steep, while the middle part 
where Cheyiping village is located is relatively gentle. Figure 1f shows the geological cross 
section along profile 1-1′. According to field investigation, the landslide material mainly 
consists of quaternary deposits with silty clay and fragmented rubble. The silty mudstone, 
argillaceous siltstone, and sandstone of the Middle Jurassic Huakaizuo Formation (J2h) 
constitute the underlying bedrock of the landslide [51]. According to the Varnes classifi-
cation system [52,53], the Cheyiping landslide can be classified as a translational rockslide. 
The excessive landslide movement causes damage to the houses and other facilities on the 
slope (Figure 2). 

 

 
Figure 1. Cont.



Remote Sens. 2022, 14, 2683 4 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 22 
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cross-sections; (c) Gullies; (d) Platform; (e) Engineering geological map of the landslide; (f) Geolog-
ical cross section alone profile 1-1′. 

Figure 1. The Cheyiping landslide in the reservoir area of Huangdeng Hydropower Station: (a) Geo-
graphic location of the study area. (b) Aerial view of the Cheyiping landslide and locations of three
cross-sections; (c) Gullies; (d) Platform; (e) Engineering geological map of the landslide; (f) Geological
cross section alone profile 1-1′.
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Figure 2. Field investigation of the Cheyiping landslide: (a) Damaged house; (b) Cracks in the road
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3. Data and Methods

We combined multi-source deformation monitoring data and finite element simulation
to investigate the deformation process of the Cheyiping landslide. A 3D finite element
model of the Cheyipong landslide was established considering realistic geological and
geomorphological conditions. The surface motion of the Cheyiping landslide was measured
using InSAR. By combining the internal deformation monitored by borehole inclinometers
and the surface deformation measured by the InSAR technique, the elasto-viscoplastic
parameters of rock and soil masses were determined using the displacement back analysis
method. The time-dependent deformation of rock and soil masses was considered in the
finite element simulation to predict the development of the Cheyiping landslide. The
flowchart of this study is shown in Figure 3.
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Figure 3. Flowchart of this study.

A total of 73 SAR images acquired by Sentinal-1 were freely accessible through the
European Space Agency (ESA) Sentinel science hub to monitor the surface deformation of
the Cheyiping landslide using the time-series InSAR technique. Specifically, the datasets
were collected from both ascending and descending orbits in order to overcome the limita-
tions of the single track SAR data and SAR imaging geometry [54]. The spatial coverage of
the SAR datasets can be found in Figure 4. The basic parameters of SAR data are reported
in Table 1. Furthermore, Precise Orbit Data (POD) of ESA was used to correct the orbit
error of sentinel-1A data. The 30 m resolution digital elevation model of the Shuttle Radar
Topography Mission was used to remove topographic phase contribution and geocoding.

Table 1. Basic parameters of SAR images.

Sensors Orbit Track Start Date End Date No. of Images

Sentinel-1 Ascending 172 31 December 2018 24 April 2020 40
Sentinel-1 Descending 33 2 January 2019 26 April 2020 33
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Figure 4. The spatial coverage of the SAR images.

These deformation monitoring techniques and the time range of the data are shown in
Figure 5. The inclinometer was installed in boreholes to monitor the internal deformation
of the landslide. Thirteen boreholes with depths ranging from 51.64 to 80.49 m were
drilled into the Cheyiping landslide in 2019. The installed borehole inclinometer has a
biaxial probe containing two perpendicular accelerometers. The measurements are made
from the bottom of the inclinometer. As the probe is gradually raised to the top of the
casing, subsequent readings are taken. Because the rockslide deformation exceeds the
measurement range of the inclinometer, the borehole inclinometer monitoring data was
only available between September 2019 and May 2020.

A network of six Global Navigation Satellite Systems (GNSS) stations was deployed on
the Cheyiping landslide for surface deformation measurement. The Trimble GPS receiver
continuously collected the GNSS data from 24 April 2019 to 25 March 2020 at a 30 s sampling
rate. The GNSS data were downloaded every two weeks from the receiver. In order to
prevent data leakage, the GNSS monitoring data were not used in the displacement back
analysis. The GNSS data were used to validate the landslide deformation prediction by
FEM simulation with identified material parameters.



Remote Sens. 2022, 14, 2683 7 of 19
Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 5. The distribution of GNSS stations and boreholes and the time ranges of different monitor-
ing data. 

A network of six Global Navigation Satellite Systems (GNSS) stations was deployed 
on the Cheyiping landslide for surface deformation measurement. The Trimble GPS re-
ceiver continuously collected the GNSS data from 24 April 2019 to 25 March 2020 at a 30 
s sampling rate. The GNSS data were downloaded every two weeks from the receiver. In 
order to prevent data leakage, the GNSS monitoring data were not used in the displace-
ment back analysis. The GNSS data were used to validate the landslide deformation pre-
diction by FEM simulation with identified material parameters. 

3.1. InSAR Measurements 
The small baseline subset (SBAS) InSAR time-series technique was used to measure 

the surface deformation of the Cheyiping landslide from space. The SBAS-InSAR tech-
nique can improve the temporal sampling rate and deformation monitoring precision by 
avoiding the decoherence effect caused by long interferometric pairs of spatio-temporal 
baselines [55,56]. The basic principle of SBAS-InSAR is to form differential interferograms 
by setting appropriate parameters of spatial and temporal baselines for SAR images, 
which aims to increase the correlation of the interferograms’ formation. The interfero-
grams are then spatially unwrapped. The whole set of interferograms is inverted using 
singular value decomposition (SVD) to obtain the least square solution under the mini-
mum norm and the time-series deformation sequence in the study area. Firstly, only in-
terferometric pairs with a temporal baseline of less than 60 days are selected to enhance 
coherence in the following co-registration and time-series analysis. The Goldstein filtering 
eliminates the noise in the multi-view differential interferogram to reduce the noise fur-
ther. Before unwrapping the phase, it is necessary to improve fringe visibility and reduce 

Figure 5. The distribution of GNSS stations and boreholes and the time ranges of different monitor-
ing data.

