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Abstract: For unmanned aerial vehicle (UAV) synthetic aperture radar (SAR) imaging, motion
errors cannot be obtained accurately when high precision motion sensors are not equipped on the
platform. This means that traditional data-based motion compensation (MOCO) cannot be directly
implemented due to large measurement errors. In addition, classic autofocusing techniques, such as
phase gradient autofocus (PGA) or map-drift algorithm (MDA), do not perform well with spatially
variant errors, greatly affecting the imaging qualities, especially for high-resolution and large-swath
cases. In this study, an improved spatially variant MOCO approach based on an MDA is developed
to effectively eliminate the spatially variant errors. Based on the coarse and precise MDA chirp rate
error estimation, motion errors are optimally acquired by the random sample consensus (RANSAC)
iteration. Two-dimensional (2D) mapping is used to decouple the spatially variant residual errors into
two linear independent dimensions so that the chirp-z transform (CZT) can be performed for echo
data correction. Unlike traditional approaches, the spatially variant components can be compensated
without any measured motion information, which indicates that the proposed approach can be
applied to the common UAV SAR system with significant measurement errors. Simulations and real
data experiments were used to evaluate the performance of the proposed method. The simulation
results show that the proposed algorithm is able to effectively minimize spatially variant errors and
generate much better imaging results.

Keywords: unmanned aerial vehicle (UAV); synthetic aperture radar (SAR); spatially variant; motion
compensation (MOCO); map-drift algorithm (MDA)

1. Introduction

Airborne synthetic aperture radar (SAR) acquires two-dimensional (2D) high-resolution
images using a long coherent integration of the wide bandwidth and pulse width chirp
data collected in an aperture [1]. SAR has been widely used in various military and civil ap-
plications, such as ground reconnaissance and the detection and recognition of targets [2–6].
Compared with traditional optical and infrared cameras, SAR can be used at any time
of the day and in most weather conditions to keep track of the targets and collect more
information. In recent years, with the development of unmanned aerial vehicles (UAVs)
and integrated circuit boards, mini-SAR systems have been equipped on various drone
platforms. One such example is the consumer multi-motor vehicle used in various indus-
trial and agricultural applications, including plant protection, infrastructure inspection,
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and traffic monitoring, given its easy-to-operate, easy-to-deploy, and low-cost advantages.
Instead of its manned counterpart, the UAV SAR can be used for rescue in hazardous
conditions, such as earthquakes or fires, to reduce accidental risks.

Ideally, a constant velocity is preferred to ensure that the ground scene can be evenly
swept by the antenna beam when the airborne SAR flying; thus, the Doppler bandwidth
is synthesized. However, motion can also cause problems in airborne SAR processing.
In practice, the platform flight path cannot always be regarded as a straight line due to
atmospheric airflows and attitude changes, which can introduce motion errors. In general,
motion errors can be classified into two parts, i.e., cross-track and along-track errors [7–9].

Cross-track errors are important to identify because they can significantly affect
Doppler frequency. The Doppler centroid offset shifts the target position, which generates
geometric distortion. The Doppler chirp rate errors destroy the original Doppler pattern of
the echo signal, which means that additional phase modulation and envelope migration are
both introduced. Since the Doppler chirp rate errors vary with the slant range, they should
be compensated at each cell differently instead of making the adjustments simultaneously.

For stable vehicles, such as large transport aircraft, the impact caused by SAR motion
errors is not significant; whereas for drones, these errors cannot be ignored because of
the frequent turbulence caused by their small size and light weight. Moreover, due to the
limited payload of the UAV platform, the radar is usually designed to perform imaging
with a high frequency so that the wavelength is very short (e.g., Ka- and Ku-band), resulting
in significant phase errors compared to the X-band. In addition, compared to traditional
airborne SARs, the detection range of the UAV SAR is so short that the pitch angle of the
antenna beam should be large enough to cover the ground scene [10]. Thus, the spatially
variant effects of motion errors become significant, which greatly deteriorates the imaging
qualities, particularly for high-resolution cases.

