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Abstract: With the emergence of XR technologies, the demand for new time- and cost-saving appli-
cations in the AEC industry based on these new technologies is rapidly increasing. Their real-time
feedback and digital interaction in the field makes these systems very well suited for construction
site monitoring, maintenance, project planning, and so on. However, the continuously changing
environments of construction sites and facilities requires extraordinary robust and dynamic data ac-
quisition technologies to capture and update the built environment. New XR devices already have the
hardware to accomplish these tasks, but the framework to document and geolocate multi-temporal
mappings of a changing environment is still very much the subject of ongoing research. The goal of
this research is, therefore, to study whether Lidar and photogrammetric technologies can be adapted
to process XR sensory data and align multiple time series in the same coordinate system. Given the
sometimes drastic changes on sites, we do not only use the sensory data but also any preexisting
remote sensing data and as-is or as-designed BIM to aid the registration. In this work, we specifically
study the low-resolution geometry and image matching of the Hololens 2 during consecutive stages
of a construction. During the experiments, multiple time series of constructions are captured and
registered. The experiments show that XR-captured data can be reliably registered to preexisting
datasets with an accuracy that matches or exceeds the resolution of the sensory data. These results
indicate that this method is an excellent way to align generic XR devices to a wide variety of existing
reference data.

Keywords: XR; BIM; point cloud; structure-from-motion; AECO; construction site monitoring

1. Introduction

With the increasing digitisation of the built environment, innovative technologies
are needed to visualise and interact with this digital information in the field [1]. This is
where extended reality (XR) devices can provide a solution. XR devices, whether they
are handheld, head-worn, or otherwise, strive to integrate the digital environment with
the real world [2]. In the architectural, engineering, and construction (AEC) industry, XR
technologies can be leveraged for a range of different domains, i.e., property visualisation
in real estate, conceptualization in architecture, digital overlays of design schemes in
construction and maintenance, and so on [3]. Moreover, XR devices contain a number of
mapping sensors that can aid in the tracking of construction or fabrication errors, improve
worker efficiency, and even improve safety by highlighting needed/dangerous objects.
Overall, XR technologies benefit immensely from an increased digital built environment
and vice versa.

The key bottleneck to linking the digital to the built environment is the alignment of
both environments. Concretely, this implies that the remote sensing data captured by XR
devices including depth maps, polygonal meshes, RGB imagery, and so on, must be aligned
with the same coordinate system as the virtual data. Multiple works have been dedicated
to solving this problem, but, up until now, have had glaring weaknesses that prevent XR
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technologies from being deployed for extended periods in industrial environments. A
major factor is the changing nature of construction sites and facilities where we look to
deploy these systems. Current registration algorithms do not cope with partially changed
environments and are prone to misalignment. Additionally, the lack of Global Navigation
Satellite System (GNSS) availability remains a major obstacle and only the images or the
geometries separately are used for the registration which easily falter in the challenging
measurement conditions of construction sites and facilities.

Therefore, the goal of this research is to develop a registration framework that deals
with the above obstacles. Concretely, we look to create a pipeline which can create an
accurate global pose and orientation estimation of a sensor, given its sensory data, by
matching the data with existing geolocated reference data. As such, our method can
process any predated Lidar or photogrammetric point clouds and 2D images of the facility.
Additionally, the Building Information Modelling (BIM) model that is present of the site is
also used as a reference for the positioning of the XR device as robustly and accurately as
possible. The main contributions of this work are as follows:

1. A novel multi-source approach that computes a more robust and accurate pose and
orientation estimation within pre-documented facilities;

2. A novel multi-temporal framework that processes the data of consecutive changed
environments using semantic web technologies;

3. An empirical study of the framework during the consecutive stages of a real con-
structions;

4. An extensive literature study on XR registration technologies on construction sites
and facilities.

The remainder of this work is structured as follows. The background and related
work is presented in Section 2. In Section 3.1, the sensors used in this study are presented.
Following is the methodology for the capacity and semantic segmentation suitability study
in Section 3. In Section 4, the test sites are introduced along with their corresponding
results in Section 5. The test results are discussed in Section 6. Finally, the conclusions are
presented in Section 7.

2. Background and Related work

In this section, the related work for the key aspects of this research are discussed:
(1) XR data and applications for construction execution and monitoring; (2) XR-based
Lidar-and photogrammetric registration techniques; and (3) the multi-temporal Linked
Data management of construction and facility data.

2.1. XR in the AEC Industry

XR applications are a combination of virtual (VR), augmented (AR), and mixed (MR)
reality. In the case of the AEC industry, each component has its unique uses. For instance,
VR application excel at simulations and the design phase of constructions. VR applica-
tions are created to digitally test as-designed facilities for user friendliness, to simulate
evacuation plans, communicating with clients and so on [4,5]. The as-designed BIM model
plays a pivotal role that simultaneously is both the virtual reality environment and the
project design database. As such, VR applications directly extend architects and engineers
capabilities to better plan a project through XR-driven design, simulations, and so on [6,7].
AR applications are created once an asset is constructed or an existing facility needs to be
renovated or maintained [8]. In this case, the XR technologies bring the BIM to the field to
better execute the project, i.e., by visualising objects on site, overlaying plan information,
such as electrical grids, and so on [9]. MR applications incorporate aspects of both AR and
VR, and typically blend digital information with real objects. For instance, MR applications
have been designed to highlight connectivity of electrical grids in existing buildings [10],
or a BIM-based facility management platform that guided workers to repair highlighted
components [11], and many others [12]. Some experiments also have been performed to
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use MR for construction monitoring to detect defects [13,14] which is pf particular interest
to this work since it requires an extensive processing of the XR data.

In terms of data, current XR devices nearly always have on-board cameras and optional
RGBD cameras, Lidar sensors, and Inertial Measurement Units (IMU). One of the more
recent examples is the Hololens 2, which is equipped with a 8 Mp RGB camera and four
gray-scale cameras, a holographic processing unit (HPU), and a 1 Mp Time-of-Flight (ToF)
sensor. The resulting data are a polygonal mesh generated from the point clouds of the
ToF sensor and a series of images that are locally registered using structure-from-motion
photogrammetry and the IMU measurements in a performant SLAM algorithm. Currently,
the meshes are not colourised and by default are sub-sampled to a resolution of (0.08 m3).
Other devices on the market have similar sensors, but usually lack certain aspects. That is
why the Hololens 2 is chosen for this study, since it provides a wide array of data. Current
generation smartphones also have XR capabilities by using ArKit and ArCore for IOS and
Android devices, respectively, but most of these devices lack ToF sensors. However, in
order to validate the usability of the proposed framework, localised imaging data from
these device will also be taken into account.

Aside from the XR data itself, one should also consider the preexisting data repositories
that will be used for the alignment in this work. Most facilities are captured using Terrestrial
Lasers Scanners (TLS). These are Lidar-based systems that can capture up to 2 million
points per second of their surroundings. Indoor Mobile Mappings systems, such NavVis
M6 and VLX, are also employed but these are typically supported by a total station [15].
The resulting point cloud is among the most accurate geospatial data with single point
accuracies of <5 mm for high-end systems [16]. However, TLS can suffer from occlusions
due to the limited number of setups of the scanner used to capture a facility. A second data
repository are images taken in and around the facility by handheld cameras, smartphones,
Unmanned Aerial Vehicles (UAVs), surveillance cameras, and so on. These images can
be geolocated through photogrammetric routines similar to procedures we use in this
work (Figure 1). Geolocated imagery are also generated by TLS themselves in the form of
panoramic imagery or cuboid images. Finally, there are also the BIM databases themselves
to consider. As-built or even as-designed BIM models have somewhat abstract geometries
of the main objects in the facility, including the structure, windows, doors, and perhaps
also fixed furniture and mechanical, electrical, and plumbing (MEP) elements. Overall,
each asset has some preexisting data that can be used as a reference for the registration.
However, it is important to notice that significant parts of the preexisting data are outdated
due to construction progression or changes, refurbishment, or interior changes. Aside from
the physical changes, the lighting conditions and weather conditions can drastically alter
the appearance of facilities which is particularly true for construction sites.
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Figure 1. Examples of a reference dataset and a local measurement session of the same structure,
taken at different times with different sensors. The localised images in relation to the geometry are
displayed in red.