3.1. InSAR Measurements

The small baseline subset (SBAS) InSAR time-series technique was used to measure the
surface deformation of the Cheyiping landslide from space. The SBAS-InSAR technique can
improve the temporal sampling rate and deformation monitoring precision by avoiding the
decoherence effect caused by long interferometric pairs of spatio-temporal baselines [55,56].
The basic principle of SBAS-InSAR is to form differential interferograms by setting ap-
propriate parameters of spatial and temporal baselines for SAR images, which aims to
increase the correlation of the interferograms’ formation. The interferograms are then
spatially unwrapped. The whole set of interferograms is inverted using singular value
decomposition (SVD) to obtain the least square solution under the minimum norm and
the time-series deformation sequence in the study area. Firstly, only interferometric pairs
with a temporal baseline of less than 60 days are selected to enhance coherence in the
following co-registration and time-series analysis. The Goldstein filtering eliminates the
noise in the multi-view differential interferogram to reduce the noise further. Before un-
wrapping the phase, it is necessary to improve fringe visibility and reduce phase noise.
The interferograms were processed using a multi-look operation to suppress the phase
noises. Furthermore, the atmospheric artifacts were modeled using high-pass and low-pass
filtering of the interferograms. After that, the interferograms were unwrapped using the
3D minimum cost flow (MCF) algorithm dealing with the Delaunay triangulation network.
Finally, the standard SBAS inversion steps were executed to obtain the LOS distribution of
the annual mean displacement velocity of the Cheyiping landslide.

The spaceborne InSAR observation is insensitive to motion in the north-south direc-
tion [54]. If the north-south displacement component can be neglected, we can decompose
the displacement measured along ascending (dasc) and descending (ddsc) LOS into hori-
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zontal (east-west) component (dhor) and vertical components (dver) [57]. For each track,
we resampled the mean LOS velocity onto a 20 m × 20 m grid which was used as input
for displacement decomposition. The measurement points contained in one grid were
combined as a new point. A mean velocity was calculated for the new point by averaging
the velocities of all the measurement points in the grid, and its position was in the center
of the grid. As described in Equation (1), the horizontal (east-west) component (dhor) and
vertical component (dver) were computed.(

dasc
ddsc

)
=

(
cosθasc −cosαascsinθasc
cosθdsc −cosαdscsinθdsc

)(
dver
dhor

)
(1)

where θasc and θdsc are the local incidence angles, and αasc and αdsc represent the satellite
heading angles in the ascending and descending modes, respectively.

Because the slope direction of the Cheyiping landslide is approximately east-west, the
east-west displacement obtained by decomposition can be taken as the horizontal landslide
displacement towards the free face. Figure 6 shows the spatial pattern of 2D displacement
rates of the Cheyiping landslide. A negative value represents ground motion away from
the satellite, while a positive value indicates movement towards the satellite (Figure 6b,c).
The low vegetation cover in the study area is beneficial for obtaining spatially intensive
InSAR measurements. The deformation regions detected using ascending and descending
datasets were generally consistent. However, due to the different sensitivity of the landslide
motion direction to the satellite flight direction, the extent of the deformation measured by
the ascending dataset is slightly larger than that of the descending dataset. Compared with
using ascending or descending data, the landslide movement can be better monitored by
combing ascending and descending data.
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(d) East-west displacement rate map.
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Figure 6d shows the mean east-west displacement velocity of the Cheyiping land-
slide. The negative and positive values represent the westward and eastward movement,
respectively. The large deformation mainly occurs between two distinct gullies, and the
displacement of the lower part of the landslide body is larger than that of the upper area.
Figure 7 shows the time series of east-west displacement component of the points depicted
in Figure 6d. The displacement time series exhibits a linear trend, and the displacement
of the lower part of the landslide body was larger than that of the upper region. Based on
field investigation and InSAR measurements, the Cheyiping belongs to a traction landslide
with creep deformation [58]. This type of landslide is characterized by a greater degree of
deformation in the lower part than in the upper portion of the landslide body, maintaining
a certain rate of deformation as a whole and showing creeping deformation [59,60]. Overall,
the time-series InSAR technique can identify the landslide hazard zone and monitor the
deformation process with high accuracy.
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3.2. Displacement Back Analysis to Identify Material Parameters

Laboratory tests were conducted to determine the physical and mechanical properties
of landslide materials. However, many factors affect the representativeness of the experi-
mental results, which is vital to the deformation and stability analysis. For example, the
on-site sampling will inevitably disturb the in situ state of the rocks and soils, and the
limited number of test groups and random sampling locations also lead to test data that
does not reflect the actual geotechnical conditions [61]. Thus, the multi-source monitoring
data and displacement back analysis were employed to identify the mechanical parameters
of rock and soil masses. The multi-source monitoring data (i.e., satellite remote sensing
and field-installed borehole inclinometers) can reflect the deformation state of the landslide
body and provide more comprehensive a posteriori information for displacement back
analysis. The displacement back analysis method uses such a posteriori information as
the actual deformation monitoring data of a landslide to find an optimal set of parameter
combinations so that the simulated values are close to the measured deformation.
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Generally, the displacement back analysis for material parameter identification con-
sists of two main ingredients, i.e., the construction of a surrogate model to represent finite
element simulation and searching for the optimal material parameters using an optimiza-
tion algorithm. We build the rockslide deformation surrogate model using a data-driven
approach. First, we construct 500 sample points using orthogonal experimental design and
random sampling together, each of which represents a set of material parameters of rocks
and soils. By combining two sampling methods, the number of sample points and their dis-
tribution in the parameter space can guarantee the representativeness and accuracy of the
surrogate model. We then perform extensive 3D finite element simulations of the Cheyiping
landslide using the 500 parameter sets. The 3D finite element model of the Cheyiping
landslide is discretized into 998,686 tetrahedron elements and 177,258 nodes. The finite
difference software FLAC3D was used to simulate the landslide deformation. Finally, the
surrogate model, an artificial neural network model, is trained using parameter set as
input and simulated landslide deformation as model output. The neural-network-based
surrogate model can thus replace the 3D finite element simulations.

We use a modified particle swarm optimization algorithm for the parameter inver-
sion analysis, which incorporates a self-organizing topology structure and self-adaptive
adjustable parameters. The K-Means clustering method periodically divides the parti-
cle swarm into several sub-swarms, providing a new information channel for particles.
The information sharing between particles is restricted to the sub-swarm, which helps
maintain the diversity of the population and improves the searchability of the particle
swarm. The self-adaptive gradient-based parameter adjustment strategy can maintain a
dynamic balance between the exploration and exploitation capabilities of each particle.
The self-organizing topology and the self-adaptive parameter adjustment strategy can
ensure the diversity and search dynamics of the particle swarm. In addition, the Bayesian
optimization method is used to optimize the hyperparameters of the modified particle
swarm optimization algorithm.