Motion compensation (MOCO) for airborne SAR systems is always implemented
using recorded data, such as posture (the pitch, the yaw, and the roll angle (PYR)), velocity
(the north, the east, and the down (NED)), acceleration (XYZ), and position (the latitude,
the longitude, and the radio height). These data are extracted using motion sensors
(i.e., inertial navigation system (INS) and global positioning system (GPS)) equipped on
the aircraft platform [11–13]. During the aperture time, the platform motion errors are
acquired based on the instantaneous motion parameters of the navigation coordinate
system. Then, the phase compensation and the envelope correction can be performed on
the echo signal to implement MOCO. However, due to limitations on payload and cost, the
UAVs (particularly consumer UAVs) generally are not equipped with high precision INS
or GPS, which means that the measurement errors of motion sensors cannot be ignored
and that the most traditional MOCO approaches cannot be directly applied for UAV SAR
without improvement.

Several approaches have been developed to implement MOCO using a nonparametric
autofocusing algorithm, which means that the de-focused phase errors can be indirectly
acquired from the echo data. Autofocusing methods generally fall into two categories:
phase-based and magnitude-based approaches. In phased-based systems, the phase differ-
ences from sample to sample of the echo data are used to estimate the non-linear phase
errors (NPEs). The phase gradient autofocus (PGA) algorithm is a classical method to
obtain the NPEs by a series of steps, including scatter selection, windowing, cyclic shifting,
and phase gradient estimation [14–16]. As a typical phase-based approach, it requires
that all targets in the interest area be covered in the same exposure time. PGA algorithm
cannot be directly applied in strip-map processing except when de-ramping is used for
each sub-aperture since different targets are exposed at different azimuths. Its performance
is mainly influenced by prominent scatterers in the illuminated scene, which suggests that
PGA applications are greatly limited and may not be applicable for particular locations
(e.g., desert, prairie).

Different from the phase-based one, as one of the typical magnitude-based approaches,
a map-drift algorithm (MDA) requires contrast features, such as edges and shadows, that
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are not dependent on strong scatterers [17–21]. The classical MDA has been widely used
in lots of airborne SAR processors due to its good performance. In a classical MDA, the
full aperture data is divided into a series of sub-apertures with a certain overlap so that the
offset of spectrum between sub-looks of each de-focused sub-aperture (segment) can be
obtained by cross correlation. Based on the offset, the chirp rate is calculated. In practice,
the cross correlation is always summarized from each range cell and considered as the
reference one. Thus, the accurate NPEs of full aperture can be integrated from the chirp
rate of each segment after being resampled corresponding to the aperture time. By means
of NPEs, the MOCO based on the reference can be implemented, which indicates that the
variant errors are neglected during processing.

To address this problem, an improved spatially variant MOCO approach is proposed
based on an MDA for high-resolution UAV SAR imaging. The received echo data is first
divided into several sub-range blocks, and the two-step (coarse and precise) MDA with
overlapped sub-apertures (OSA) is performed to estimate the NPEs of all sub-blocks and
construct the equations for compensation. To derive the optimal solution, the random
sample consensus (RANSAC) algorithm is designed with good robustness and high accu-
racy. Using the estimated motion errors, two-dimensional (2D) mapping is implemented
to decouple the spatially variant residual into two linear independent directions so that
the chirp-z transform (CZT) can be performed on the received echo data to remove the
spatially variant errors. Compared to the conventional approach, the spatially variant
aspects can be compensated without additional measured motion data, which means that
the proposed method can be applied to common UAV SAR with significant measurement
errors of motion sensors.

The rest of the paper is organized as follows. In Section 2, the geometry model of
UAV SAR imaging with motion errors is established, and the effects of spatially variant
components and measurement errors are analyzed. In Section 3, an improved spatially
variant MOCO approach, consisting of three parts (i.e., a two-step MDA chirp rate esti-
mation, motion errors solution, and spatially variant elimination), is presented in detail.
Experimental results, including the simulation and real data processing, are provided in
Section 4, and the conclusions are presented in Section 5.

2. Modeling

In this section, the real geometry of the UAV SAR platform, in which the slant range
error from the platform to the arbitrary target is expressed with respect to the motion errors
is established. The spatially variant and measurement errors that significantly affect the
image processing of the UAV SAR are also analyzed.