2.2. XR Registration Techniques

The XR pose estimation is split into a local and global estimation. First, an XR system
should keep track of its own location within a measurement session. To this end, Simulta-
neous Localisation And Mapping (SLAM) algorithms are proposed that use the sensor’s
IMU, GNSS if available, image and geometric data to continuously estimate the sensor’s
pose and orientation within the local coordinate system. Most SLAM methods are solely
based on 2D or 3D and are supported by an IMU, with visual Slam being the most popular
choice [17]. For instance, the Hololens 2 combined with the Microsoft Mixed Reality API
relies on ORB-SLAM [18].

Aside from the matching between consecutive sensor setups, loop closure is a key
feature in SLAM approaches. If the sensor revisits a known location in the local coordinate
system, the error of the path in between both encounters can be adjusted to compensate for
drift. To this end, a bundle adjustment is computed for all observations in the loop which
drastically reduces the error. Any Indoor Mobile Mapping System (iMMs) mapping is,
therefore, encouraged to make as many loops as possible and also to capture control points
along the trajectory to keep the error propagation in check.

Overall, the combined geometry and visual SLAM work well both in indoor and
outdoor environments. From accuracy tests in our previous work, we found that entire
spaces can be mapped up to LOA20 [19] [2σ ≤ 0.5 m] given sufficient control and loop
closures [20]. The sensor trajectory in itself is more accurate since the inaccuracy of the
Hololens 2 Lidar sensor (0.01 m/10 m) and the sub-sampling must be considered.

Second, the XR device must be positioned within a preexisting coordinate system,
which is the focus of this work. This global alignment is achieved either directly by measur-
ing GNSS signals or by retrieving the correspondences between the local measurements
and a global reference dataset. In this work, where we target both indoor and outdoor
environments within existing facilities or facilities that are under construction, we will
not consider the direct alignment methods as a GNSS-hemisphere only provides sufficient
accuracy in a wide open outdoor space. Instead, we discuss the related work to retrieve
correspondences between a local and a reference dataset through exact, approximate, and
indirect correspondences.

2.2.1. Exact Correspondences

These are spatial anchors with accurate coordinates, e.g., targets established by total
station. These correspondences serve as control points and can be used to align the
local measurements using a rigid body transformation or even can be used within the
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SLAM processing to improve the results [21]. These correspondences can be used in any
environment but can be quite costly or impractical to establish. Exact correspondences can
also directly stem from preexisting Lidar or image datasets. If a repository of referenced
images and/or scans exist of the facility, image feature matching or geometric feature
matching can be used to yield accurate spatial correspondences. To this end, conventional
computer vision or Lidar registration techniques can be used. For instance, Liu et al. [22]
initialize their SLAM in outdoor environments by estimating the relative pose of the sensor
from a set of localised panoramic images. Multi-view object detection and localization is
also proposed, which uses feature matching to the global database, point triangulation
and registration [23]. Convolutional Neural Networks (CNN) are also proposed for the
feature extraction. For instance, Brachmann et al. [24] extract CNN features and apply
Expert Sample Consensus (ESAC) to deal with scene outliers. A serious challenge for these
reference-based methods are the changes to the environment between the reference and
the newly collected data and dynamic scene elements. To compensate for this, derivative
features are proposed, such as vanishing lines or geometry line features, that are less likely
to belong to temporal objects [25]. Additionally, as reference datasets can become quite
large, real-time processing is problematic. Finally, the repetitivity of the target facility might
confuse the pose estimation, e.g., by finding matches in the wrong room.

2.2.2. Approximate Correspondences

These are spatial anchors that do not have exact coordinates but are linked to a certain
location within the facility, e.g., a specific room. Typical examples of these anchors are
markers, Bluetooth Low Energy (BLE) i.e., XBee or ZigBee, VHF, Wi-Fi access points and so
on [26]. XR devices can detect these correspondences which narrows the pose estimation
task to the localisation within a single room. A second-step fine-alignment is then used
to estimate the exact pose of the sensor, which is analogue to the exact correspondences.
The final positioning of the XR-device is then determined by one of the above methods.
This method is very well suited for existing buildings but it is rather costly because of the
number of beacons needed and is challenging to apply on construction sites or facilities
that do not have a room-based layout.

The major advantage of approximate correspondences is that placing these beacons is
much less labor intensive than the above defined accurate spatial anchors. However, this
method is mostly restricted to existing facilities with fixed room-based layout. Additionally,
non-visual approximate correspondences can be error prone as there can be confusion
about the exact room since the beacon with the highest signal strength is not necessarily
the same room due to multi-pathing and ambiguous wall materials.

2.2.3. Indirect Correspondences

This technique uses the signalling beacons to calculate the sensor’s position, typically
by means of triangulation. To this end, the same beacons as described above are strategically
spread out across the structure and their coordinates are accurately determined. The XR-
device then measures the signal intensity to the closest beacons and triangulates the sensor’s
position based on the signal strength of at least three beacons. This approach works well in
open spaces and yields an exact pose estimation. However, in indoor spaces, the distance
calculation is extremely ambiguous due to multi-pathing of the signals, the unknown
materials and objects that the signal passes through, and so on. In practice, this technology
also only presents a coarse pose estimation and a more accurate second registration step is
needed to properly align the XR device in the common coordinate system.

Overall, reference datasets are considered the most complete option to robustly ini-
tialise the pose of XR devices. If the geometric or visual feature estimation can be made
less ambiguous to the structure’s repetitivity and less computationally demanding, this
technique can be used throughout consecutive building stages, from early construction to
facility management and, finally, demolition.
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3. Methodology

This section explains the overall structure of the method. Concretely, we discuss
(1) the data preprocessing for the BIM, image, and geometry reference data and consecutive
XR-data captures of a site; and (2) the global XR pose estimation per session based on visual
and geometric features. It is important to notice that the continuous local pose estimation
within a session by the Microsoft SLAM API (Scene understanding SDK), in combination
with the Hololens 2, is left unaltered as it is proven to yield reliable and accurate results for
small-scale scenes [20]. Instead, we pursue the localisation of the entire data acquisition
session with respect to the facilities’ coordinate system in the cadre of interfacing with and
updating the facilities’ digital twin (Figure 2).

Figure 2. Overview of the proposed two-step alignment process based on both image and
geometric features.

3.1. Data Preprocessing

When handling a wide variety of datasets across different time periods, there must
be a joint framework to link and jointly process the data. In this work, we will utilize the
geospatial component of the remote sensing and BIM data to link the different datasets.
When a surveillance is made, the captured data are generally stored with respect to a
common reference point. This collection of data are referred to as a session. Sessions can
contain images, meshes, point clouds, and even BIM models, all with their own relative
transformation. All the data need to be geolocated, and since there are a number of different
standards, it is important to always include which coordinate system is being used. The
three most used in Belgium are: WSG, Lambert72, and Lambert2008. For this section, the
reference and test data are handled separately. However, it is important to notice that each
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new session can be used as a reference for future test data and, thus, both data structures
need to be standardized. To this end, semantic web technologies are leveraged to manage
the spatial and temporal metadata of each reference dataset. Concretely, a set of light
weight RDF graphs are constructed, which are updated with each new XR data capture.
The geospatial data processing, metadata extraction, RDF graph conceptualization, and
implementation of each dataset is discussed below.

3.1.1. Reference Data

The following reference data are considered for the global pose estimation (Figure 3):
the BIM digital twin in a preset coordinate system (preferably geolocated), Lidar data,
localised image data, and XR data captured from previous sessions. These repositories are
preprocessed and geolocated as follows.