The modified PSO algorithm is used to find the optimal parameter set by minimiz-
ing the objective function, which is defined as the 2-norm of the difference between the
simulated and observed displacement at the monitoring points.

f (x1, x2, . . . , xn) =

√√√√[ 1
n

n

∑
i=1

(
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u∗i

)2
]
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where (x1, x2, . . . , xn) is the parameter set of rocks and soils to be identified, ui is the
simulated displacement at the monitoring point, i, ui is the corresponding observed dis-
placement, and n is the number of monitoring points used in the displacement back analysis.
Seven InSAR measurement points and five monitoring points at different depths of inter-
nal borehole inclinometers ZK3-1, ZK-3-5, ZK3-7, ZK3-9, and BZK1-6 were used in the
calculation of the objective function (shown in Figure 8).

The deformation monitoring indicates that the Cheyiping landslide has evident rheo-
logical characteristics. Thus, it is necessary to consider the creep deformation of rock and
soil masses [62,63]. The viscoplastic constitutive model CPOWER was adopted in the finite
element simulation [64]. The viscoplastic model combines the behavior of the viscoelastic
two-component Norton power law and the Mohr-Coulomb elastoplastic models. The total
strain rate

.
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.
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Creep is activated by the von Mises stress q =
√

3J2 in accordance with the Norton
power law (J2 = 1/2SijSij), is the second invariant of stress deviator tensor), and the creep
rate is

.
ε

c
ij =

.
εcr

∂q
∂Sij

(4)
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The direction of creep flow is derived from the definition of q:

∂q
∂Sij

=
3
2

Sij

q
(5)

The Norton power law is used to model the creep behavior [65]. The standard form of
this law is

.
εcr = Aqn (6)

where
.
εcr is the creep rate, A and n are material properties.

According to the geological exploration, the Cheyiping landslide consists of various
sediment layers which have been considered in the finite element simulation. The displace-
ment back analysis is thus performed to determine the viscoplastic model parameters for
each stratum, including elastic modulus E, cohesion c, internal friction angle ϕ, and two
creep model parameters, A and n.

4. Results and Discussion
4.1. Displacement Back Analysis Using Multi-Source Monitoring Data

Using multi-source monitoring data in the displacement back analysis, we can iden-
tify the viscoplastic model parameters of each stratum (as listed in Table 2). The model
parameters determined by laboratory tests and engineering analogy are also listed in
Table 2.

Table 2. The identified parameters of each stratum.

Zone
Elastic

Modulus, E
(GPa)

Cohesion,
c (kPa)

Internal
Friction

Angle, ϕ (◦)

Creep Model
Parameter, A

Creep Model
Parameter, n

Qdel1,
Qal

Experimental 4.92 20.00 25.20 2.19 × 10−17 8.57
Inversion 4.27 18.53 21.12 2.47 × 10−17 8.95

Qdel2
Experimental 9.84 28.00 24.20 9.80 × 10−17 8.02

Inversion 8.49 23.28 22.63 9.92 × 10−17 7.48

STR
Experimental 11.07 150.00 33.00 1.62 × 10−17 8.88

Inversion 12.81 132.56 28.43 1.29 × 10−17 6.84

WEAK
Experimental 4.43 65.00 40.00 1.27 × 10−17 8.71

Inversion 4.19 59.14 37.71 1.14 × 10−17 7.26
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To further demonstrate the necessity of using both surface and internal monitoring
data in the displacement back analysis, we also performed displacement back analysis
using internal and surface deformation data alone. Twelve borehole inclinometer points at
different depths of different sites and twelve InSAR measurement points were used in the
“Internal ONLY” and “Surface ONLY” displacement back analysis. To verify the numerical
simulation results, the beginning time of the FEM simulation was the same as ground data.
Figure 9a–c show the deformation contours of the Cheyiping landslide obtained by finite
element simulations using the viscoplastic model parameters identified by back analysis
with “Surface ONLY”, “Internal ONLY”, and multi-source deformation data, respectively.
The landslide simulation results differ significantly in both magnitude and spatial patterns.
With “Surface ONLY” displacement back analysis, the maximum deformation and the
large deformation region are close to the monitoring results. However, the deformation
is not continuous in space, which is not typical of a traction creep deformation landslide
(Figure 9a).
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With “Internal ONLY” displacement back analysis, the landslide simulation result
differs significantly from the observed deformation patterns (Figure 9b). The large-scale
displacement occurs in the middle and upper part of the Cheyiping landslide, inconsistent
with InSAR measurements and field investigation. Besides, the maximum displacement is
nearly thirty times larger than the observed value. Due to the limited number of boreholes,
the internal monitoring points used in the displacement back analysis cannot capture the
spatial details of the landslide deformation.

As shown in Figure 9c, by combing InSAR measurements and borehole inclinometer
monitoring data in the displacement back analysis, the identified model parameters and
finite element simulation can successfully reproduce the deformation characteristics of the
Cheyiping landslide. It is a traction-type circular sliding of the loose surface rock and soil
masses within the landslide body. The large deformation region corresponds to the reservoir
bank collapse area shown in Figure 2c. We then compared the simulated displacement
time series at three GNSS sites with GNSS displacement monitoring data. The locations of
these GNSS stations are shown in Figure 5. It should be noted that the GNSS monitoring
data was not used in the displacement back analysis to avoid data leakage. As shown in
Figure 9d, using “Surface ONLY” and multi-source monitoring data in displacement back
analysis, the finite element simulation and identified model parameters can accurately
reflect the development trend of these three points. The simulated displacements are in
good agreement with the GNSS monitoring data by incorporating both InSAR and borehole
inclinometer monitoring data in the displacement back analysis.

