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Abstract: Terrestrial ecosystems play a critical role in the global carbon cycle and climate change
mitigation. Studying the temporal and spatial dynamics of carbon sink and the driving mechanisms at
the regional scale provides an important basis for ecological restoration and ecosystem management.
Taking the Dongting Lake Basin as an example, we assessed the carbon sinks of forest and shrub
from 2000 to 2020 based on the maps of biomass that were obtained by remote sensing, and analyzed
the dynamics of carbon sinks that were contributed by different biomass carbon density levels of
constant forest and shrub and new afforestation over the past two decades. The results showed that
the carbon sink of forest and shrub in the Dongting Lake Basin grew rapidly from 2000 to 2020: carbon
sink increased from 64.64 TgC between 2000 and 2010, to 382.56 TgC between 2010 and 2020. The
continuous improvement of biomass carbon density has made a major contribution to carbon sink,
especially the carbon density increase in low carbon density forests and shrubs. Carbon-dense forests
and shrubs realized their contribution to carbon sink in the second decade after displaying negative
carbon sink in the first decade. Carbon sink from new afforestation increased 61.16% from the first
decade to the second decade, but the contribution proportion decreased. The overall low carbon
density of forest and shrub in the Dongting Lake Basin and their carbon sink dynamics indicated
their huge carbon sequestration potential in the future. In addition to continuously implementing
forest protection and restoration projects to promote afforestation, the improvement of ecosystem
quality should be paid more attention in ecosystem management for areas like Dongting Lake Basin,
where ecosystems, though severely degraded, are important and fragile, to realize their huge carbon
sequestration potential.

Keywords: carbon sequestration; forest ecosystem; remote sensing; biomass

1. Introduction

Long-term population growth, urbanization and resource utilization have led to
ecosystem degradation, C loss and climate change around the world. Terrestrial ecosystems
play a critical role in the global C cycle and climate change mitigation. [1] In particular,
the forest, which is the largest part of terrestrial ecosystems, stores over 80% of terrestrial
vegetation carbon and plays a dominant role in the global C cycle [2,3]. The Kyoto Protocol
which was approved in the 1997 United Nations (UN) meeting on climate change clearly
suggested increasing C sequestration through reforestation and afforestation to meet green-
house gas emission targets [4]. Assessment of the temporal and spatial changes in C
sinks/sources of forests as well as their driving forces are critical to estimating the regional
C budget, and it can help to constitute sustainable forest management policies for climate
change [5–13].

China’s terrestrial ecosystems have functioned as important carbon sinks [14,15].
Located in the eastern margin of Eurasia, China ranks the fifth in its forest area in the
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world [16] and encompasses various forest biomes [17], providing a unique area to study
the regional forest C cycle [13]. With the implementation of national afforestation and
reforestation programs since the late 1970s, such as the Grain for Green Program (GGP), the
Natural Forest Conservation Program and the Three-north Protective Forest Program [18],
forest ecosystems in China are thought to have significantly contributed to the regional and
global C sinks in the past several decades [1,13,19–21]. Previous studies have also suggested
that the increased C stock in Asian terrestrial ecosystems can primarily be attributed to
considerable afforestation and reforestation [7], especially that which was implemented
under China‘s national ecological restoration projects [22–24]. In the year 2020, China
pledged to strive to peak CO2 emissions by 2030 and achieve carbon neutrality by 2060.
Estimating broad-scale carbon sink and revealing the mechanisms that control forest carbon
sinks are important for future policy making in China [13,25].