(a) 2D Image Features (ORB) (b) 3D Mesh Features (FPFH)
typical amount: 10,000 typical amount: 10,000

typical resolution: 4 MP typical resolution: 5 cm3

(c) 3D Point Cloud Features (FPFH) (d) BIM Features (SUPER4PCS)
typical amount: 10,000 typical amount: 1000

typical resolution: 5 cm3 typical resolution: 5 cm3

Figure 3. Overview of the different types of data with their respective features for geolocalisation.

Imagery

The preexisting imagery of a facility is one of the most promising methods to align
newly captured XR data (Figure 3a). There are iMMs and TLS images to consider, as well
as panoramic imagery, images taken by smartphones, handheld cameras, and UAVs. The
iMMs and TLS imagery are already localised during the Lidar registration processing.
Other imagery is processed by structure-from-motion (SfM) software, such as MetaShape
or RealityCapture, to estimate the camera’s interior and exterior orientation parameters,
including the focal length, position, rotation, and so on. During this process, control points,
either from Lidar, total station, or GNSS measurements, need to be manually added to the
image collections to properly reference and scale the imagery. The result is a set of images
accompanied with an RDF graph that contains the location and orientation of each image
along with its camera parameters and timestamp. Additionally, the Oriented FAST and
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Rotated BRIEF (ORB) features extracted in the SfM pipeline are stored per image, so no
additional preprocessing is needed in the pose estimation step.

Point Clouds

Facilities are increasingly scanned at key stages of their life-cycle, such as during
construction, renovations, and so on. These captured data, either with static TLS or iMMs,
generate a collection of Cartesian coordinates with optional colour and intensity values
per setup or trajectory (Figure 3c). During the post-processing of these datasets, control
points established with GNSS or total station are added to geolocate the resources. The
geolocated points clouds in an E57 format are the starting point of our method. As our
codebase operates in Open3D [27], each point cloud is converted to the PCD format. There
are both ordered and unordered point cloud datasets to consider. For instance, .e57 point
cloud files containing a collection of per setup captured structured point clouds are stored
as separate PCD files. The e57xmldump tool [28] is used to first extract the E57 metadata
information which is than parsed using the RDFlib API [29]. The resulting metadata is
stored as triples in an RDF graph pcdGraph.tll which is serialized using the turtle syntax.
During this operation, a heavily downsampled voxel octree and a set of Fast Point Feature
Histograms (FPFH) geometric features is extracted from the Lidar data that will serve as
reference for the pose estimation [30]. The octree and features are also stored in the RDF
graph so they can be reused throughout consecutive pose estimations without the need to
load the original point cloud data.

Polygonal Meshes

Polygonal meshes can both stem from remote sensing or from the Building Information
Model (discussed below) (Figure 3b). The former is a direct product of XR device data
captures, such as the Hololens 2 or the SfM pipelines as discussed above, that generate
textured mesh geometry of the facility. Additionally, Lidar point clouds can be processed
to polygonal mesh geometries using various meshing techniques, such as Poisson meshing
variants [31]. The features that are extracted from the polygonal meshes are the same as
those extracted from the point cloud data. To this end, point clouds are sampled on the
mesh surfaces and subjected to the same feature extractors, as described above. Analogue
to the point cloud processing, the features, bounding box, centroid, and so on are stored in
an RDF graph.

Building Information Model

The geospatial representation of BIM elements can be either defined by BREP or polyg-
onal mesh representations (Figure 3d). As such, they are compatible with the same code as
for the polygonal mesh geometry processing. However, using the point cloud features on an
abstract BIM model are likely to fail due to modeling abstractions and sparsity of the BIM.
Therefore, plane-based descriptors are extracted from the BIM geometries and stored in an
RDF graph bimGraph.ttl. Specifically, we extract Super4PCS features, as described in [32].
The descriptors are stored using their absolute coordinates, which also includes the translation
and rotation of the BIM project with respect to the global coordinate system.

The main goal of the alignment is to position the XR device’s data in the world.
For that, the reference data needs to be geolocated. There are a number of international
standards for geolocating data, so each RDF resource is enriched with the coordinates
system information that is being used. Each resource is also given an accuracy parameter
which will play an important role in the pose estimation reliability. This accuracy metric is
either directly obtained from the processing of the remote sensing data, i.e., the network
error in Lidar networks or the mean error on the control points in a SfM pipeline. For the
BIM geometries, a default 0.05 m accuracy is chosen as conform LOA20 [19], which is a
safe option considering the common abstractions of BIM models.
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3.1.2. XR Data Capture

This work focuses on cross platform compatibility, so we try to capture and link as
much data as possible. Therefore, the codebase, which is developed in Unity3D, accepts
common inputs from various XR devices. Specifically in this work, we build our framework
against the Hololens 2 and Android smartphone inputs to showcase the multi-sensor inputs.
Analogue to the reference data, the XR data are organised in periodic sessions. Each session
contains a global reference point, a number of images and meshes. Since these data are
captured (near) real time, the fidelity and file size is relatively small. This lowers the time
to transfer files across devices and also the computation time. Note that it is not required to
have both 2D and 3D data available in a session, as not all devices contain the necessary
sensors to capture both. The pose estimation is specifically designed to deal with very
limited data and provides different methods depending on the input.

Two-Dimensional Capture

Images are captured using the on-board device cameras. As previously mentioned, We
rely on the XR SLAM capabilities to track the subsequent sensor poses within the session.
As such, the relative location and orientation of the imagery is directly adopted into the
RDF graph which is identical to the imageGraph proposed above. once a new image
is captured by the device, it is send to a server that automatically extracts the relevant
metadata and features and stores this information in the session’s RDF graph.

Three-Dimensional Capture

Some XR devices are equipped with special sensors that can capture depth, such as the
ToF on the Hololens 2, or RGBD sensors of some Android devices. Using these data, the XR
SLAM can create a real-time mesh of the environment. Specifically for the Mixed Reality
API of the Hololens 2, the mesh is dynamically built from consecutive blocks of by default
8 m3. By default, the spatial resolution of the mesh is kept rather low to save computational
resources, but this can be changed for a more detailed mapping. Because the generated
mesh is spatially sub-sampled, the distance to the environment is largely irrelevant as long
as the structure remains within range of the sensor. Once a number of cells is captured, the
mesh is sent to the server where it can commence the 3D pose estimation process. To this
end, an RDF Graph similar to the meshGraph defined above is generated from the raw
mesh and serialized in a .ttl file.

3.1.3. RDF Schema

There is a clear need for standardisation, due to the fact that a lot of the reference data
will come from diverse sources and different periods throughout the building’s life-cycle.
Properties such as an id, position, and rotation already have strict schemes built out, so
it is imperative that we use the same standards. Currently, we implement RDF, RDFS
for the general concepts. GEO is used overall to represent the geospatial information of
the resources, while EXIF is specifically used early on to extract the metadata from the
images. We rely on OMG for the geometry definitions and the pathing of each session. For
the sensory metadata, including the position, centroid, bounding box, number of points,
vertices, faces, and so on, we use the OpenLabel which is extensively used for mobile
mapping and navigation data. Finally, the Image, Mesh, and Point Cloud classes are
designed on top of our V4Design ontology and have a series of relationships that govern
exchange of information between the classes [33]. A feature relation is also defined to store
the resources’ 2D and 3D features along with the description of the feature type (ORB,
SIFT, etc.). The Arpenteur [34] ontology is also used that already defines a number of
relationships for SfM processes and fits well with this framework.