Figure 10a,b shows the displacement contours of section 1-1′ for the displacement
back analysis using multi-source and “Surface ONLY” monitoring data. In both cases,
the simulation results demonstrate a typical shallow landslide involving the movement
of a relatively thin layer of the rock and soil masses. As shown in Figure 10c–h, using
multi-source monitoring data in displacement back analysis, the simulation results with
identified model parameters are much closer to the monitored displacements of boreholes
ZK3-5, ZK3-7 and ZK3-9. This verifies that both surface deformation and internal sliding of
the landslide can be accurately simulated by displacement back analysis using multi-source
monitoring data. The above comparisons demonstrate the necessity of using multi-source
monitoring data in displacement back analysis.
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4.2. Deformation Characterristics and Triggering Factors of the Cheyiping Landslide

The landslide displacement monitoring and finite element simulation indicate that
the Cheyiping landslide is typical of the traction landslide with creep deformation. The
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circular-shaped tension cracks found in the trailing edge and bank collapse observed at the
front edge are typical features of this type of landslide. Figure 11 shows the relationship
between the GNSS monitoring data at G01, G02, and G03 and the change in reservoir water
level. A significant increase in landslide displacement can be observed when the reservoir
water level changes. This indicates that the change of reservoir water level is the main
external factor causing the deformation of the Cheyiping landslide. The reservoir water
level fluctuations significantly change the hydrogeological conditions of reservoir banks
and thus affect the steady-state of the bank slope [66]. The rock and soil masses close to
the Lancang River are subjected to reservoir water immersion and wave erosion, which
change the original stability conditions, causing deformation, collapse, and landslide of
the reservoir banks to reach a new equilibrium. The large deformation in the lower part of
the deposit then leads to traction in the upper part of the landslide, forming many tension
cracks in the trailing edge of the landslide.
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In addition, we can analyze the intrinsic factors responsible for the creep deformation
by comparing the identified model parameters with those obtained by experimental tests.
Most of the landslides are in the creeping deformation state. The shear strength of landslide
material is not a constant value but is closely related to its deformation rate [67,68]. As
shown in Table 2, the cohesion (c) and internal friction angle (ϕ) identified by the displace-
ment back analysis are smaller than the experimental values. This indicates that when the
landslide enters the creeping sliding state, the landslide material will gradually decrease
its strength due to creep, consistent with the previous studies [69–71]. Therefore, for a
landslide with considerable creep deformation, it is necessary to consider the reduction of
shear strength due to creep effects. In this case, catastrophic failure may occur in a short
period of time if the rock and soil masses experience a sudden reduction in the peak shear
strength due to external factors.

It is necessary to take some measures to control the landslide deformation. Otherwise,
the reservoir water level fluctuations and strength reduction due to creep deformation
could cause further deformation and gradual disintegration. First, a row of anti-slip piles
should be set up in the lower part of Cheyiping village and along the outer side of the
road, with a length of about 400 m, and the axis should be parallel to the road to cut off the
traction effect of the landslide upward. For the section near the edge of the two gullies, the
potential sliding surface is deeper and the terrain is steeper, which is not conducive to the
placement of anti-slip piles and should be supported by anchor cable lattice beams [72]. In
addition, we propose to relocate the residents located on the outer side of the road.

4.3. Further Application of Multi-Source Monitoring Data in Deformation Back Analysis

The displacement back analysis method has been widely employed to determine
the constitutive model parameters of rock and soil masses and to assess the landslide
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safety [42–48]. One of the key issues in the displacement back analysis is the selection of
the monitoring data that can reflect the deformation characteristics of the landslide [36].
With the development of new monitoring technology (e.g., LiDAR, ground-based synthetic
aperture radar), different landslide monitoring techniques are being applied to the measure-
ments of landslide displacements over time [58]. Satellite and ground-based radar systems
have considerably increased the areal coverage and spatial resolution of surface displace-
ment monitoring data. The more functional borehole sensors together with wireless data
acquisition and transmission have significantly increased the temporal resolution of sub-
surface slope deformation monitoring data. These traditional and innovative monitoring
techniques provide increased capacity to fully capture the landslide behavior.

A single technique alone only reflects distinct deformation features in different parts
of the landslide [54]. A multi-source monitoring dataset can reduce uncertainty and supple-
ment missing information from a single source [73]. For example, the combination of InSAR
measurements and a borehole inclinometer enables the simultaneous acquisition of surface
and internal landslide displacement data. The multi-source monitoring data assisted in
determining the optimal rock and soil masses properties by displacement back analysis.
However, the monitoring data obtained from different sources have different monitoring
accuracy and spatial and temporal resolutions [74,75]. Systematically combining monitor-
ing data from multiple sensors to take advantage of their complementary characteristics
is a complicated task. Particularly with the addition of multiple data sources, it becomes
more complex when using a data fusion method. Therefore, a general multi-source data
fusion framework is worthy of in-depth study.

5. Conclusions

In this study, the Cheyiping landslide located in the Lancang River basin is used
to demonstrate the necessity of using both surface and internal deformation monitoring
data in the displacement back analysis. The proposed method can accurately reproduce
deformation characteristics and predict the displacement of the landslide. It can be used
as an effective tool for landslide deformation analysis, which is of great significance and
value for improving landslide risk assessment and landslide prevention.

The InSAR measurements provide surface deformation data with high spatial resolu-
tion, which can not only monitor the slow-moving process but also identify the landslide
hazard zone. The surface InSAR measurements together with the internal borehole clinome-
ter monitoring data can assist in determining the optimal elasto-viscoplastic parameters
of rock and soil masses through the displacement back analysis method to the further
numerical simulations. It is clear that the finite element simulation using the identified
material parameters can accurately reproduce deformation characteristics of the Cheyiping
landslide. The simulated displacement time series are in good agreement with the GNSS
data. The multi-source monitoring data and numerical simulation show that the Cheyiping
landslide is a traction landslide. The reduction of geotechnical strength parameters due to
creep and the change of reservoir water level are internal and external factors leading to
deformation.

In the present study, creep parameters are considered within the FEM simulation in
order to accurately predict the displacement in the creep deformation stage of the landslide,
and its applicability is limited. Therefore, more improved and detailed numerical models
should be used to better reconstruct the various phases of the landslide process. These
aspects will be investigated in future studies.

Author Contributions: Conceptualization, G.M., C.G. and W.Z.; methodology, C.G., G.M. and Z.Z.;
software, C.G. and Z.Z.; investigation, W.Z., C.G. and H.C.; validation, X.C. and Z.Z.; writing—
original draft preparation, C.G.; writing—review and editing, G.M., C.G. and W.Z.; supervision,
G.M. and W.Z.; funding acquisition, G.M., W.Z. and H.X. All authors have read and agreed to the
published version of the manuscript.