2.1. Geometric Model

In practice, the aircraft’s motion cannot always be kept constant due to atmospheric
turbulence causing offsets from the desired course. The geometric model of the UAV SAR
imaging with motion errors is presented in Figure 1. In the Cartesian coordinate system
o-xyz, the platform is assumed to fly along the y-axis direction. In the figure, the average
velocity and altitude are denoted as v and H, respectively; P is the center of the footprint;
B and C indicate the platform’s instantaneous positions for the real (solid red line) and
expected (blue dashed line) paths, the coordinates of which are denoted as [x(η), y(η), z(η)]
and [0, vη, 0], respectively; A is the beam center crossing moment in an aperture, which is
always considered as the reference point when processing; and Rs is the reference slant
range. The motion error, which is the difference between the real and ideal paths, is denoted
as [∆x(η), ∆y(η), ∆z(η)]. Based on the geometric relationship, the real instantaneous slant
range history r(η) of the arbitrary target Q is given by

r(η) =
√
[x(η)− x′]2 + [y(η)− y′]2 + [z(η)− z′]2 (1)
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where η denotes the azimuth time, and [x′, y′, z′] indicates the position of Q. Currently, r(η)
is simplified by the Taylor series expansion with the high order terms being neglected, i.e.,

r(η) =
√
[y(η)− y′]2 + R2

B + ∆x(η)2 + ∆z(η)2 + 2∆x(η)RB cos θp + 2∆z(η)RB sin θp

≈
√
[y(η)− y′]2 + R2

B + 2∆x(η)RB cos θp + 2∆z(η)RB sin θp

≈ RB + [y(η)−y′ ]2

2RB
+ ∆x(η) cos θp + ∆z(η) sin θp

(2)
where RB = Rs is assumed as the slant range of the closest approach (for side view,
RB = Rs), i.e., RB =

√
x′2 + z′2; θp is defined as the pitch angle, i.e., x′ = −RB cos θp,

z′ = RB sin θp. The motion errors are extracted from the complex quadratic radical. After
expansion, the motion errors are decomposed into two parts: along- and cross-track errors.
Numerous advanced techs to address along-track errors have been developed [8–11],
which are always implemented using interpolation or NUFFT. Therefore, it is not further
discussed in detail. In addition, cross-track errors are more important to analyze since the
spatially variant increases with swath, resolution, aperture length, and pitch angle and
cannot be neglected.
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Figure 1. Geometric model of UAV SAR with motion errors.

A set of experiments are intended to assess phase errors induced by motion errors in
different dimensions. Figure 2 shows the simulated ideal motion data (red solid line) and
the one measured by low-accuracy INS (blue dashed line) based on the geometric model
shown in Figure 1. It can be seen that the platform flies along the y-axis, which means that
the along-track errors only depend on the motion errors along the y-axis. Meanwhile, the
cross ones are both determined by the components along the x and the z-axes. However, it
should be noted that only the ideal motion data (red solid line) is required in the current
simulation, and more detail of the measured one will be discussed in Section 2.3. Based
on the ideal motion data plotted in Figure 2 and the main parameters of real UAV SAR
system summarized in Table 1, phase errors induced by along-track and cross-track motion
errors are plotted in Figure 3a,b, respectively. Compared to the cross one (Figure 3b),
the along-track phase errors (Figure 3a) are considerably less than π/4 so that it can be
neglected during our analysis.

Table 1. Main parameters of the real UAV SAR system.

Parameters Value

Bandwidth 750 MHz
Timewidth 100 µs

Carrier frequency 35 GHz
Pulse repeat frequency 625 Hz

Reference range 16,500 m
Velocity 40 m/s
Height 3000 m
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The slant range errors ∆r(η) of Q can be simplified to:

∆r(η) = ∆x(η) sin θp + ∆z(η) cos θp (3)

As shown by the expression ∆r(η), with respect to errors ∆x(η) and ∆z(η) depend
on θp, which indicates that ∆r(η) differs with the range cells and causes variations in
range cell migration (RCM) and phase modulation. Designing a proper correction function
for ∆r(η) in the traditional two-step MOCO is difficult because the independent RCM is
always ignored.