3.2. Pose Estimation

In this section, the pose estimation of the session is presented. The alignment is
divided into two consecutive steps. First, an approximate global pose request is processed
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by the XR operator’s android device to narrow the search area for the pose estimation. In
a second step, an exact pose estimation is calculated using the XR captured data and the
above described reference datasets. In the following sections, the global pose estimation
and the subsequent 2D and 3D pose estimations are discussed in detail.

s ∈ S is a session that contains some point clouds Ps ∈ Ps (either from meshes, depth
imagery or structured point clouds) and images is ∈ Is. From the preprocessing, every
Ps has an RDF graph GPs that contains its metadata, a set of distinct 3D points Xs and 3D
feature vectors F3D. Analogue, every is is stored in an RDF graph GI that contains the
metadata, a set of distinct 2D pixels xs ∈ xs and 2D feature vectors F2D.

R are all the reference datasets that each contain some point clouds Pr ∈ Pr (either
from meshes, depth imagery, structured point clouds or the Building Information Model)
and images ir ∈ Ir. From the preprocessing, all Pr are stored in an RDF pcdGraph GP
that contains the metadata, a set of distinct 3D points Xr and 3D feature vectors F3D of
each resource. Analogue, the ir are stored in and RDF imageGraph GI that contains the
metadata, a set of distinct 2D pixels xr ∈ xr and 2D feature vectors F2D of the images.

3.2.1. Global Alignment and Reference Data Selection

As already mentioned, the bulk of the calculation will be performed on a server in
order to ensure a smooth operation of the device and give access to all the reference data.
The server is build in python, using the Flask framework. It is critical that the server has
access to the reference data and has enough computing power too compute the tasks. The
data captured on the XR device is organised in a session and send as a whole to the server,
where it can be prepared for the pose estimation.

The first step of the alignment process is the sub-selection of reference data. Due to the
large amount of reference data, it is not feasible to use every session in the pose estimation.
This selection is performed by using the global pose retrieved from the XR device or another
device in the general vicinity based on the HTML Geolocation API [35]. A positioning
query is formulated on OpenStreetMap data using the Overpass API which generates a
HTTP GET request, and receives a response in XML format. In the GNSS thread, a query
is executed at the system start up, using the initial user position and a threshold radius.
After this, a new query is executed when the user has moved significantly from the starting
location given a distance threshold with respect to the last executed query. Since the device
can be indoors or lack a GPS, the retrieved geolocation is not necessarily very accurate,
with a error radius of circa 20 m. However, this is sufficient to narrow down the available
reference data to reduce the computational effort of the precise localization algorithm.

The result of this query is the initial session pose [ps± σg] with the positioning accuracy
as determined by the Wi-Fi, radio, and GNSS availability near the receiver. Given the pose,
the relevant subsets of Pr and Ir are extracted. To this end, the Euclidean distance is
evaluated between the focal point of each session image is(c) and the focal point of each
reference image ir(c). Analogue, when a session point cloud Ps falls within the boundaries
of a reference point cloud Pr considering σg, the cloud is withheld as a valid reference
(Equation (1)) (Figure 4).

P′
r =

{
Pr ∈ Pr

∣∣∣Pr ∩
[
Ps,min − σg; Ps,max + σg

]}
I′r =

{
ir ∈ Ir

∣∣∣is ∈ Is : ‖ir(c)− is(c)‖ ≤ td + σg

} (1)

where threshold td serves as the distance threshold to limit the number of selected images.
From the subsets P′

r and I′r, the relevant graphs GP and GI are retrieved along with the
2D and 3D features. Overall, this selection step significantly lowers the computational
complexity of the matching if a descent pose estimation accuracy is achieved. Moreover,
the selection itself is also extremely efficient as the input variables are directly taken from
the metadata graphs instead of having to transfer and evaluate the actual imagery and
point cloud data.
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Figure 4. Overview of the global alignment process between the reference datasets (red) and test
dataset (blue) to establish a sub-selection of reference data with center ps and error radius σg .

3.2.2. Three-Dimensional Pose Estimation
Point Clouds and Meshes

Given the 3D FPFH features of every reference point cloud and the session point cloud,
a rigid body transformation is computed. To this end, a Fast global registration is applied
as proposed by Zhou et al. [36]. We specifically do not use ICP variants as it would require
the transfer of all reference clouds to the server. Additionally, the method of Zhou et al.
foregoes computationally demanding RANSAC variants for the correspondence matching
and instead propose a correspondence estimation function. Concretely, the distances
between correspondences X′s ∈ Xs and X′r ∈ Xr are minimized while simultaneously
the correspondence outliers are neglected by the correspondence estimation function ρ
(Equation (2)) (Figure 5).

argmin
TPs

∑
X′r ,X′s

ρ
(
‖X′r − TPs X′s‖

)
(2)

where the target rigid body transformation TPs between a reference cloud and the session
cloud is found by minimizing the distance between correspondences in Xs and Xr. Both
for the feature descriptors and the rigid body transformation estimation, the Open3D
framework is implemented based on the work of Zhou et al. [36]. As previously mentioned,
only the feature graphs are transferred to the server and, thus, only the transformation
estimation is calculated in runtime which frees up computational resources. The resulting
pose, as well as the RMSE, the number of inlier correspondences, and the bounding box of
the inlier correspondences are stored with a relation to the reference point cloud. These
metrics will be later used in the final pose estimation.

BIM Alignment

The same logic is applied to the BIM model. Given the sampled meshes, SUPER4PCS
is used as described by Mellado et al. [32]. The approach relies on approximately congruent
4-point sets from a 3D point cloud that can be related by rigid body tranformations. A
key innovation over the established 4-Points Congruent Sets (4PCS) algorithms is the
computational dimensionality reduction from O(n2 + k) to O(n + k), where k is the number
of reported sets, of the pairing problem and a smart indexing scheme to filter all the
redundant pairs in the second stage. As the verification steps remains the same as the above
procedure (using k sets instead of X), Equation (2) is also valid for the BIM transformation
assessment. Additionally, the same metrics are stored in the RDF graph including the RMSE,
the number of inlier correspondences and the bounding box of the inlier correspondences.
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(a)

(b)

Figure 5. Overview of the feature matches between different data types. (a) Example of the epipolar
lines of the ORB feature matches between two images with (green) successful matches and (red)
erroneous matches. (b) Example of the successful FPFH [37] feature matches (lines) between points
clouds captured in consecutive XR measurements.

3.2.3. Two-Dimensional Pose Estimation

Given the 2D ORB features of every reference and session image, a transformation
matrices can be computed for every image in the session using state-of-the-art SfM methods.
The camera pose of a session image T is in relation to the global coordinate system is given
by the rotation matrix Ris and the camera position of image tis . The relation between the
matched 2D pixels x ∈ x of an image is and their 3D projections X ∈ X can then be defined
as follows (Equation (2)).

x = π(T is , X) = K
[

RT
is −RT

is tis
0 1

]
X (3)

where both X and x are represented by their homogeneous coordinates. K is the camera
intrinsic parameters matrix. To estimate the camera poses of all is ∈ Is, the following energy
function can be minimized through bundle adjustment [38] (Equation (4)).

argmin
T i1

...T is

∑
Is ,Ir

∑
X

ρ
(
‖π(Tis , X)− x‖2

)
(4)

where X and x are the combined matches for the session s. A similar loss function ρ as
in Equation (2) is defined to down-weigh potential outliers. To minimize Equation (4),
a number of methods can be employed. In this work, we use the OpenCV Levenberg–
Marquardt implementation [39]. It is important to notice that the resulting T is is not yet
scaled. To solve the scale, we identify three cases to estimate the scale that will occur in XR
data capture.
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Two Overlapping References

If a session image is can be matched with at least two overlapping reference images
I′r = {ir1 , ir2}, the global pose of the session image T is,g is retrieved by solving Equation (1)
using at least 6 3D–2D point correspondences. These correspondences X are already
determined in the global coordinate system due to the global pose of ir1 and ir2 (Figure 6a).