Previous studies have pointed out that China’s forests are characterized by young age—
implying a high potential for increasing C sinks in the future [25,26] and a good understanding
of the dynamics of carbon dioxide (CO2) sequestered by forest biomass is crucial [7]. Existing
studies have analyzed the dynamics of China’s forests and their biomass and carbon sinks,
reflecting the overall changes in the country from the 1970s to the 2000s [2,6,13,27,28]. Several
studies pointed to the importance of changes in forest area in China over the last century for
carbon sequestration growth and estimated the overall changes in forest area of the whole of
China to characterize deforestation and reforestation/afforestation [6,27]. They concluded
that China had experienced a pronounced increase in forest area and density. In addition,
assessment of the relative contributions of the driving factors to carbon sinks is crucial to
reveal the mechanisms that control forest carbon sinks [25]. Previous studies showed that
the increase in C sequestration was attributable to the increase in forest area and growing
stock density [27]. They also estimated the relative contributions of changing forest area and
forest C density to the forest biomass C sink in China, Japan, and South Korea [7,25]. They
found that the relative contributions of the changing factors varied among countries and
forest origin [7]. However, these studies were mostly carried out at national or provincial
scale by forest inventory data, or statistics for different zonal forest groups. The use of
remote sensing can quantitatively obtain the aboveground biomass and forest distribution
at the pixel scale of large spatial and temporal ranges, which has advantages for analyzing
the temporal and spatial differences in biomass carbon density, forest area and carbon sinks,
as well as the dynamics of the relative contributions of changing forest area and carbon
density to carbon sinks in regional assessments [29–33].

Temperate forests hold ~20% of the world’s plant biomass and ~10% of terrestrial
carbon [34]. In China, forest in the south accounts for more than 65% of the carbon sink [28],
and subtropical forests play a key role in carbon budget [35]. The Dongting Lake Basin
is the largest lake basin in China and a typical area of subtropical evergreen broadleaf
forests in the mid-lower reaches of the Yangtze River Basin [35,36]. As a typical southern
red soil area of China, the Dongting Lake Basin has great hydrothermal conditions and
high vegetation coverage [35,37]. Forest and shrub are the predominant ecosystem types
there, which provides a large quantity of carbon storage, and also plays a significant role in
providing important flood mitigation, water retention, soil retention and water purification
services of the Yangtze River Basin [38,39]. It is also an important agricultural production
area and an ecologically fragile area [37,40]. In the past century, forest and shrub in the
Dongting Lake Basin have undergone severe logging and reclamation, leading to serious
carbon losses [37]. Since 2000, large scale forest protection and restoration projects such
as the GGP and Natural Forest Conservation Program have been implemented in the
Dongting Lake basin [35,40,41]. The study of forest carbon sink, its long-term dynamics
and its driving mechanisms are of great significance for improving ecological protection
and restoration and ecosystem management policies in the Dongting Lake Basin, which
can also provide reference for other areas of the world with degraded, but ecologically
important and fragile ecosystems.
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In this study, we assessed the dynamics of the biomass carbon density and carbon sink
of the forest and shrub in the Dongting Lake Basin from the year 2000 to 2020 based on
ecosystem and biomass maps that were obtained by remote sensing, and analyzed changing
trends in carbon sinks that were contributed by different carbon density levels and new
afforestation, in order to provide a basis for the future forest ecological restoration and
ecosystem management in areas of the world with degraded, but ecologically important
and fragile ecosystems.

2. Materials and Methods
2.1. Study Area

The Dongting Lake Basin is one of the important sub-basins in the middle reaches of
the Yangtze River Basin, with a total area of about 260,000 km2. It includes plains, hills and
mountains, and covers parts of seven provinces of China, including almost all of Hunan,
and parts of Hubei, Jiangxi, Guangdong, Guangxi, Guizhou and Chongqing [40]. It is
a typical southern red soil area of China and has a sub-tropical monsoon climate with
an average annual precipitation of 1200–1400 mm, and an annual mean temperature of
about 16–19 °C [37,42]. Such good hydrothermal conditions create diverse ecosystems
and high vegetation coverage (Figures 1 and 2). The forest, shrub and cropland have the
largest area, accounting for 88.95% of the total area. Forests and shrubs are the most widely
distributed vegetation types, accounting for 59.6% of the total area, mainly composed of
evergreen broad-leaved forest, evergreen coniferous forest, deciduous broad-leaved forest
and mixed coniferous and broad-leaved forest, and they are the major providers of a large
quantity of carbon sequestration. In addition, Dongting Lake Basin plays an important
role in providing the vital ecosystem services (such as flood mitigation, water retention,
soil retention and water purification) of the Yangtze River Basin and is also an important
agricultural production area [38,39,43]. Due to severe logging and reclamation in the last
century, the ecosystem in the Dongting Lake Basin has been severely degraded [40]. Since
2000, the projects of GGP and Natural Forest Conservation Program have been carried out
in the Dongting Lake basin to protect and restore the ecosystems [35,40].
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Figure 2. Typical evergreen broad-leaved forest in study area. The photo was taken in Nanshan National
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2.2. Data Sources
2.2.1. Spatial Data of Ecosystems