2.2. Spatially Variant Errors Analyses

From Equation (3), the variation with respect to the slant range dimension of ∆r(η) is
mainly determined by θp, which means the spatially variant error is significant, especially
for short-range detection with a large pitch angle [22–24]. For analysis, cos θp and sin θp
can be expanded with respect to the ∆r as

cos θp = H
RB
− H

R2
B

∆r + H
R3

B
∆r2 + · · ·

sin θp = 1− H2

2R2
B
− H4

8R4
B
+

(
H2

R3
B
− H4

2R5
B

)
∆r +

(
3H2

2R4
B
− 5H4

4R6
B

)
∆r2 + · · ·

(4)

where ∆r and ∆r2 denote the first order and the second order spatially variant components,
respectively. The introduced phase errors are simulated based on the system parameters
(see Table 1) and motion data (see Figure 2) to analyze the impact of the first- and second-
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order components, as presented in Figure 4a,b. The high order spatially variant errors are
far less than π

4 , which suggests that they can be disregarded in most cases.
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2.3. Measurement Errors Analyses

Motion errors have a considerable impact on imaging qualities, which can be removed
by conventional two-step MOCO based on motion data which is recorded by the high-
accuracy INS mounted on the platform [25]. However, for several UAVs, the accuracy of
INS may not meet the motion data-based MOCO requirements [26], which means that
the extra NPEs induced by the measurement errors are so significant that they cannot be
ignored during imaging processing. In general, measurement errors can be divided into
three parts with respect to their effect on focus depth of the dot target.

(1) Gyroscope north bias: The yaw angle of the platform is measured by a gyroscope, which
is an important component of an INS. However, this bias affects the measured heading
and further changes the Doppler centroid. Thus, the position is shifted.

(2) Data rate: In practice, motion data is sampled from INS measurements and saved by
recorder. However, it is difficult to synchronize the chirp frame with motion data
accurately because the data rate of an INS is much smaller than pulse repetition
frequency (PRF) which indicates that the measurement errors are inevitable, and the
Doppler chirp rate is changed and thus de-focused.

(3) Random noise: Random noise exists in all kinds of electronic devices. INS noise intro-
duces the extra high-frequency phase errors during MOCO and raises the grating lobe.

Here, a set of dot target simulations are performed with different MOCO cases.
Figure 5a–c show the depth of focus for scenarios without MOCO, with MOCO based
on the simulated ideal motion data (the red solid line in Figure 2), and with MOCO based
on the simulated motion data measured by low-accuracy INS (the blue dashed line in
Figure 2), respectively. Moreover, the gyroscope north bias, the data rate, and the ran-
dom noise are set as 0.5◦, 100 Hz, and 0.02 to simulate the motion data measured a by
low-accuracy INS, respectively. It should be noted that the measured data of the x-axis
deviates from the ideal one due to the heading error which is caused by gyroscope north
bias. Comparing Figure 5c to Figure 5b, the dot targets are defocused and shifted along
the azimuthal direction seriously, which suggests that the conventional data-based MOCO
cannot support the UAV SAR processing with significant measurement errors and that the
signal-based one is more suitable.
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3. Approach

From previous analyses, motion parameters recorded by a low-accuracy INS or GPS
cannot be directly applied to MOCO because of the impact of additional non-negligible
phases and spatially variant errors introduced by significant measured errors. Spatially
variant RCMs are always neglected by the traditional two-step MOCO. To address these
limitations, an improved MOCO approach is proposed based on an MDA, which can
eliminate spatially variant errors. Figure 6 shows the flowchart of the proposed approach.
The proposed approach is composed of the following steps:
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Step-1: Two-step MDA chirp rate estimation: an MDA is used as the nonparametric
autofocusing technique to estimate the NPEs caused by motion errors. The NPEs of the
entire aperture are always integrated with respect to the Doppler time from estimated chirp
rate errors in all separated sub-segments. Thus, the two-step estimation is adopted. This
method is performed after the RCM correction (RCMC), and the NPE compensation is
estimated to improve accuracy.