Remote Sens. 2022, 14, 2683 17 of 19

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 51825905, 52179141, and U1865204), and the Huaneng Group Science and Technology Project
(HNKJ18-H24).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the European Space Agency for providing the
Copernicus Sentinel-1 images.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Sun, G.; Zheng, H.; Tang, H.; Dai, F. Huangtupo Landslide Stability under Water Level Fluctuations of the Three Gorges Reservoir.

Landslides 2016, 13, 1167–1179. [CrossRef]
2. Choi, C.E.; Cui, Y.; Au, K.Y.K.; Liu, H.; Wang, J.; Liu, D.; Wang, H. Case Study: Effects of a Partial-Debris Dam on Riverbank

Erosion in the Parlung Tsangpo River, China. Water 2018, 10, 250. [CrossRef]
3. Li, C.; Tang, H.; Wang, Y. Study on the Deformation Mechanism of Reservoir Landslides Considering Rheological Properties of

the Slip Zone Soil: A Case Study in the Three Gorges Reservoir Region. Sustainability 2020, 12, 6427. [CrossRef]
4. Miao, F.; Wu, Y.; Török, Á.; Li, L.; Xue, Y. Centrifugal Model Test on a Riverine Landslide in the Three Gorges Reservoir Induced

by Rainfall and Water Level Fluctuation. Geosci. Front. 2022, 13, 101378. [CrossRef]
5. Zhang, L.; Xiao, T.; He, J.; Chen, C. Erosion-Based Analysis of Breaching of Baige Landslide Dams on the Jinsha River, China, in

2018. Landslides 2019, 16, 1965–1979. [CrossRef]
6. Doyle, M.W.; Stanley, E.H.; Harbor, J.M. Channel Adjustments Following Two Dam Removals in Wisconsin. Water Resour. Res.

2003, 39, 1–15. [CrossRef]
7. Vick, L.M.; Böhme, M.; Rouyet, L.; Bergh, S.G.; Corner, G.D.; Lauknes, T.R. Structurally Controlled Rock Slope Deformation in

Northern Norway. Landslides 2020, 17, 1745–1776. [CrossRef]
8. Ning, Y.; Tang, H.; Zhang, G.; Smith, J.V.; Zhang, B.; Shen, P.; Chen, H. A Complex Rockslide Developed from a Deep-Seated

Toppling Failure in the Upper Lancang River, Southwest China. Eng. Geol. 2021, 293, 106329. [CrossRef]
9. Zhang, X.; Chen, L.; Zhang, F.; Lv, C.; Zhou, Y.F. Impact of Fluid Turbulent Shear Stress on Failure Surface of Reservoir Bank

Landslide. Arab. J. Geosci. 2018, 11, 698. [CrossRef]
10. Gu, Z.K.; Yao, X.; Yao, C.; Li, C.; Gang, C. Mapping of Geomorphic Dynamic Parameters for Analysis of Landslide Hazards:

A Case of Yangbi River Basin on the Upper Lancang-Mekong of China. J. Mt. Sci. 2021, 18, 2402–2411. [CrossRef]
11. Chong, S.; De-jie, L.; Kai-hua, C.; Jia-wen, Z. Failure Mechanism and Stability Analysis of the Zhenggang Landslide in Yunnan

Province of China Using 3D Particle Flow Code Simulation. J. Mt. Sci. 2016, 13, 891–905.
12. Metternicht, G.; Hurni, L.; Gogu, R. Remote Sensing of Landslides: An Analysis of the Potential Contribution to Geo-Spatial

Systems for Hazard Assessment in Mountainous Environments. Remote Sens. Environ. 2005, 98, 284–303. [CrossRef]
13. Zhong, C.; Liu, Y.; Gao, P.; Chen, W.; Li, H.; Hou, Y.; Nuremanguli, T.; Ma, H. Landslide Mapping with Remote Sensing:

Challenges and Opportunities. Int. J. Remote Sens. 2020, 41, 1555–1581. [CrossRef]
14. Zhou, C.; Cao, Y.; Yin, K.; Wang, Y.; Shi, X.; Catani, F.; Ahmed, B. Landslide Characterization Applying Sentinel-1 Images and

Insar Technique: The Muyubao Landslide in the Three Gorges Reservoir Area, China. Remote Sens. 2020, 12, 3385. [CrossRef]
15. Kang, Y.; Lu, Z.; Zhao, C.; Zhang, Q.; Kim, J.W.; Niu, Y. Diagnosis of Xinmo (China) Landslide Based on Interferometric Synthetic

Aperture Radar Observation and Modeling. Remote Sens. 2019, 11, 1846. [CrossRef]
16. Guo, C.; Yan, Y.; Zhang, Y.; Zhang, X.; Zheng, Y.; Li, X.; Yang, Z.; Wu, R. Study on the Creep-Sliding Mechanism of the Giant

Xiongba Ancient Landslide Based on the SBAS-InSAR Method, Tibetan Plateau, China. Remote Sens. 2021, 13, 3365. [CrossRef]
17. Zeng, Z.; Wang, Y.; Yan, Y.; Xiao, N.; Chen, D. Analyzing Landslide-Prone Loess Area of Heifangtai, Gansu, China Using

SBAS-InSAR Technique. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium,
Valencia, Spain, 22–27 July 2018; pp. 4889–4892. [CrossRef]

18. Du, J.; Yin, K.; Lacasse, S. Displacement Prediction in Colluvial Landslides, Three Gorges Reservoir, China. Landslides 2013, 10,
203–218. [CrossRef]

19. Xu, S.; Niu, R. Displacement Prediction of Baijiabao Landslide Based on Empirical Mode Decomposition and Long Short-Term
Memory Neural Network in Three Gorges Area, China. Comput. Geosci. 2018, 111, 87–96. [CrossRef]

20. Hu, X.; Wu, S.; Zhang, G.; Zheng, W.; Liu, C.; He, C.; Liu, Z.; Guo, X.; Zhang, H. Landslide Displacement Prediction Using
Kinematics-Based Random Forests Method: A Case Study in Jinping Reservoir Area, China. Eng. Geol. 2021, 283, 105975.
[CrossRef]