Two Separate References

In the case that two non-overlapping reference images Is = {ir1 , ir2} can be matched
to the session image is, the global pose of the session image T is,g is retrieved by evaluating
the relative transformations between is and ir1 and ir2 , respectively (Figure 6b). To this end,
the average pose is taken considering the accuracy of the absolute poses T ir1,g and T ir2,g .

(a) (b)

(c)
Figure 6. (a) Two overlapping references: Tis is retrieved from a direct pose estimation of the recon-
structed X matches between ir1 and ir2 . (b) Two separate references: Tis is retrieved by triangulating
its pose from the individual matches between is and ir1 and ir2 , respectively. (c) One reference image
with geometry: X is scaled based on the raycast-distance L to x on the geometry. Overview of scale
estimation for different XR image alignment possibilities: (a) multiple reference matches with a single
session image, (b) single reference match with multiple session images, and (c) single reference match
with a single session image but depth information is present.

One Reference Image with Geometry

In the case that only a single reference image ir can be matched to the session image is,
but their point cloud present in the session or the reference, the global pose of the session
image T is,g is retrieved by ray tracing x (Figure 6c). To this end, a set of rays l(c, x) ∈ L
is constructed from the focal point is(c) or ir(c) through x depending on whether the
geometry is part of the session or the reference. The intersection between the geometry P
and L than yields the 3D coordinates of the 3D correspondences X (Equation (5)).

X =
{

p ∈ P
∣∣∣l(c, x) ∈ L : p = l(c, x) ∩ P

}
(5)
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3.2.4. Final Pose Estimation

Given the above pose candidates per session and per resource, the final transform Ts
is computed based on a weighted pose vote over all point cloud and image transformations
T = {TP, T I} in a session (Equation (6)).

TP =
1
n ∑

T
ω(TP, T I) (6)

where the weight ω of each resource is computed for image transformations based on
the reprojection error, the number of matches, inlier percentage, and bounding box of the
inliers. For point cloud transformations, ω is established based on RMSE on the matches,
the number of matches, the bounding box of the matches. For these transformations, the
theoretical sensor accuracy is also taken into account. Every parameter is normalized to
ensure larger numbers do not disproportionately affect the final weight. Every type of
registration also contributes to the weight as follows based on empirical and theoretical
evidence: Super4PCS alignment (1), SfM with two overlapping references (0.8), FPFH
features with a measured point cloud(0.8), two separate reference images (0.5) and one
reference image but with geometry (0.4).

4. Test Data

Three periodic test cases were captured and processed of both operational facilities
and buildings under construction (Table 1). In total, 45 sessions were documented using
static TLS with a Leica P30 and Leica BLK, the indoor mobile mapping system NavVis VLX,
a CANON EOS 5D MARK II, the Microsoft Hololens 2, and conventional smartphones.
The raw images and point cloud data were manually processed to serve as a baseline for
the analysis of the two-step alignment. The camera poses of the images were retrieved
by using the Reality Capture SfM pipeline and the optimized poses of the iMMs and TLS
sensors. The Android smartphone and Hololens 2 datasets were then manually registered
to these inputs and used as the baseline for the comparison. Specifically for the Hololens 2,
the 3D meshes were captured with an average density of 0.08 m3. The data were captured
with a custom-made application created with the Unity3D game engine and send to the
local web server. Some sessions were taken with an android smartphone using the same
application, but due to hardware limitations, these sessions only contain images. The rough
global pose was captured using regular android phones and the data were sent to the same
server to store for the fine pose estimation.

The first test case is the soil technology lab on our Campus in Ghent (Table 1 row 1). It
is a laboratory space that resembles an industrial site and houses working desks, machinery,
bulk materials, and so on. Between the periodic data captures taken in several months,
the lab was operational and, thus, all movable objects were displaced in the documented
period. As such, this test cases focuses on the ability of the fine-alignment to register
multi-temporal inputs of an operational environment. With a size of 10 m × 30 m, it is
also circa the size the Hololens 2 can capture conform LOA20 [2σ ≤ 0.05 m] without the
inclusion of the control points. For this test case, a basic BIM is available of the structure.

The second test case is the construction of a prefab living lab on the Technology
Campus (Table 1 row 2). This project was periodically captured with the different sensors
starting from the early stake-out all the way to the MEP installations. The structure itself is
a three-storey building that resembles an office/housing space and was constructed from
prefab structure elements. As such, this test case focuses on the robustness of the algorithm
to match the data of different sensors in an outdoor construction site environment that is
drastically changing in both texture and geometry. For this test case, a detailed as-designed
BIM is available of the structure, architectural finishes, and MEP installations. The full
construction was documented using both a Sony a6400 camera, used for photogrammetric
reconstruction, and the Hololens 2, for subsections of the building.

The last test case is a renovation of a house in Brugge (Table 2). The refurbishment
was periodically captured both by smartphones and the Hololens 2 and has Leica BLK
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data as a baseline. The structure consists of a four-storey building including a full-storey
basement and attic. This test case focuses on the robustness of the algorithm to match data
of different sensors on an indoor construction site environment that is drastically changing
in texture and where there is a lot of clutter and temporary storage of materials. For this
test case, a detailed as-built BIM is available of the structure and architectural finishes.

Table 1. Overview of the provided reference data of test cases 1 and 2.

# Sessions # Images # 3D Objects # Points # Downsampled Points Typical Image Resolution

1
C

am
pu

s BIM 3 / 186 3,980 82,050 /
VLX 3 241 3 162,108,105 2,481,633 2048 × 1042

Hololens 6 35 483 1,089,574 16,679 3904 × 2196

# sessions # images # 3D objects # points # downsampled points Typical image resolution

2
Li

vi
ng

La
b BIM 1 / 368 41,825 41,351 /

P30 1 274 2 7,638,931 565,938 640 × 640
Photogrammetry 3 642 3 1,013,736 75,103 4240 × 2832

Hololens 5 30 15 439,816 32,584 3904 × 2196
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Table 2. Overview of the provided reference data of test case 3.

# Sessions # Images # 3D Objects # Points # Downsampled Points Typical Image Resolution

3
H

ou
se

BIM 1 / 594 24,783 84,031 /
P30 1 / 20 264,525,819 19,597,665 /

Photogrammetry 1 430 0 / / 5616 × 3744
Hololens 20 91 18 378,075 28,010 3904 × 2196

5. Experiments

In the following section, the different pose estimation methods and the final parame-
ters to determine the best overall pose are evaluated. The accuracy is based on the distance
error (m) and angle error (deg), which indicates the distance and angle difference between
the estimated transformation and the correct pose, respectively. Additionally, as stated
before in Section 3.2, the pose is determined based on a weighted pose vote of five methods
(two Lidar and three image-based). Each method has distinct advantages and disadvan-
tages in specific use cases, and so there are a number of parameters to evaluate which
method works best in which case. Each method is evaluated using the same parameters
based on the best fit parameters that were empirically determined over all measurements.
The global distance threshold td = 10 m was set based on a relevant ground sampling
distance for smartphones (avg. 12 MP), mirrorless cameras (avg. 24 MP), the Hololens
2 (12 MP) and the TLS and iMMs image (5 MP) and Lidar resolution (avg. 10 MP). The
feature correspondence functions ρ for the image and Lidar matches was set, respectively,
to 50 pixels and 1.5 times the voxel size (0.05 m) to mitigate the noise on the changed
environments. The weights for each method ω were distributed based on the number of
successful test cases of each method: FPFH features with a measured point cloud (0.8), SfM
with two overlapping references (0.8), one reference image but with geometry (0.4), two
separate reference images (0.5), and SUPER4PCS alignment (1).

The order in which the experiments are presented is the following. First, the perfor-
mance of each method is presented based on good and bad performances of the methods on
test case 2 as it is the most varied dataset with significant matching challenges. The quality
and parameters of each method are discussed in detail to conclude where each method will
fail and succeed (Figure 7). Second, the general pose voting results are discussed over all
three test cases given the confidence levels of each method. Based on the test results, it is
determined in which type of scenarios XR-devices will be able to align with preexisting
datasets and which sensor data are preferred to achieve the highest quality alignment in
construction site environments.