Step-2: Motion errors solution: Spatially variant RCMs caused by motion errors
are generally difficult to correct using the classic MDA except when the cross errors are
acquired. In our approach, the echo data is separated from the range blocks to get the
NPEs by an MDA to construct a set of equations corresponding to the motion errors. The
RANSAC algorithm is designed to improve the robustness and accuracy to obtain the
optimal solution for the motion errors from these overdetermined equations. Finally, the
motion errors estimated by the two-step processing are added.

Step-3: Spatially variant elimination: Using the estimated motion errors, the spatially
variant MOCO can be performed. However, the spatially variant errors are cross-coupled,
which means that the MOCO cannot be implemented directly unless the received data is
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decoupled. In our algorithm, after the reference function multiplies (RFM) for the echo
data, the 2D mapping corresponding to the slant range, and the Doppler centroid is derived
and utilized to decouple the residual spatially variant components of the motion errors
into two linear, independent directions. Moreover, CZT processing is applied to remove
the spatially variant components.

3.1. Two-Step MDA Chirp Rate Estimation
3.1.1. Sub-Aperture Processing

Unlike the phase-based autofocusing methods, NPEs cannot be acquired directly from
the correlation between the segments of the aperture data by magnitude-based autofocusing
methods such as an MDA. However, the full aperture data can be separated into several
sub-apertures as shown in Figure 7. With the Doppler center removed, NPEs can be double
accumulated with azimuth time by the chirp rate which is interpolated and estimated by
an MDA of each sub-aperture. In this part, the number of sub-apertures is assumed as N
with duration Ts. Particularly, the restricting condition should be satisfied, i.e.,

φ(ηi + ε) = γiε
2 (5)

where ηi is the center moment of the i-th sub-aperture, ε ∈
(
− Ts

2 , Ts
2

)
denotes the azimuth

time during the sub-aperture, and γi is assumed as the real Doppler chirp rate error of
the i-th sub-aperture, which is greatly affected by motion errors. Note that the estimation
accuracy γi is determined by the NPEs, which are derived from the map-drift. The full
aperture is split into half-overlap segments to ensure the continuation of the NPEs φ(ηi + ε)
between sub-apertures, which is important in determining the accuracy of the phase
combination. The chirp rate error γ̂(η) is derived by the interpolations of the estimated
results

[
γ̂1 γ̂2 . . . γ̂N

]
, i.e.,

γ̂(η) =
L

∑
j=1

γ̂i(j)sin c(η − j) (6)

where γ̂i is the estimated result by the i-th sub-aperture data L is the length of the interpo-
lation core. Linear interpolation is utilized to reduce the computational load instead of sinc.
The NPEs of the full aperture can be derived by:

ˆfD(η) =
∫ Ts

2
− Ts

2
γ̂(η)dη

φ̂(η) =
∫ Ts

2
− Ts

2

[
ˆfD(η)− ˆfD(η)

]
dη

(7)

where ˆfD(η) and φ̂(η) denote the Doppler frequency errors and the NPEs, respectively.
ˆfD(η) is the average of ˆfD(η), representing the linear part and generating the azimuth shift

of image and should therefore be removed.
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3.1.2. Map-Drift Chirp Rate Estimation

The accuracy of NPEs is always determined by the estimated sub-apertures chirp rate
error γ̂i. The weight-MDA is developed to improve the accuracy of chirp rate estimation.
The weight wi(τ) is defined as

wi(τ) =

√√√√√√∑
ε

∣∣∣∣∣Si(τ, ε)−
∑
ε

Si(τ,ε)

ns

∣∣∣∣∣
2

ns
(8)

where ns denotes the length of the sub-aperture, and τ denotes the fast time. By using
the contrast of each range cell as a weight, it is beneficial to select range cells with strong
features and improve the robustness and accuracy of chirp rate estimation.