Ecosystem classification data of the years 2000, 2010 and 2020 from the China Ecosys-
tem Assessment Project (2000-2010-2020) [22,44] were used to determine the spatial ranges
of forest and shrub. The data classified the ecosystems of the Dongting Lake Basin into
7 categories (forest, shrub, grassland, wetland, cropland, urban land and others) according
to the reported land-cover classification [45], with a spatial resolution of 30 m × 30 m. With
the support of a land cover reference database consisting of a large number of field survey
sample points, the object-oriented multi-scale segmentation and decision tree classifica-
tion method were adopted to derive the national land cover dataset from the Chinese
Huan-Jing-1 satellite constellation (HJ-1A/B) and the US Landsat (Land-sat OLI) data.
In addition, independent data accuracy verification was carried out on the field survey
sample points that were obtained by a random sampling method to ensure the objectivity
and reliability of the accuracy assessment. The number of sample points involved in the
provinces covered by the Dongting Lake Basin are: 4704 in Hunan, 3638 in Hubei, 2899 in
Guizhou, 12687 in Guangxi, 5703 in Jiangxi, and 1276 in Chongqing. The average classifica-
tion accuracy reached 94.41%, and the classification accuracy of Hunan, Hubei, Guizhou,
Guangxi, Jiangxi and Chongqing reached 92.71%, 93.43%, 95.83%, 94.75%, 96.88% and
92.87%, respectively.

2.2.2. Spatial Data of Aboveground Biomass

The aboveground biomass here represents the total amount of vegetation organic
matter living above the ground in a unit area. It can be used to determine the total biomass
of the vegetation community, which is an important indicator to measure the vegetation
ecosystem. The aboveground biomass data of forest and shrub in the years 2000, 2010 and
2020 (Figure 3) were from the China Ecosystem Assessment Project (2000-2010-2020) [22].
It was produced by the Aerospace Information Research Institute, Chinese Academy of
Sciences, using the aboveground biomass estimation model of the national vegetation
sub-category type [33], with a spatial resolution of 250 m × 250 m. The data were verified
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by 5093 sample plots of a field survey, with an average accuracy of 75%. The specific
methods and processes of aboveground biomass monitoring, estimation and verification
refer to the reference [33].
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2.3. Methods
2.3.1. Carbon Sink

The biomass of forests and shrubs consists of aboveground and belowground parts.
Aboveground biomass is derived from remote sensing data (Section 2.2.2). The belowground
biomass of different types of forests and shrubs is obtained by multiplying the aboveground
biomass by the ratio of belowground biomass to aboveground biomass (Table 1) [46]. The
calculation method of the total biomass density (biomass per unit area) is as follows:

TBDijm = ABDijm × (1 + Ri) (1)

where TBDijm is the biomass density of ecosystem I in pixel j in year m. ABDijm is the
aboveground biomass density of ecosystem I in pixel j in year m. Ri is the ratio of the
belowground biomass to the aboveground biomass of ecosystem i.
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Table 1. Ratio of belowground biomass to aboveground biomass [46].

Aboveground Biomass Density <50
t Dry Matter/ha

50–150
t Dry Matter/ha

>150
t Dry Matter/ha

Coniferous forest 0.40 0.29 0.20
Broadleaf forest 0.45 0.27 0.22

Coniferous and broad-leaved forest 0.40 0.28 0.21
Shrub 0.40

The total biomass of the ecosystem can be calculated as follows:

TBm = ∑n
i=1 ∑l

j=1 TBDijm × ARj (2)

where TBm is the total biomass of the ecosystem in year m. ARj is the area of pixel j.
Carbon sink refers to the carbon that is sequestrated by terrestrial ecosystems, thereby

slowing down the current rate of increase in atmospheric CO2 [28], while storage refers to
the carbon remaining in terrestrial ecosystems, possibly over the long term [47,48]. Carbon
storage represents not only the result of carbon sequestration [48], but also indicates
the importance of restoration or the avoidance of deforestation [49]. We examined the
dynamics of biomass carbon storage in Dongting Lake Basin’s forest and shrub ecosystems,
and estimated the carbon sinks from the year 2000 to the year 2010 and from the year 2010
to the year 2020. The biomass carbon storage of forest and shrub was obtained with the
following formula:

BCSim = ∑n
j=1 BCDijm × ARj (3)

where BCSim is the biomass carbon storage of ecosystem I in year m, and BCDijm is the
biomass carbon density of ecosystem I in pixel j in year m. Ecosystem I could be forest and
shrub, and year m could be 2000, 2010 or 2020. The unit of BCDijm is t C/ha. ARj is the
area of pixel j. The BCDijm is derived with the following formula:

BCDijm = TBDijm × CCi (4)

where TBDijm (in t/ha) is the biomass density of ecosystem I in pixel j in year m. CCi is the
carbon content in the biomass of ecosystem I, which is 0.5 for forest and shrub [50].

Based on an estimation of total biomass carbon storage of forest and shrub in the
years 2000, 2010 and 2020, the carbon sink of forest and shrub was estimated with the
following formula:

CS2000−2010 = ∑ BCSi2010 − ∑ BCSi2000 (5)

CS2010−2020 = ∑ BCSi2020 − ∑ BCSi2010 (6)

CS2000−2020 = ∑ BCSi2020 − ∑ BCSi2000 (7)

where CS2000−2010, CS2010−2020 and CS2000−2020 (in t C/yr) are the quantities of the carbon
sink of forest and shrub from the year 2000 to 2010, from the year 2010 to 2020 and from the
year 2000 to 2020.

2.3.2. Biomass Carbon Density Levels

In order to analyze the overall status and changing trend of carbon density levels, we
divided the vegetation biomass carbon density into different levels according to the relative
biomass carbon density. The calculation method is as follows:

RBCDijm =
BCDijm

CCBi
× 100% (8)

where RBCDijm is the relative biomass carbon density of ecosystem I in pixel j in year
m. BCDijm is the biomass carbon density of ecosystem I in pixel j in year m, and CCBi
is the biomass carbon density in the top community of the ecosystem I obtained by the
field survey.
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According to the relative biomass carbon density, the biomass carbon density in each
pixel of forest and shrub can be classified into five levels: highest, high, medium, low and
lowest. The specific classification rules are shown in Table 2 [51,52].

Table 2. Biomass carbon density classification rules.

Biomass Carbon Density Levels Value of RBCD/%

Highest RBCD ≥ 85
High 70 ≤ RBCD < 85

Medium 50 ≤ RBCD < 70
Low 25 ≤ RBCD < 50

Lowest RBCD < 25

In order to understand the spatial pattern and dynamics of forest and shrub’s biomass
carbon density levels in the Dongting Lake Basin, we mapped the biomass carbon density
levels of the year 2000, 2010 and 2020 and calculated the area of each level in each year. We
also analyzed the change of the area in each biomass carbon density level from the year
2000 to 2010 and from the year 2010 to 2020, as well as the transition area between different
levels in the two periods.

2.3.3. Carbon Sinks from Different Carbon Density Levels of the Constant Forest and Shrub

We calculated the total carbon sink and carbon sink per unit area at each initial biomass
carbon density level to analyze the quantity and efficiency of carbon sink at different carbon
densities over 20 years. In this part, we only analyzed the pixels that were constant forest
or shrub from the year 2000 to 2020. We used the biomass carbon density of the year 2000
as the initial carbon density. We analyzed the change in carbon sink as a function of the
initial carbon density in each period (2000–2010, 2010–2020, and 2000–2020) and the trends
of carbon sinks at different carbon densities over time.