21. Cao, Y.; Yin, K.; Alexander, D.E.; Zhou, C. Using an Extreme Learning Machine to Predict the Displacement of Step-like Landslides
in Relation to Controlling Factors. Landslides 2016, 13, 725–736. [CrossRef]

http://doi.org/10.1007/s10346-015-0637-7
http://doi.org/10.3390/w10030250
http://doi.org/10.3390/su12166427
http://doi.org/10.1016/j.gsf.2022.101378
http://doi.org/10.1007/s10346-019-01247-y
http://doi.org/10.1029/2002WR001714
http://doi.org/10.1007/s10346-020-01421-7
http://doi.org/10.1016/j.enggeo.2021.106329
http://doi.org/10.1007/s12517-018-4030-4
http://doi.org/10.1007/s11629-021-6795-2
http://doi.org/10.1016/j.rse.2005.08.004
http://doi.org/10.1080/01431161.2019.1672904
http://doi.org/10.3390/rs12203385
http://doi.org/10.3390/rs11161846
http://doi.org/10.3390/rs13173365
http://doi.org/10.1109/IGARSS.2018.8518328
http://doi.org/10.1007/s10346-012-0326-8
http://doi.org/10.1016/j.cageo.2017.10.013
http://doi.org/10.1016/j.enggeo.2020.105975
http://doi.org/10.1007/s10346-015-0596-z


Remote Sens. 2022, 14, 2683 18 of 19

22. Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B. Application of Time Series Analysis and PSO-SVM Model in Predicting the Bazimen
Landslide in the Three Gorges Reservoir, China. Eng. Geol. 2016, 204, 108–120. [CrossRef]

23. Ingles, J.; Darrozes, J.; Soula, J.C. Effects of the Vertical Component of Ground Shaking on Earthquake-Induced Landslide
Displacements Using Generalized Newmark Analysis. Eng. Geol. 2006, 86, 134–147. [CrossRef]

24. Jibson, R.W. Regression Models for Estimating Coseismic Landslide Displacement. Eng. Geol. 2007, 91, 209–218. [CrossRef]
25. Huang, D.; Wang, G.; Du, C.; Jin, F.; Feng, K.; Chen, Z. An Integrated SEM-Newmark Model for Physics-Based Regional Coseismic

Landslide Assessment. Soil Dyn. Earthq. Eng. 2020, 132, 106066. [CrossRef]
26. Miao, F.; Wu, Y.; Li, L.; Liao, K.; Xue, Y. Triggering Factors and Threshold Analysis of Baishuihe Landslide Based on the Data

Mining Methods. Nat. Hazards 2021, 105, 2677–2696. [CrossRef]
27. Zhang, J.; Tang, H.; Tannant, D.D.; Lin, C.; Xia, D.; Liu, X.; Zhang, Y.; Ma, J. Combined Forecasting Model with CEEMD-LCSS

Reconstruction and the ABC-SVR Method for Landslide Displacement Prediction. J. Clean. Prod. 2021, 293, 126205. [CrossRef]
28. Lian, C.; Zeng, Z.; Yao, W.; Tang, H. Multiple Neural Networks Switched Prediction for Landslide Displacement. Eng. Geol. 2015,

186, 91–99. [CrossRef]
29. Miao, F.; Wu, Y.; Xie, Y.; Li, Y. Prediction of Landslide Displacement with Step-like Behavior Based on Multialgorithm Optimization

and a Support Vector Regression Model. Landslides 2018, 15, 475–488. [CrossRef]
30. Liu, Y.; Xu, C.; Huang, B.; Ren, X.; Liu, C.; Hu, B.; Chen, Z. Landslide Displacement Prediction Based on Multi-Source Data Fusion

and Sensitivity States. Eng. Geol. 2020, 271, 105608. [CrossRef]
31. Chemenda, A.I.; Bois, T.; Bouissou, S.; Tric, E. Numerical Modelling of the Gravity-Induced Destabilization of a Slope: The

Example of the La Clapière Landslide, Southern France. Geomorphology 2009, 109, 86–93. [CrossRef]
32. Mohammadi, S.; Taiebat, H. Finite Element Simulation of an Excavation-Triggered Landslide Using Large Deformation Theory.

Eng. Geol. 2016, 205, 62–72. [CrossRef]
33. Marcato, G.; Mantovani, M.; Pasuto, A.; Zabuski, L.; Borgatti, L. Monitoring, Numerical Modelling and Hazard Mitigation of the

Moscardo Landslide (Eastern Italian Alps). Eng. Geol. 2012, 128, 95–107. [CrossRef]
34. Zhang, X.; Wang, L.; Krabbenhoft, K.; Tinti, S. A Case Study and Implication: Particle Finite Element Modelling of the 2010

Saint-Jude Sensitive Clay Landslide. Landslides 2020, 17, 1117–1127. [CrossRef]
35. Wang, L.; Hwang, J.H.; Luo, Z.; Juang, C.H.; Xiao, J. Probabilistic Back Analysis of Slope Failure—A Case Study in Taiwan.

Comput. Geotech. 2013, 51, 12–23. [CrossRef]
36. Ering, P.; Babu, G.L.S. Probabilistic Back Analysis of Rainfall Induced Landslide- A Case Study of Malin Landslide, India. Eng.

Geol. 2016, 208, 154–164. [CrossRef]
37. Berti, M.; Bertello, L.; Bernardi, A.R.; Caputo, G. Back Analysis of a Large Landslide in a Flysch Rock Mass. Landslides 2017, 14,

2041–2058. [CrossRef]
38. Zhao, L.H.; Zuo, S.; Lin, Y.L.; Li, L.; Zhang, Y. Reliability Back Analysis of Shear Strength Parameters of Landslide with

Three-Dimensional Upper Bound Limit Analysis Theory. Landslides 2016, 13, 711–724. [CrossRef]
39. Lv, Q.; Liu, Y.; Yang, Q. Stability Analysis of Earthquake-Induced Rock Slope Based on Back Analysis of Shear Strength Parameters

of Rock Mass. Eng. Geol. 2017, 228, 39–49. [CrossRef]
40. Zhou, W.; Li, S.; Zhou, Z.; Chang, X. InSAR Observation and Numerical Modeling of the Earth-Dam Displacement of Shuibuya

Dam (China). Remote Sens. 2016, 8, 877. [CrossRef]
41. Shinoda, M.; Miyata, Y.; Kurokawa, U.; Kondo, K. Regional Landslide Susceptibility Following the 2016 Kumamoto Earthquake

Using Back-Calculated Geomaterial Strength Parameters. Landslides 2019, 16, 1497–1516. [CrossRef]
42. Okui, Y.; Tokunaga, A.; Shinji, M.; Mori, S. New Back Analysis Method of Slope Stability by Using Field Measurements. Int. J.