Figure 7. The weighted values of each parameter per method to calculate to confidence.



Remote Sens. 2022, 14, 2680 17 of 27

5.1. Two-Dimensional Alignment

The 2D alignment methods are based on the OpenCV ORB feature matching. The
accuracy of the alignment is, therefore, reliant on the quality of each match. Since only one
or two matches are required for the alignment, only the best matches are retained for the
next step. The quality of each match is directly evaluated by comparing the reprojection
error, inlier percentage and overlap of the proposed transformation between the two images.
Table 3 shows clear examples of a correct and incorrect match between two session images.
The incorrect match easily stands out due to its 5% inliers and limited overlap. These
parameters are, thus, excellently suited to determine the matching quality with varying
combinations of reference and test data.

Table 3. Examples of a correct and incorrect image match.

Sensor
reprojection Overlap Inliers Time Match Match
error (pix) (%) (%) Passed (days) Distance (m) Angle (deg)

Hololens 30.4 60.0 53.7 3 3.41 11.28

Sensor
reprojection Overlap Inliers Time Match Match
error (pix) (%) (%) Passed (days) Distance (m) Angle (deg)

Hololens 38.6 5.7 5.0 3 8.01 71.80

5.1.1. Two Overlapping References

The first method is used when there are sufficient overlapping images between the
reference and test session. The results can be found in Table 4 where it is clear that this
method works best for reference sessions with a large amount of images with high overlap.
This is found mostly with photogrammetry reconstructions, since this is essentially the
same method being used.
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Table 4. Two-dimensional matching estimations based on 2 linked reference images.

Sensor
Distance rotation Reprojection Overlap Inliers Time Match Match
Error (m) Error(deg) Error (pix) (%) (%) Passed (days) Distance (m) Angle (deg)

Sony APSC 0.10 0.46 28.10 49.5 50.0 1 2.09 7.85

Sensor
Distance rotation Reprojection Overlap Inliers Time Match Match
Error (m) Error(deg) Error (pix) (%) (%) Passed (days) Distance (m) Angle (deg)

Hololens 0.39 3.35 28.77 31.7 34.3 1 4.50 12.6

Since the session scaling comes from the relative distance between the two reference
images, larger distances generally yield more exact scale estimations. However, as the
relative distance increases, the overlap of the image generally also decreases, resulting in
a worse match. For instance, the matching of the top image in Table 4 yields a distance
error of 0.1 m and is based on two highly reliable image matches on two images taken 2 m
apart on consecutive days. The bottom image has matched to two images taken 4.5 m apart
which would theoretically increase the accuracy. However, the poor image matching (only
34% inliers and 20% overlap) actually leads to an inferior pose estimation. As such, good
image matches are prioritized over larger baselines for the final pose estimation.

As expected, this method under-performs in sparse image datasets, where reference
session matches are both rare and of poor quality. This is the case when significant texture
changes have taken place on the construction site or facility, e.g., plastering or painting
of the interior. Additionally, in case a good match is found between a test image and a
reference image, but the reference image does not have a good other match, the method will
under-perform. It is, therefore, essential that the bad reference match has enough weight in
the pose estimation to ensure it does not obtain a high confidence, e.g., by only retaining
the parameters of the worst match of the pair.

5.1.2. Two Separate References

The second method is used when two separate matches are found between session
and reference images. Both matches are then cross referenced to calculate the final pose
of the image. The results can be found in Table 5 where it is clear this method works best
for reference sessions where sporadic images are taken in a large area of the site. This case
happens mostly with mobile mapping systems, such as XR datasets or the VLX datasets,
that only store imagery at key locations that do not necessarily have overlap between them.

For the cross referencing of the pose estimation, an important factor is the relative angle
between the two estimated positions to ensure a high confidence. When the direction of the
matches are more perpendicular than parallel, small deviations in the directions become less
pronounced and, thus, increase the accuracy of the resulting intersection. Similarly, near
parallel matches have a larger depth error. The relative distance also negatively impacts
the result as larger distances increase the deviation of small directional errors. This effect is
demonstrated in Table 5 where the top match yields a descent pose estimation despite the
average matching statistics due to the high rotational angle between both reference images
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(64.38◦). Instead, the better matching bottom image only has an angle of 7.85◦ between
both references, causing a significant distance error.

This method will also under-perform when the reference images are positioned too
close to the session image as this drastically amplifies the rotational error. As such, the
best match for this method is based on the matching angle of both references and the
intermediate Euclidean distance between them.

Table 5. Two-dimensional matching estimations based on 2 separate reference images.

Sensor
Distance rotation Reprojection Overlap Inliers Time Match Match
Error (m) Error(deg) Error (pix) (%) (%) Passed (days) Distance (m) Angle (deg)

Sony APSC 0.15 0.92 27.66 57.6 21.4 1 12.81 64.38

Sensor
Distance rotation Reprojection Overlap Inliers Time Match Match
Error (m) Error(deg) Error (pix) (%) (%) Passed (days) Distance (m) Angle (deg)

Sony APSC 2.20 0.69 33.06 17.2 28.9 1 2.09 7.85

5.1.3. One Reference Image and 3D Data

The third method is used if only one good match can be found in the reference
images and there are 3D data available, either in the test or reference session. In this case,
the correspondences of the matching images are raytraced on the present geometries to
determine the scale. The results can be found in Table 6. Since this method requires 3D data
to be available, it rules out some of the more basic datasets that lack 3D data. However,
when such a dataset is available and if the 3D data have enough coverage of the area from
the camera’s point of view, this method shows promising results. This methods preforms
well on all test cases that contain 3D datasets and the minimal required images can be very
low since only one images needs to be matched.

There are three important factors that influence the pose estimation: (1) A sufficient
distribution of depth information of the raycast image matches is necessary to establish
the correct scale of the pose. (2) Any artefacts in the 3D data such as ghosting or noise on
windows can obstruct the raycasting, resulting in an erroneous scale. RANSAC filtering
is therefore mandatory for retrieving the correct distances. (3) The accuracy of the 3D
data itself directly effects the accuracy of the pose estimation. For instance, the Hololens
2 has a limited depth accuracy compared to high-end TLS or iMMs which translates to
a reduced pose accuracy. It should also be noted that since point clouds lack a surface
definition, the resulting voxel raytracing algorithm [40] will result in less precise results
compared to meshes, which do have a surface definition. Overall, the top image shows a
high distance (0.02 m) and rotation accuracy (0.01°) can be obtained when matching with
combined high-end TLS and Hololens 2 data.
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Table 6. Two-dimensional matching estimations based on 1 reference image and a Mesh.

Sensor
Distance Rotation Reprojection Overlap Inliers Time Match Match
Error (m) Error(deg) Error (pix) (%) (%) Passed (days) Distance (m) Angle (deg)

Sony APSC 0.02 0.01 23.8 36.8 52.2 2 2.22 15.22

Sensor
Distance rotation Reprojection Overlap Inliers Time Match Match
Error (m) Error(deg) Error (pix) (%) (%) Passed (days) Distance (m) Angle (deg)

Sony APSC 1.88 3.45 36.2 31.7 10.9 4 4.54 18.89

This method fails when the available 3D object either has to little coverage from the
camera’s point of view, since there will be insufficient data points to compare, or the dataset
contains to much noise, resulting in several scale factors that cannot be reliable filtered by
RANSAC. This is the case with the bottom image in Table 6 where the image matches lead
to an erroneous raycasting in occluded areas.

5.2. Three-Dimensional Alignment

The 3D matching methods are based on two different feature matching frameworks.
Open3d uses FPFH features while Super4PCS is a more robust matching algorithm that
requires less matches. In contract to the image matches, a single alignment between a
reference and a test session dataset is sufficient to position a session. The quality of each
match is directly evaluated by comparing the percentage of feature inliers, a measure for
the distribution of the overlap and the RMSE of the matches.