After the de-chirp processing, the echo signal of the i-th sub-aperture can be decom-
posed as:

Si(τ, ε) = Si(τ, ε) · exp
[

jπγi(τ)ε
2
]

(9)

where Si(τ, ε) denotes the echo signal corresponding to the reference target, and the expo-
nent term denotes the QPE of motion errors. To obtain γ̂i(τ), Si(τ, ε) should be separated
into two sub-blocks without overlap, i.e.,

Si,1(τ, ε) = Si

(
τ, ε− Ts

2

)
= Si

(
τ, ε− Ts

2

)
· exp

[
jπγi(τ)

(
ε− Ts

2

)2
]

Si,2(τ, ε) = Si

(
τ, ε + Ts

2

)
= Si

(
τ, ε + Ts

2

)
· exp

[
jπγi(τ)

(
ε + Ts

2

)2
] (10)

The azimuthal spectrums of (10) can be expressed as

Si,1(τ, fε) = Si

[
τ, fε +

γi(τ)Ts
2

]
Si,2(τ, fε) = Si

[
τ, fε − γi(τ)Ts

2

] (11)

where fε denotes the azimuth frequency. Moreover, γi(τ) can be described by the frequency
shift between Si,1(τ, fε) and Si,2(τ, fε) as

γ̂i(τ) =
4∆ f̂ε(τ)

T2
s

(12)

where ∆ f̂ (τ) is the frequency shift. However, the estimation accuracy for the range cells
cannot always be guaranteed, which indicates that an optimization method should be
adopted. In this part, the weight wi(τ) can be applied to reduce the effect of bad cell
estimation, which is given by

γ̂i =
∑
τ

wi(τ) · γ̂i(τ)

n
(13)

where n denotes the range cell number.

3.1.3. Coarse and Precise Processing

The accurate phase errors are difficult to obtain from signal-based estimation, espe-
cially for UAVs affected by significant atmospheric turbulence. The extra RCMs introduced
by motion errors deteriorate the accuracy and cannot be ignored. Generally, this problem
can be effectively addressed by the two-step processing.

First, the first MDA, defined as the coarse value, is used to acquire the main part of
the NPEs φ̂(η) of the raw echo data. Utilizing φ̂(η), both the phase multiplication and
envelope correction can be performed on the data so that the second MDA, which is the
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precise value, can be performed after RCMC processing to accurately estimate the residual
NPEs. These functions are expressed as follows:

H1( fτ , η) = exp
[
−jφ̂(η) fτ f0

]
H2(τ, η) = exp

[
−jφ̂(η)

] (14)

where fτ and f0 denote the range and carrier frequencies, respectively.

3.2. Motion Errors Solution
3.2.1. NPEs Equations Construction

The NPEs, estimated by the two-step MDA, cannot be directly applied for the UAV
SAR MOCO because of the additional spatially variant motion errors ∆x(η) and ∆z(η),
which cannot be ignored (see Section 2.1). The spatially variant NPEs are reconstructed
by performing the two-step MDA on sub-blocks in the range direction, given by the
expression [27,28]: 

cos θ
(1)
p sin θ

(1)
p

cos θ
(2)
p sin θ

(2)
p

. . . . . .
cos θ

(N)
p sin θ

(N)
p

 ·
[

∆x(η)
∆z(η)

]
=


λ

4π φ1(η)
λ

4π φ2(η)
. . .

λ
4π φN(η)

 (15)

where the superscript N denotes the sub-block number; R(i)
s and ∆φi(η) are the reference

slant range and the NPEs of i-th block, respectively; θ
(i)
p is the pitch angle from the platform

to the center of i-th block, i.e., θ
(i)
p = arcsin

[
H/R(i)

s

]
; and R(i)

s and λ are the reference
slant range of i-th block and wave length, respectively. Theoretically, to acquire the ∆x(η)
and ∆z(η) from (15), only two equations are required, which can be constructed from
any two blocks. However, in practice, the estimated NPEs cannot be guaranteed to be
accurate. Thus, the echo data should be divided as much as possible to construct the
overdetermined equations to solve the best solution. For convenience, these linear equations
can be expressed in matrix form:

cos θ
(1)
p sin θ

(1)
p

cos θ
(2)
p sin θ

(2)
p

. . . . . .
cos θ

(N)
p sin θ

(N)
p

 ·
[

∆x(η)
∆z(η)

]
=


λ

4π φ1(η)
λ

4π φ2(η)
. . .