Rock Mech. Min. Sci. Geomech. Abstr. 1997, 34, 515. [CrossRef]
43. Li, S.; Zhao, H.; Ru, Z.; Sun, Q. Probabilistic Back Analysis Based on Bayesian and Multi-Output Support Vector Machine for a

High Cut Rock Slope. Eng. Geol. 2016, 203, 178–190. [CrossRef]
44. Sun, Y.; Jiang, Q.; Yin, T.; Zhou, C. A Back-Analysis Method Using an Intelligent Multi-Objective Optimization for Predicting

Slope Deformation Induced by Excavation. Eng. Geol. 2018, 239, 214–228. [CrossRef]
45. Xing, H.; Zhang, H.; Liu, L.; Yao, D. Comprehensive Monitoring of Talus Slope Deformation and Displacement Back Analysis of

Mechanical Parameters Based on Back-Propagation Neural Network. Landslides 2021, 18, 1889–1907. [CrossRef]
46. Ishii, Y.; Ota, K.; Kuraoka, S.; Tsunaki, R. Evaluation of Slope Stability by Finite Element Method Using Observed Displacement

of Landslide. Landslides 2012, 9, 335–348. [CrossRef]
47. Huang, Y.; Li, C. Back-Analysis for the Elasto-Viscoplastic Parameters of Landslides Based on the Observed Displacements:

A Case Study of the Wujiang Landslide, China. Arab. J. Sci. Eng. 2019, 44, 4639–4651. [CrossRef]
48. Ma, P.; Cui, Y.; Wang, W.; Lin, H.; Zhang, Y. Coupling InSAR and Numerical Modeling for Characterizing Landslide Movements

under Complex Loads in Urbanized Hillslopes. Landslides 2021, 18, 1611–1623. [CrossRef]
49. Chen, X.; Li, D.; Tang, X.; Liu, Y. A Three-Dimensional Large-Deformation Random Finite-Element Study of Landslide Runout

Considering Spatially Varying Soil. Landslides 2021, 18, 3149–3162. [CrossRef]
50. Troncone, A.; Conte, E.; Donato, A. Two and Three-Dimensional Numerical Analysis of the Progressive Failure That Occurred in

an Excavation-Induced Landslide. Eng. Geol. 2014, 183, 265–275. [CrossRef]
51. Gong, Q.; Deng, J.; Yang, L.; Zhang, J.; Wang, Q.; Zhang, G. Behavior of Major and Trace Elements during Weathering of

Sericite-Quartz Schist. J. Asian Earth Sci. 2011, 42, 1–13. [CrossRef]

http://doi.org/10.1016/j.enggeo.2016.02.009
http://doi.org/10.1016/j.enggeo.2006.02.018
http://doi.org/10.1016/j.enggeo.2007.01.013
http://doi.org/10.1016/j.soildyn.2020.106066
http://doi.org/10.1007/s11069-020-04419-5
http://doi.org/10.1016/j.jclepro.2021.126205
http://doi.org/10.1016/j.enggeo.2014.11.014
http://doi.org/10.1007/s10346-017-0883-y
http://doi.org/10.1016/j.enggeo.2020.105608
http://doi.org/10.1016/j.geomorph.2009.02.025
http://doi.org/10.1016/j.enggeo.2016.02.012
http://doi.org/10.1016/j.enggeo.2011.09.014
http://doi.org/10.1007/s10346-019-01330-4
http://doi.org/10.1016/j.compgeo.2013.01.008
http://doi.org/10.1016/j.enggeo.2016.05.002
http://doi.org/10.1007/s10346-017-0852-5
http://doi.org/10.1007/s10346-015-0604-3
http://doi.org/10.1016/j.enggeo.2017.07.007
http://doi.org/10.3390/rs8100877
http://doi.org/10.1007/s10346-019-01171-1
http://doi.org/10.1016/S1365-1609(97)00170-6
http://doi.org/10.1016/j.enggeo.2015.11.004
http://doi.org/10.1016/j.enggeo.2018.03.019
http://doi.org/10.1007/s10346-020-01613-1
http://doi.org/10.1007/s10346-011-0303-7
http://doi.org/10.1007/s13369-018-3498-2
http://doi.org/10.1007/s10346-020-01604-2
http://doi.org/10.1007/s10346-021-01699-1
http://doi.org/10.1016/j.enggeo.2014.08.027
http://doi.org/10.1016/j.jseaes.2011.03.003


Remote Sens. 2022, 14, 2683 19 of 19

52. Varnes, D. Slope Movement Types and Processes. Spec. Rep. 1978, 176, 11–33.
53. Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194.

[CrossRef]
54. Liu, X.; Zhao, C.; Zhang, Q.; Yin, Y.; Lu, Z.; Samsonov, S.; Yang, C.; Wang, M.; Tomás, R. Three-Dimensional and Long-Term

Landslide Displacement Estimation by Fusing C- and L-Band SAR Observations: A Case Study in Gongjue County, Tibet, China.
Remote Sens. Environ. 2021, 267, 112745. [CrossRef]

55. Tong, X.; Schmidt, D. Active Movement of the Cascade Landslide Complex in Washington from a Coherence-Based InSAR Time
Series Method. Remote Sens. Environ. 2016, 186, 405–415. [CrossRef]

56. Zhou, W.; Li, S.; Zhou, Z.; Chang, X. Remote Sensing of Deformation of a High Concrete-Faced Rockfill Dam Using InSAR:
A Study of the Shuibuya Dam, China. Remote Sens. 2016, 8, 255. [CrossRef]

57. Jia, H.; Wang, Y.; Ge, D.; Deng, Y.; Wang, R. InSAR Study of Landslides: Early Detection, Three-Dimensional, and Long-Term
Surface Displacement Estimation—A Case of Xiaojiang River Basin, China. Remote Sens. 2022, 14, 1759. [CrossRef]

58. Wang, H.; Sun, P.; Zhang, S.; Han, S.; Li, X.; Wang, T.; Guo, Q.; Xin, P. Rainfall-Induced Landslide in Loess Area, Northwest China:
A Case Study of the Changhe Landslide on September 14, 2019, in Gansu Province. Landslides 2020, 17, 2145–2160. [CrossRef]

59. Deng, Q.L.; Zhu, Z.Y.; Cui, Z.Q.; Wang, X.P. Mass Rock Creep and Landsliding on the Huangtupo Slope in the Reservoir Area of
the Three Gorges Project, Yangtze River, China. Eng. Geol. 2000, 58, 67–83. [CrossRef]