5.2.1. FPFH Feature Matching

FPFH feature matching is specifically designed to estimate the transformation between
two observed point clouds as it determines features of all points in the cloud. This is why
all 3D data are both converted to point clouds and subsampled to improve the speed of
the algorithm. As seen in Table 7, this method works best for point clouds with limited
geometric changes over time, e.g., after the structure phase. As long as a large portion of
the point clouds remains the same, the algorithm is able to correctly determine the correct
pose. For instance, the top image in Table 7 shows a good match between the finished
ground works and the placement of the foundations since the majority of the excavation pit
was unaltered. However, after the structure was completed, the bottom image in Table 7
shows an incorrect match even though the surroundings of the structure are still the same.

An important factor for the success of FPFH or other point-based features is the
presence of geometric detailing in the scene. The excavation of a construction site offers
a large number of unique points of which the gradients results in a distinct and reliable
feature. The method will, thus, underperform in scenes where only flat non-distinct
geometries are found. Additionally, small amounts of overlap or ill-distributed feature
matches will result in incorrect alignments as evidenced in the bottom figure of Table 7.
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Table 7. Three-dimensional matching estimations based on FPFH feature matching.

Sensor
Distance Rotation RMSE Overlap Inliers Time

Error (m) Error(deg) Error (m) (%) (%) Passed
(days)

P30 0.04 0.02 0.03 95.0 100.0 3

Sensor
Distance Rotation RMSE Overlap Inliers Time

Error (m) Error(deg) Error (m) (%) (%) Passed
(days)

BIM 3.56 90.45 0.70 20.0 15.0 31

5.2.2. SUPER4PCS Feature Matching

When certain 3D datasets lack geometric detailing, such as a BIM model, a more robust
method is required to match the different datasets. SUPER4PCS is specifically designed to
overcome this lack of detailing by evaluating the geometric ratios between feature points.
As seen in Table 8, this method works best for database matching, such as with the as-
designed BIM model and only requires a small subset of well documented planar objects to
retrieve the correct alignment. For instance, the top figure in Table 8 shows only a 0.09 m
error between a Hololens 2 dataset and the BIM model despite that only of small portion
of the front of the structure (15% overlap) was captured in an area filled with noise and
ghosting from the main window on the ground floor.

In contrast to the FPFH matching, the lack of geometric primitives in the scene can hinder
the alignment. For instance, the bottom figure in Table 8 shows an incorrect match between
two Hololens 2 data captures 5 days apart with mostly geometric details and not so much
of the structure being documented. As such, FPFH and SUPER4PCS are complementary
techniques that, if used in parallel, will lead to a more robust pose estimation framework.
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Table 8. Three-dimensional matching estimations based on Super 4 PCS matching.

Sensor
Distance Rotation LCP score Overlap Inliers Time
Error (m) Error(deg) (%) (%) (%) Passed (days)

BIM 0.09 3.35 70.4 15.0 60.0 31

Sensor
Distance Rotation LCP score Overlap Inliers Time
Error (m) Error(deg) (%) (%) (%) Passed (days)

Hololens 4.56 90.50 3.2 30.0 3.0 5

5.3. Weighted Pose Estimation

Each method returns an estimated pose with various parameters. Table 9 shows the
accuracy of the pose estimation of each method in relation to its calculated confidence based
on the chosen parameter modifiers. The exact values of these modifiers were determined
based on empirical evidence from the test data and are outlined in Figure 7. The resulting
confidence is the combination of the best estimations per evaluated sessions. These confidence
parameters are each multiplied by its empirically determined method weight. The combined
result determines the influence of each method on the final pose estimation. The accuracy is
similarly computed by determining the weighted average for each axis based on the combined
confidence and method weight parameters. As such, the outcome of the method is both a
pose and a measure of agreement in confidence, position, and rotational accuracy.

The average positioning accuracy across the different test cases is 0.06 m, the rotational
accuracy is 0.34◦ and the confidence is circa 50%. These are quite promising results given the
many different low- and high-end sensors that were used in the large number of sessions
throughout the different test cases. This is especially true for the geometric alignment
methods that achieved a similar metric accuracy as the Hololens 2 (LOA20 [2σ ≤ 0.05 m])
which was used in the majority of test cases. On average, the point cloud alignment
methods yielded the highest alignment confidences (avg. 75%) compared to the image-
based methods (avg. 25%). However, the image-based methods rely on significantly more
matches which increases the robustness of the matching. This is evidenced by the significant
differences in alignment confidence of the point cloud methods, of which the single point
clouds either converged very accurately or completely failed to align, e.g., method 4 in test
case 1 yielded very poor results.
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Table 9. Positional and rotational results and the confidence of each method across the sessions of
each test case.

Method Linked Ref Separate Ref Raycasting FPFH SUPER4PCS Combined
Estimated time 1–10 images/s 1–10 images/s 0.2–2 images/s 5 s–2 min/pcd 20 s–5 min/pcd 20 s–15 min/session
Method weight 0.8 0.5 0.4 0.8 1

Case 1

Positional RMSE (m) 0.145 0.189 0.021 0.159 0.061 0.065
∆ Pos x (m) −0.095 0.062 −0.018 −0.070 0.010 −0.017
∆ Pos y (m) −0.002 −0.165 0.008 0.030 −0.060 −0.038
∆ Pos z (m) 0.110 0.068 0.008 0.140 0.008 0.050

Rotational RMSE (deg) 0.960 0.636 0.189 1.507 0.463 0.538
∆ Rot x (deg) 0.600 0.450 0.080 0.300 0.040 0.207
∆ Rot y (deg) 0.600 0.450 0.170 0.470 0.300 0.369

∆ Rot z (m) −0.450 −0.003 0.020 1.400 0.350 0.332
Confidence (%) 30.100 29.900 52.200 33.900 77.300 46.951

Case 2

Positional RMSE (m) 0.183 0.133 0.277 0.059 0.071 0.035
∆ Pos x (m) −0.143 0.043 0.037 0.050 0.003 0.007
∆ Pos y (m) −0.084 −0.095 0.266 0.004 0.070 0.032
∆ Pos z (m) 0.078 −0.082 0.069 0.032 −0.010 0.013

Rotational RMSE (deg) 0.993 1.207 0.018 0.156 0.028 0.074
∆ Rot x (deg) −0.887 0.706 0.006 0.020 0.001 −0.055
∆ Rot y (deg) 0.229 −0.960 0.017 −0.120 0.020 −0.049
∆ Rot z (deg) −0.384 0.190 −0.003 0.097 0.020 0.010

Confidence (%) 25.100 17.000 19.200 80.000 90.000 54.360

Case 3

Positional RMSE (m) 0.149 0.103 0.106 0.067 0.078 0.074
∆ Pos x (m) 0.099 0.098 0.050 −0.005 0.030 0.031
∆ Pos y (m) 0.099 0.026 0.078 0.030 0.004 0.028
∆ Pos z (m) 0.053 0.013 0.052 0.060 0.072 0.061

Rotational RMSE (deg) 0.852 1.073 0.713 0.966 0.171 0.399
∆ Rot x (deg) 0.340 −0.890 0.670 0.890 0.030 0.322
∆ Rot y (deg) 0.179 0.600 −0.050 0.430 0.100 0.234
∆ Rot z (deg) −0.760 −0.005 0.240 −0.120 0.135 −0.033

Confidence (%) 20.200 21.900 31.400 67.000 75.000 48.077

Average
Positional RMSE (m) 0.159 0.141 0.135 0.095 0.070 0.058

Rotational RMSE (deg) 0.935 0.972 0.307 0.886 0.221 0.337
Confidence (%) 25.133 22.933 34.267 60.300 80.767 49.796