2.3.4. Carbon Sink from New Afforestation

In addition to changes in biomass carbon density of the constant forest and shrub,
new afforestation is also an important factor in increasing carbon sink. In this section, we
focus on areas that were converted from other ecosystem types to forest or shrub, and
areas where forest and shrub have been altered from the year 2000 to 2020. The calculation
method of carbon sink by new afforestation is expressed by the formula as follows:

CSA = CSFSI + CSFSD (9)

where CSA is the carbon sink that was contributed by new afforestation. CSFSI is the carbon
sink that was caused by the increase in forest and shrub, and CSFSD is the carbon sink that
was caused by the reduction in forest and shrub. They can be calculated by the formulas
of 2.3.1., and the carbon storage for land cover types other than forest and shrub are set
to zero in the calculations. We calculated the carbon sink from new afforestation from the
year 2000 to 2010 and from the year 2010 to 2020.

We also calculated the contribution proportion of new afforestation to carbon sink
from the year 2000 to 2010 and from the year 2010 to 2020. The calculation method is
as follows:

CRA =
CSA
CS

× 100% (10)

where CRA is the contribution proportion of new afforestation to carbon sink in a certain
period. CS is the total carbon sink of forest and shrub in the period. We compared the
contributions and contribution proportions of new afforestation to carbon sinks in different
periods and analyzed the changing trend of the contribution of new afforestation to carbon
sink in the past two decades.
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3. Results
3.1. Biomass Carbon Density of Forest and Shrub

From the year 2000 to 2020, the biomass of forest and shrub in the Dongting Lake
Basin increased significantly (Figure 3, Table 3). From the year 2000 to 2010, the quantity of
biomass of forest and shrub increased by 18.68%. From the year 2010 to 2020, it achieved
further growth at a higher rate of 94.17%. The biomass density of forest and shrub also
increased significantly, increasing by 18.49% from 2000 to 2010 and by 90.04% from 2010
to 2020.

Table 3. Biomass and biomass density of forest and shrub.

Year Quantity of Biomass of Forest and
Shrub (108 t Dry Matter)

Average Biomass Density
(t Dry Matter/ha)

2000 6.92 44.79
2010 8.21 53.06
2020 15.86 100.84

The biomass carbon density of forest and shrub in the Dongting Lake Basin was
generally low. In the year 2000, there were 6.52 × 104 km2 and 8.57 × 104 km2 of forest
and shrub with lowest and low levels of carbon density, accounting for 41.95% and 55.13%
of the total forest and shrub area. The area of high and highest carbon density levels only
accounted for 0.07%.

From the year 2000 to 2020, the biomass carbon density level of forest and shrub
in the Dongting Lake Basin showed an overall improvement, and the improvement was
more significant from 2010 to 2020 than from 2000 to 2010 (Figures 4 and 5). From 2000 to
2010, the area of medium, high and highest levels of carbon density increased by 162.18%,
215.14% and 194.84%, respectively, and the area of the lowest level decreased by 16.82%.
By 2020, the area of medium, high and highest carbon density levels had further increased
to 3.92 times, 110.99 times and 816.92 times that of 2010, respectively, and the proportions
of highest and high levels of forest and shrub had reached 14.86% and 21.52%.
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statistics for different carbon density levels in the years of 2000, 2010 and 2020.

Looking at the changes in the different biomass carbon density levels over time, we
found that large areas of the low carbon density forest and shrub exhibited an improvement
in carbon density level (Figure 6): from 2000 to 2010, 29.85% of the forest and shrub with
the lowest carbon density level showed an increase in carbon density level, and 10.89% of
the forest and shrub with a low carbon density level showed such an increase too. Between
2010 and 2020, the proportions became even larger: 61.04% of the forest and shrub with the
lowest carbon density level showed an increase in carbon density level, and 80.42% of the
low carbon density level showed such an increase too.

However, most of the forest and shrub above the medium level decreased in carbon
density during the period 2000–2010 (Figure 6): 96.77% of the forest and shrub with the
highest carbon density level showed a decrease in carbon density level, and 92.61% of the
high level and 68.58% of the medium level also showed a decrease, which may reflect the
widespread degradation or deforestation of forest in the Dongting Lake Basin from 2000 to
2010. Fortunately, this trend reversed in the second decade: 70.63% of forest and shrub with
a medium level and 53.34% with a high level had increased their biomass carbon density
from 2010 to 2020.
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3.2. Carbon Sink of Forest and Shrub

From 2000 to 2020, the quantity of carbon sink of the forest and shrub in the Dongting
Lake Basin increased significantly (Figures 7 and 8). The amount of carbon sink by forest
and shrub increased from 64.64 TgC in the first decade to 382.56 TgC in the second decade.