60. Tang, H.; Li, C.; Hu, X.; Wang, L.; Criss, R.; Su, A.; Wu, Y.; Xiong, C. Deformation Response of the Huangtupo Landslide to
Rainfall and the Changing Levels of the Three Gorges Reservoir. Bull. Eng. Geol. Environ. 2015, 74, 933–942. [CrossRef]

61. Zhou, W.; Yuan, W.; Ma, G.; Chang, X. Combined Finite-Discrete Element Method Modeling of Rockslides. Eletronic Libr. 2018, 34,
1530–1559. [CrossRef]

62. Suwa, H.; Mizuno, T.; Ishii, T. Prediction of a Landslide and Analysis of Slide Motion with Reference to the 2004 Ohto Slide in
Nara, Japan. Geomorphology 2010, 124, 157–163. [CrossRef]

63. Vallet, A.; Charlier, J.B.; Fabbri, O.; Bertrand, C.; Carry, N.; Mudry, J. Functioning and Precipitation-Displacement Modelling of
Rainfall-Induced Deep-Seated Landslides Subject to Creep Deformation. Landslides 2016, 13, 653–670. [CrossRef]

64. Yin, H.; Yang, C.; Ma, H.; Shi, X.; Zhang, N.; Ge, X.; Li, H.; Han, Y. Stability Evaluation of Underground Gas Storage Salt Caverns
with Micro-Leakage Interlayer in Bedded Rock Salt of Jintan, China. Acta Geotech. 2020, 15, 549–563. [CrossRef]

65. Zhao, K.; Ma, H.; Yang, C.; Chen, X.; Liu, Y.; Liang, X.; Cai, R. Damage Evolution and Deformation of Rock Salt Under
Creep-Fatigue Loading. Rock Mech. Rock Eng. 2021, 54, 1985–1997. [CrossRef]

66. Maihemuti, B.; Wang, E.; Hudan, T.; Xu, Q. Numerical Simulation Analysis of Reservoir Bank Fractured Rock-Slope Deformation
and Failure Processes. Int. J. Geomech. 2016, 16, 4015058. [CrossRef]

67. Wu, J.H.; Chen, C.H. Application of DDA to Simulate Characteristics of the Tsaoling Landslide. Comput. Geotech. 2011, 38,
741–750. [CrossRef]

68. Wang, F.W.; Zhang, Y.M.; Huo, Z.T.; Matsumoto, T.; Huang, B.L. The July 14, 2003 Qianjiangping Landslide, Three Gorges
Reservoir, China. Landslides 2004, 1, 157–162. [CrossRef]

69. Wang, S.; Wang, J.; Wu, W.; Cui, D.; Su, A.; Xiang, W. Creep Properties of Clastic Soil in a Reactivated Slow-Moving Landslide in
the Three Gorges Reservoir Region, China. Eng. Geol. 2020, 267, 105493. [CrossRef]

70. Lin, H.; Zhang, X.; Cao, R.; Wen, Z. Improved Nonlinear Burgers Shear Creep Model Based on the Time-Dependent Shear
Strength for Rock. Environ. Earth Sci. 2020, 79, 149. [CrossRef]

71. Chang, X.; Hu, C.; Zhou, W.; Ma, G.; Zhang, C. A Combined Continuous-Discontinuous Approach for Failure Process of
Quasi-Brittle Materials. Sci. China Technol. Sci. 2014, 57, 550–559. [CrossRef]

72. Li, Q.; Wang, Y.M.; Zhang, K.B.; Yu, H.; Tao, Z.Y. Field Investigation and Numerical Study of a Siltstone Slope Instability Induced
by Excavation and Rainfall. Landslides 2020, 17, 1485–1499. [CrossRef]

73. Li, C.; Long, J.; Liu, Y.; Li, Q.; Liu, W.; Feng, P.; Li, B.; Xian, J. Mechanism Analysis and Partition Characteristics of a Recent
Highway Landslide in Southwest China Based on a 3D Multi-Point Deformation Monitoring System. Landslides 2021, 18,
2895–2906. [CrossRef]

74. Fuhrmann, T.; Garthwaite, M.C. Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry
Data Fusion. Remote Sens. 2019, 11, 241. [CrossRef]

75. Wu, Q.; Jia, C.; Chen, S.; Li, H. SBAS-InSAR Based Deformation Detection of Urban Land, Created from Mega-Scale Mountain
Excavating and Valley Filling in the Loess Plateau: The Case Study of Yan’an City. Remote Sens. 2019, 11, 1673. [CrossRef]

http://doi.org/10.1007/s10346-013-0436-y
http://doi.org/10.1016/j.rse.2021.112745
http://doi.org/10.1016/j.rse.2016.09.008
http://doi.org/10.3390/rs8030255
http://doi.org/10.3390/rs14071759
http://doi.org/10.1007/s10346-020-01460-0
http://doi.org/10.1016/S0013-7952(00)00053-3
http://doi.org/10.1007/s10064-014-0671-z
http://doi.org/10.1108/EC-04-2015-0082
http://doi.org/10.1016/j.geomorph.2010.05.003
http://doi.org/10.1007/s10346-015-0592-3
http://doi.org/10.1007/s11440-019-00901-y
http://doi.org/10.1007/s00603-020-02342-6
http://doi.org/10.1061/(ASCE)GM.1943-5622.0000533
http://doi.org/10.1016/j.compgeo.2011.04.003
http://doi.org/10.1007/s10346-004-0020-6
http://doi.org/10.1016/j.enggeo.2020.105493
http://doi.org/10.1007/s12665-020-8896-6
http://doi.org/10.1007/s11431-014-5482-8
http://doi.org/10.1007/s10346-020-01396-5
http://doi.org/10.1007/s10346-021-01698-2
http://doi.org/10.3390/rs11030241
http://doi.org/10.3390/rs11141673

	Introduction 
	Study Area 
	Data and Methods 
	InSAR Measurements 
	Displacement Back Analysis to Identify Material Parameters 

	Results and Discussion 
	Displacement Back Analysis Using Multi-Source Monitoring Data 
	Deformation Characterristics and Triggering Factors of the Cheyiping Landslide 
	Further Application of Multi-Source Monitoring Data in Deformation Back Analysis 

	Conclusions 
	References