Overall, the average differences for the pose estimation between the three test cases
is minimal. This is due to the fact that each test case contained a significant number of
sessions (avg. 15) that were captured by different sensors, at different construction stages
and at different time periods. However, it is also because of the weighting of the pose
voting method that mitigates a lot of the outliers computed by the different methods. When
looking closer to the individual performances of each method across the different test cases,
there is significant variance in the performance, especially for the confidence. For instance,
method 1 has an avg. −10% deficit between test case 1 (30%) and test case 3 (20%) due to
high texture changes in the house renovation of test case 3. Method 2 shows a similar trend
as it relies on the same features. Method 3 has the largest variation in confidence with test
case 1 (52%) and test case 2 (19%) due to the geometric differences in both datasets. The
structure in test case 1 remained static and was well-documented with both high-end and
low-end sensors, which positively affected the accuracy and confidence of the raycasting.
Test case 2 had the most geometric changes due to the prefab building method and its
occlusions and noise negatively impacted the performance of method 3. As discussed
above, method 4 and 5 align very well or completely fail. However, test 2 yielded noticeably
better results across both methods, indicating that outdoor scenery with its larger baselines
results in a better performance. Method 5 on average outperformed method 4 by 10%
confidence not considering the outliers of test case 1 due the planar nature of the site’s
scenery. However, this doesn’t necessarily translate to a more accurate pose estimation
which is still driven by the initial metric data quality.

The computational time required for the alignment also differs significantly between
the image and point cloud methods. Where the image-based methods achieved a speed
of nearly 1 to 10 images per second, the methods that involved geometries on average
took 1 to 5 min with the failed alignments taking the most computational effort. However,
with each session containing on average 150 m3 point cloud and 20 images, all methods
performed nearly equally with the complete alignment on average taking 5 min. Although
the complete alignment is too long for a real-time pose estimation, XR-devices do not have
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to wait for the full alignment procedure to complete. Instead, based on Table 9 the pose can
be initialized in under 1 min and then further optimized through background processes as
more pose estimations become available.

6. Discussion

In this section, the pros and cons of the pipeline are discussed and compared to the
alternative methods presented in the literature. A first aspect to evaluate is the method’s
robustness to position itself in building scenes without the use of exact, approximate, or
indirect correspondences. The results indicate this method can provide an accurate pose
estimation of a given session up to or better than the resolution and accuracy of the sensor
without the use of any manually placed landmarks or markers. This rivals the state-of the
art methods but is significantly more robust and less costly that landmark-based methods
as it relies on the combination of both 3D and 2D data that are prominently present on most
sites. Specifically when compared to exact correspondences, it is stated that while exact
correspondences offer an exact millimeter accurate alignment at the start of the session, the
accuracy and drift of the sensor will ultimately dictate the accuracy of the dataset and, thus,
these methods lose a lot of their initial accuracy unless landmarks are placed all throughout
the scene which is immensely costly.

From the test results it becomes clear that the different methods all have circumstances
where they perform better or worse. The calculated confidence factor ranks the best matches
and allows for an accurate final pose estimation. Additionally, this gives vital feedback
to the user and potential quality control algorithms that can take into consideration the
confidence by which the pose was estimated. Apart from the specific method that is being
used, the impact of some parameters seem to be consistent throughout the test cases. In
contrast to what was expected, the recording date provides little value apart from checking
if the data are taken at the same moment or not, since the texture and/or geometry of an
environment can change significantly or very little over any period of time. The change
in the environment remains very relevant, and, thus, methods relying on both 2D and 3D
data are an absolute must-have to achieve the robustness needed for market adoption.

By comparing the different methods, it is revealed that 2D methods are more robust
due to the many image sources, resulting in more viable estimations, but they lack the
precision of the 3D methods. The 3D methods on the other hand return fewer viable
estimations, but the estimations are much more accurate, especially if high-end TLS or
iMMs are used as the reference data. Because the method only uses the best matches
to make an estimation, it becomes apparent that more test data might not necessarily
result in a more accurate estimation, but it does increase the chances of obtaining a correct
estimation.

The biggest obstacle in the method is the change of the site over time. The results
show that small incremental changes to the environment can be overcome and accurate
pose estimations can still be calculated. This implies that this method has higher chances of
success with more smaller incremental data recordings rather than fewer big recordings.
The proposed method is, therefore, ideally suited to fill in the gaps between consecutive
large data captures. Alternatively, at least a portion of the site should remain unaltered for
extended periods of time until another large data capture is conducted on the site.

A key factor in the applicability of this method is the availability of useful reference data
without the need to import all the data to the device. Through the use of RDF graphs which
contain the metric and non-metric metadata of each session and resource, it becomes possible
to geolocate the device during the data capture by sending the data directly to the server and
quickly process the captured session. However, the FPFH alignment method currently still
requires a downsampled point cloud which slows down the alignment process.

7. Conclusions

In this paper, a novel framework is presented to position XR devices within the built
environment of either existing facilities or construction sites. Concretely, we combine state-
of-the art image and Lidar-based registration techniques in an online pose voting algorithm
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that geolocates the captured session data using preexisting 2D and 3D data repositories
of the built environment. The method consists of two consecutive steps. First, a global
alignment is established using GNSS positioning to isolate the relevant reference data for
the pose estimation. This coarse alignment exploits the preprocessing of the preexisting
2D and 3D data to metric and non-metric metadata in RDF graphs so no large data have
to be transferred over the server for the pose estimation. Second, the selected image data
are subjected to three image-based alignment methods including conventional SfM, cross-
referencing isolated image matches, and raytracing images with the present geometries.
Simultaneously, the selected point cloud data are subjected to two Lidar-based alignment
methods including FPFH feature matching and SUPER4PCS.

The method is evaluated on three test cases with a total of 45 captured sessions by
different RGB and Lidar sensors including handheld cameras, smartphones, the Hololens 2,
a low-end and a high-end TLS, and a high-end iMMs. Each test case has distinct challenges
and include an operational lab, a prefab construction site and a complete house renovation.
The experiments indicate that relying on both 2D and 3D alignment methods is an absolute
must-have for the pose estimation as individual methods are prone to misalignment.
Furthermore, by using different data sources, the user is presented with a confidence and
pose estimation accuracy measure which is vital to asses downstream processes, such as
quality estimations, and so on.

Overall, this method provides an extension to the state of the art in regards to existing
localisation methods. Landmark-based methods solely rely on the location of artificial
markers or beacons which are highly labor-intensive to materialize. This method however,
relies on any data that is captured of the site which offers great re-usability of existing data
and comes at no extra effort. Landmarks can still speed up and improve the registration due
to the fact that they provide great and unique tracking features. By adding a small amount
of strategically placed markers, our method will benefit greatly while simultaneously
lowering the effort of materializing markers in the entire facility.

Some key takeaways from the experiments are that the time period between data
captures is not the key bottleneck but rather the degree of change. As such, any data remain
relevant as long as a portion of the scene is unaltered. The experiments also show that
sensor resolution is an important metric for the final accuracy of the estimation. By making
this method sensor agnostic, not only will this method keep performing with different
sensors, it will likely improve over time as sensor capabilities improve as well.

This method leaves room for improvement, in more granular voting with more specific
parameters. This method also works best when there is a large amount of 2D and 3D data
available. This is, however, not always the case. Future work can look into using virtual
imagery created from digital BIM or point cloud models. This will ensure all the available
estimation methods can be used. Currently, this method is heavily reliant on large existing
datasets, with multiple gigabytes of data. Analysing all these resources requires a significant
amount of computing power and time. This is mostly avoided by pre-processing the data
and only storing relevant information in the RDF graph. This can sill be improved further
as certain methods, namely the FPFH method still relies on the subsampled point cloud or
mesh. The used matching algorithm tries to match every existing point. Future work could
could include new 3D matching methods, where similar to existing 2D matching methods,
only certain feature points are used to obtain an estimation which would significantly lower
the computation time and storage cost.
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