3.2.1. Carbon Sinks from Different Biomass Carbon Density Levels of the Constant Forest
and Shrub

There are differences in the contributions of forest and shrub at different initial biomass
carbon density levels to carbon sink, and this difference changes over time (Tables 4 and 5).
From 2000 to 2010, the forest and shrub with relatively low carbon density levels had the
highest carbon sinks per unit area and carbon sinks. Although the carbon sinks per unit
area of forest and shrub with high carbon density levels were negative, they had little
impact on the total carbon sink due to their small area; negative carbon sink in the forest
and shrub with a medium carbon density level had a greater impact on the total carbon
sink. From 2010 to 2020, the carbon sink per unit area of forest and shrub with different
carbon density levels all largely increased compared to the first decade; the carbon sink
efficiencies of the low and lowest levels improved to 7.17 times and 5.85 times that of
2000–2010, respectively. The carbon sink efficiencies of the forest and shrub with medium
and above carbon densities increased the most, while the medium level of forest and shrub
became the most efficient carbon sink provider. However, due to the dominance of the low
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carbon density forest and shrub in the Dongting Lake Basin, low carbon density levels of
forest and shrub contributed the most to the carbon sink in the two decades (Tables 4 and 5).
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Figure 7. Maps of carbon sinks of forest and shrub from 2000 to 2020. (a) Map of carbon sink of forest
and shrub between 2000 and 2010; (b) map of carbon sink of forest and shrub between 2010 and 2020.
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Figure 8. Carbon sinks of forest and shrub in Dongting Lake Basin from 2000 to 2020.

Table 4. Carbon sink per unit area from 2000 to 2020 at different carbon density levels.

Carbon Density Levels
Carbon Sink Per Unit Area (tC/ha)

2000–2010 2010–2020 2000–2020

Lowest 4.17 24.40 28.72
Low 3.55 25.48 29.14

Medium −6.07 27.46 21.48
High −18.26 26.54 8.17

Highest −28.83 22.79 −6.41

As can be further seen from Figure 9, with the increase in the initial carbon density, the
carbon sink per unit area increased first and then decreased. In the first decade, carbon sink
reached the peak at a low level of initial carbon density and became negative at a medium
level of carbon density. However, the carbon sink reached a higher maximum at higher
initial carbon densities over time, and the carbon sink changed from negative in the first
decade to positive in the second decade for carbon-dense forest and shrub. This showed the
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continued accelerated growth of low carbon density forest and the stronger carbon sinks of
regrowth forest after deforestation over time. Looking at the entire two decades, low carbon
density forest and shrub, which accounted for the majority of areas in the Dongting Lake
Basin, not only had the highest carbon sequestration efficiency, but also had the greatest
contribution to the total carbon sink. In general, the overall low carbon density of forest
and shrub in the Dongting Lake Basin and the dynamics of their carbon sinks in the past
two decades indicate their huge carbon sequestration potential in the future.

Table 5. Carbon sinks from 2000 to 2020 at different carbon density levels.

Total Carbon Sink (TgC)

2000–2010 2010–2020 2000–2020

Lowest 22.09 100.33 119.03
Low 32.24 210.90 241.56

Medium −5.65 23.63 18.50
High −0.46 0.59 0.18

Highest −0.08 0.06 −0.02
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3.2.2. Carbon Sink from New Afforestation

From the year 2000 to 2020, the net increase in the area of forests and shrubs in the
Dongting Lake Basin reached 977.90 km2 (Table 6). It is estimated that new afforestation
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contributed 43.89 TgC of carbon sink from 2000 to 2010 and 70.73 TgC of carbon sink
from 2010 to 2020. Although the carbon sink of new afforestation in the second decade
was 1.61 times that of the first decade, the contribution proportion of new afforestation
to carbon sink changed from 67.90% in the first decade to 18.49% in the second decade
(Figure 10). From 2000 to 2020, while carbon sink from ongoing new afforestation grew, the
contribution proportion diminished.

Table 6. Change area of forest and shrub from the year 2000 to 2020.