λ
4π φN(η)

⇒ A · x = b (16)

3.2.2. RANSAC Solution

Generally, x is derived as
x = A+b (17)

where A+ denotes the Moore–Penrose pseudoinverse of A when it is a square or not a
singular matrix. Note that x is greatly affected by the accuracy of the NPEs estimation or
the sub-block data quality, which indicates that the precision cannot be ensured for the UAV
SAR. To increase the robustness of the solution, the RANSAC algorithm is designed and
adopted to obtain the optimal result x of (17), and the detailed procedures are as follows:

Step 1: First, establish a binary quadratic equation by selecting the two equations from
the NPEs set in (16) to judge the validity of the corresponding data. The binary quadratic
equation is given by

A′x′ = b′ (18)

Step 2: Solve the x′ in (18) if the determinant of A′ is not zero; otherwise, resume Step
1, which can be expressed as

x′ = A−1b |A| 6= 0 (19)
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where A−1 denotes the inverse matrix of A′.
Step 3: Substitute x′, which is regarded as the maybe-solution into (16), to obtain the b̂

for each block.
Step 4: Compute the Euclidean distance σ between b̂ and b of each block, which can

be derived by:
σ = ‖b− b̂‖2 (20)

Count the number nIn of blocks whose Euclidean distance is less than the threshold
σT (regarded as inliers). If the number of inliers exceeds NIn, which denotes the minimum
threshold for the number of inliers, x′ can be adopted as a well-solution and is stored with
respect to nIn in a group X =

{(
x′(i), nIn(i)

)
|i ∈ [1, NIter]

}
, where NIter is the number of

iterations. Then, restart the iteration from Step 1 to Step 4 until NIter is reached.
Step 5: Select the satisfactory x′ from the group X as the best solution for x if the

corresponding nIn is the largest.
With the incorporation of the RANSAC processing into the two-step MDA chirp rate

estimation, the spatially variant motion errors can be eliminated.

3.3. Spatially Variant Estimation
3.3.1. Decoupling Processing Based on 2D Mapping

After performing RFM for the arbitrary target Q, the spatially variant residual phase
errors in the raw data can be expressed when the arbitrary complex magnitudes are
ignored [29,30]:

S′( fτ , η) = S( fτ , η) · HRFM( fτ , η)

= exp
[
−j 4π( fτ+ f0)

c r(η)
]
· exp

[
j 4π( fτ+ f0)

c rs(η)
]

= exp
[
−j 4π( fτ+ f0)

c ∆r(η)
] (21)

where f0 denotes the carrier frequency. The variant slant range history ∆r(η) of Q cor-
responding to the reference point can be expressed as the difference between r(η) with
rs(η). The motion errors obtained by the two-step processing cannot be applied directly
to eliminate the variant errors because the range and azimuthal dimensions of the phase
component in (21) are cross-coupling in the 2D time domain [31,32]. However, the 2D
signal spectrum after azimuthal FFT processing is derived as

S′
(

fτ , fη

)
= exp

[
jθ′
(

fτ , fη

)]
= exp

[
−j 4π∆r

c

√
( f0 + fτ)

2 − c2 f 2
η

4v2

]
(22)

where ∆r denotes the differential range corresponding to the reference point at the position
of zero Doppler. For convenience, the phase function θ′

(
fτ , fη

)
of (23) can be expanded to:

θ′
(

fτ , fη

)
⇒ −4π∆r

c

 f0

√
1−

c2 f 2
η

4 f 2
0 v2

+
1√

1− c2 f 2
η

4 f 2
0 v2

fτ −

c2 f 2
η

4 f 2
0 v2

2 f0

(√
1− c2 f 2

η

4 f 2
0 v2

)3 f 2
τ

 (23)

The first term is the residual azimuth modulation; the second term is the differential
RCM, and the third term is the residual range-azimuth cross-coupling. To remove these
terms, 2D mapping can be constructed to decompose θ′

(
fτ , fη

)
into two individual parts,

g1
(

fτ , fη

)
and g2

(
fτ , fη

)
, using the equation:
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g1
(

fτ , fη

)
= f0

√
1− c2 f 2

η

4 f 2
0 v2 +

1√
1−

c2 f 2
η

4 f 2
0 v2

fτ

g2
(

fτ , fη

)
= −

c2 f 2
η

4 f 2
0 v2

2 f0

(√
1−

c2 f 2
η

4 f 2
0 v2

)3 f 2
τ

(24)

where g1
(

fτ , fη

)
and g2

(
fτ , fη

)
are functions with respect to fτ and fη . Thus, (23) can be

defined as the function corresponding to g1 and g2, given by:

S′
(

fτ , fη

)
= S′

[
g1
(

fτ , fη

)
, g2
(

fτ , fη

)]
= exp

[
−j 4π∆r

c g1
(

fτ , fη

)]
exp

[
−j 4π∆r

c g2
(

fτ , fη

)] (25)

The cross-coupling 2D signal spectrum is separated into two independent exponents
in the mapping domain constructed by g1 and g2, which means that phase errors are
decoupled, and the spatially variant processing can be performed. In addition, the new
range and the Doppler position of the target after mapping can be regarded as the projection
from ∆r to g1 and g2, respectively.

3.3.2. CZT Correction

The nonlinear functions g1 and g2 correspond to fτ and fη . The spatially variant errors
are difficult to remove using the multiply coefficient, so the echo data should be resampled
in the mapping domain. CZT is recommended instead of the complicated interpolation g1
to reduce the computational load [33–36]. The block diagram is shown in Figure 8. H1 and
H2 are as follows:

H1( fτ , η) = exp

[
−jπ

1
m

(
1 +

fτ

f0

)(
g1

∆g1

)2
]

(26)

H2(τ, η) = exp
[
−j

4π f0v2η2

c2τ

]
(27)

where m is the azimuthal size, and ∆g1 is the resampled interval g1.
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4. Experiment

To evaluate the performance of the proposed method, simulation and real data experi-
ments were conducted.
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4.1. Simulation Results

In the simulation, the ground scene size was set to 400 m × 400 m, with 32 point
targets randomly placed, and the parameters in Table 1 and the instantaneous velocities in
Figure 2 were then analyzed. For comparative experiments, the INS instantaneous output
with a large measurement error was also simulated.

Figure 9a–c show the imaging results processed using an INS, a classic MDA, and
the proposed approach, respectively. The results show that the performance of the INS-
based MOCO was unsatisfactory, with most targets being out of focus due to significant
measurement errors. This indicates that an INS-based MOCO cannot be directly applied
to UAV SAR. The difference in performance between the classic MDA and the proposed
approach is shown in the 2D profile of selected targets in Figures 10b,c and 11b,c, and
PSLRs are listed in Table 2. In addition, the estimated, measured and ideal motion errors for
simulated experiment are plotted in Figure 12. The root mean-square (RMS) corresponding
to the ideal motion errors can further demonstrate the accuracy of our approach. Due to
the spatially variant residual errors, the focusing quality of the target was unsatisfactory,
especially at the edges of the ground scene, and the resolution was worse compared to the
proposed approach.
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4.2. Real Data Experiment Results

Raw data with significant motion errors were collected by a high-resolution fixed–
wing UAV SAR with the size of 6 m × 3.8 m × 1.4 m (span × length × height); the system
parameters are shown in Table 1. INS accuracies of velocity and posture were 0.2 m/s and
0.5◦, respectively. Additionally, the data rate was 125 Hz. Figure 13a–c show the imaging
results processed by an INS, the classic MDA, and the proposed approach, respectively.

In addition, two different regions were selected from the SAR image for compara-
tive analysis and are shown in Figures 14 and 15. The results show that the proposed
algorithm was able to focus strong scatterer much better, which further demonstrates the
superiority of our algorithm. The estimated and measured motion errors were then plotted
and are presented in Figure 16. The resulting graphs suggest that the measured data is
significantly less precise compared to the estimated values, which further deteriorates the
imaging quality.
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5. Conclusions

In this paper, an improved spatially variant MOCO approach is proposed based on
an MDA for high-resolution UAV SAR imaging with large measurement errors. Motion
errors were acquired accurately using a two-step MDA chirp rate error estimation and the
RANSAC solution for NPE equations. Using the estimated motion errors, 2D mapping was
developed to decouple the spatially variant residual errors into two linearly independent
directions so that the CZT could correct the signal data. Compared with the conventional
approach, the spatially variant components of motion errors can be eliminated without any
measured motion data. The results suggest that the proposed method can be applied to the
UAV SAR with significant measurement errors.
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