Year 2000 2010 2020

Area of forest and shrub
(104 km2) 15.64 15.68 15.74

Net increase in forest and shrub
from 2000 to 2010 (km2) 367.48

Net increase in forest and shrub
from 2010 to 2020 (km2) 610.42
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4. Discussion

Terrestrial ecosystems play a critical role in the global C cycle and climate change
mitigation. A deeper understanding of the regional dynamics of carbon dioxide (CO2)
sequestered by forest biomass and the involved mechanisms can help to make sustainable
forest management policies for climate change. In our study, forest carbon sink in the
Dongting Lake Basin of China over the past 20 years was analyzed in terms of its dynamics
and driving forces by remote sensing data. We revealed the characteristics of different
biomass carbon density levels over time and determined how the change in carbon density
levels influenced carbon sink. We also identified the contribution of new afforestation
to carbon sinks and how the contribution changed over time. Our findings could have
implications for future forest ecological restoration and the improvement of ecosystem
management in ecologically important and fragile regions around the world.

4.1. Carbon Sink Dynamics of Forest and Shrub

Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes
in forest carbon stocks are a determinant of the regional carbon budget [27], so assessment
of the dynamics in C sinks/sources of forests are critical to the estimation of the regional
C budget [5–13]. Our study result showed an overall high increase in forest and shrub
biomass from 2000 to 2020 in the Dongting Lake Basin, which is similar to the conclusions
of other studies from the last century and the 2010s at the global scale, national scale or
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in the Yangtze River Basin [2,6,7,27,35]. We also found that the quantity of carbon sink in
forest and shrub increased significantly with the passage of time. The accelerated growth
of biomass and rapid increase in forest aboveground carbon sink are partly due to the great
water and heat conditions in the red soil region of southern China, which leads to rapid
vegetation growth by climate change [28,35], but they are more likely due to the large-scale
ecological restoration projects implemented in the study area [35], such as returning sloping
cropland to forest, the protection of natural forest, etc. These projects effectively curb the
interference of human activities, such as fuelwood logging, cropland reclamation and
widespread ecosystem degradation.

4.2. Carbon Sinks Contributed by Growth at Different Carbon Densities

Changes in forest biomass carbon density are one of the main contributors to changes
in carbon sinks and clarifying the status and changing trend of biomass carbon density is
the basis for evaluating carbon sink dynamics [2,7,25]. Our study showed the overall low
forest biomass carbon density in the Dongting Lake Basin, as other studies have shown
that most of China’s forests are young or mid-aged and have low levels of biomass carbon
density [7,26,53]. This reality, combined with the absence of effective forest-management
and silvicultural practices, contributes to poor-quality forest stands that are marked by
low productivity [53]. However, we found that the biomass carbon density level of forests
and shrubs in the Dongting Lake Basin showed an overall improvement from 2000 to
2020, and the improvement was more significant from 2010 to 2020 than from 2000 to
2010. The increasing density of biomass made an important contribution to the increased C
sink [2,11,54]. Other studies demonstrating a significant growth trend of forest NDVI from
2000 to 2015 in Dongting Lake Basin can also support this conclusion [40]. Specifically, we
found that large areas of low carbon density forest and shrub exhibited an improvement in
carbon density, which corroborated the growth of existing immature forests that were still
recovering from historical agriculture or harvesting [2,11]. On the other hand, most of the
forest and shrub with above-medium carbon density levels decreased in carbon density
during the period 2000–2010, which may be due to widespread deforestation. Forest and
shrub are particularly vulnerable to human land use, as previous studies showed that
much of the temperate forests in the world have been cleared for agriculture [34]. We also
found that the decreasing trend of carbon density reversed between 2010 and 2020. Forest
protection, reforestation or returning cropland to forest have probably turned these forests
from carbon sources to carbon sinks [34,55–57].

It is of scientific importance to further investigate the possible mechanisms of forest
carbon dynamics under different carbon density levels [6–12]. Our study showed the
carbon sinks from different carbon densities of forest and shrub and their dynamics. With
the increase in the initial carbon density, the carbon sink per unit area of forest and shrub
increased first and then decreased in a certain period in the Dongting Lake Basin. This
is because mature forests have a higher carbon sequestration capacity, and the younger
age-structure of forests likely contributed to lower biomass C densities and smaller C sink
strength [7]. However, a higher frequency of forest harvesting and the degradation of
old forests in southern China might have contributed to the reduction in mature forest
carbon sink [27]. From a long-term perspective, our study showed that the carbon sink
increased at each carbon density level and reached a higher maximum at higher initial
carbon densities over time, and the carbon sink changed from negative in the first decade
to positive in the second decade for carbon-dense forest. This represented the continued
accelerated growth of young forests and the stronger carbon sinks of regrowth forests after
deforestation under the influence of ecological protection, and abundant precipitation and
warm temperature [2,7]. In the entire past two decades, low carbon density forest and
shrub, which accounted for most areas in the Dongting Lake Basin, not only had the highest
carbon sequestration efficiency, but also had the greatest contribution to the total carbon
sink. Based on the dynamics of carbon sinks from different carbon densities in Dongting
Lake in the past two decades, we inferred that the Dongting Lake Basin has huge carbon
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sequestration potential in the future. This conclusion is consistent with inference at the
national scale [2,13,14,25,26,58].

4.3. Carbon Sinks Contributed by Afforestation

In addition to the increasing density of biomass, increase in areas of newly planted
forests is also a primary driving force of increased carbon sink [6]. Assessment of the relative
contributions of the driving factors to carbon sinks is crucial to reveal the mechanisms
that control forest carbon sinks [25]. We analyzed the contributions of new afforestation
from 2000 to 2020 and compared the changes in the two decades. We found that carbon
sink from ongoing new afforestation grew, but the contribution proportion diminished.
Contribution of forest carbon density growth to carbon sinks has already exceeded that
of new afforestation in the Dongting Lake Basin. Previous studies have shown that the
contribution proportion of forest areal expansion to the carbon sink in the southern China
and southwestern China was 60.4% and 78.2% from 1977 to 2008, respectively [25]. Our
study area was located in a transition zone between southern and southwestern of China,
and our analysis result showed that the contribution proportion of new afforestation to
carbon sink was 67.90% from 2000 to 2010, which is basically consistent with the result of
previous studies. In the future, although afforestation will continue to play an important
role in increasing the forest carbon sink in China [25], ecosystem management in areas with
overall low ecosystem quality should be paid more attention to improve ecosystem quality
for the purpose of realizing the huge carbon sequestration potential.

In this study, we analyzed the changes in carbon storage and carbon sinks of forest and
shrub from the year 2000 to 2020, and specifically discussed the contributions of different
carbon density levels and new afforestation to carbon sinks over time. Currently, most
studies used forest inventory data and statistical data to analyze the carbon sinks of different
forest ages and forest types at the provincial or geographical zone scale [6,13,25–27,58].
Instead, we used regional remote sensing data to identify pixel-scale biomass changes in
the past two decades and analyzed the change mechanism of forest carbon sinks from the
perspective of different biomass carbon density levels for the first time. In future studies,
the differences in the carbon sequestration between natural and planted forests should be
further studied. In addition, the quantitative prediction of future carbon sink trends under
different forest management practices and climate change is also a topic for further research.

5. Conclusions

From 2000 to 2020, there was an overall improvement in the biomass carbon density
of forest and shrub in the Dongting Lake Basin, and the carbon sink in the second decade
increased significantly compared to the first decade. Low carbon density forest and shrub
had the greatest contribution to the total carbon sink in the past two decades. With the
increase in the initial carbon density, the carbon sink efficiency of forest and shrub increased
first and then decreased, and it reached a higher maximum at higher initial carbon densities
over time. The carbon sink changed from negative in the first decade to positive in the
second decade for degraded or deforested forests. Carbon sink from afforestation grew from
2000 to 2020, but the contribution proportion diminished. The overall low carbon density
of forest and shrub in the Dongting Lake Basin and their dynamics indicated their huge
carbon sequestration potential in the future. In addition to continuously implementing
forest protection and restoration projects to promote afforestation, the improvement of
ecosystem quality should be paid more attention in ecosystem management to realize the
huge carbon sequestration potential for areas like the Dongting Lake Basin with severely
degraded but ecologically important and fragile ecosystems.
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