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Abstract: Riparian zones are dynamic ecosystems that form at the interface between the aquatic and 
terrestrial components of a landscape. They are shaped by complex interactions between the 
biophysical components of river systems, including hydrology, geomorphology, and vegetation. 
Remote sensing technology is a powerful tool useful for understanding riparian form, function, and 
change over time, as it allows for the continuous collection of geospatial data over large areas. This 
paper provides an overview of studies published from 1991 to 2021 that have used remote sensing 
techniques to map and understand the processes that shape riparian habitats and their ecological 
functions. In total, 257 articles were reviewed and organised into six main categories (physical 
channel properties; morphology and vegetation or field survey; canopy detection; application of 
vegetation and water indices; riparian vegetation; and fauna habitat assessment). The majority of 
studies used aerial RGB imagery for river reaches up to 100 km in length and Landsat satellite 
imagery for river reaches from 100 to 1,000 km in length. During the recent decade, UAVs 
(unmanned aerial vehicles) have been widely used for low-cost monitoring and mapping of riverine 
and riparian environments. However, the transfer of RS data to managers and stakeholders for 
systematic monitoring as a source of decision making for and successful management of riparian 
zones remains one of the main challenges. 
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1. Introduction 
Riparian zones are among the most biologically diverse and productive ecosystems 

on Earth. They are shaped by underlying physical processes associated with river flow, 
including erosion and deposition of sediment, periodic inundation, and groundwater-
surface water exchange. In their natural state, riparian ecosystems are characterised by 
high spatial and temporal heterogeneity, which supports a diverse number of species, 
habitats, and ecological processes. Today, throughout most of the world, rivers and their 
riparian zones have been profoundly modified by human activities associated with river 
management (e.g., dams and flow regulation) and land-use pressures (e.g., agricultural 
conversion and irrigation withdrawals), altering the patterns and processes that sustain 
riparian functions and biodiversity [1–6]. The spatial delineation of riparian zones is 
mostly related to the streams and terrestrial landscapes that are affected by floods (as in 
the context of [7]) or on the vegetation cover along a river system (the edges of vegetation 
communities [8]) with the direct interactions between aquatic and terrestrial ecosystems 
[9]. 

Freshwater ecosystems are less resilient to negative impact caused by climate 
changes, direct human activities, or artificial demand for water resources. In the riparian 
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zone is a system adapted to close interactions of morphology, vegetation, and water flow 
in channels through which water forms, transforms, and reorganises fluvial systems in 
different spatial structures [10]. Anthropogenic modification, grade-control structures, 
and channelisation have resulted in the channel narrowing, transformation, and incision 
in many rivers worldwide [1,4,6,11–14]. Extraordinary floods and their geomorphological 
effectiveness are influenced by the actual state of the channel [15–17] and are related to 
the vegetation rejuvenation and direct channel modification. Feedback between flow, 
sediment dynamics, channel landforms, and riparian vegetation changes the riparian 
ecosystem in space and time. The fluvial geomorphic processes reciprocally interact with 
the riparian vegetation [18–21]. Feedback can ensure the functioning of fluvial ecosystems 
in terms of the transition from geomorphological instability (unstable bars with sparse 
vegetation) to geomorphological stability with lower biodiversity (dense willow cover) 
but higher productivity [18,22]. Riparian vegetation represents an important feature of it 
catching water, contributing to the strong resilience and resistance of plant and pioneer 
species. At the same time, it becomes a factor influencing biological diversity. 

The monitoring of riparian ecosystems is essential for understanding the way that 
systems respond to stressors and management outcomes. Intensive field sampling can 
provide useful insights into the status and trends of local systems. However, this approach 
can be labour-intensive and costly due to its dynamic nature, the large area monitored, 
and the relative inaccessibility of riparian ecosystems [23]. Remote sensing techniques 
provide a powerful tool for monitoring riparian zones over long durations and large areas. 
The Landsat programme that began in 1972 opened up a wide range of uses for satellite 
data in the evaluation of landscape changes as well as in river research [24]. Improved 
satellite data resolution, increased number of revisit times, better spectral resolution, 
improved properties of sensors (both satellite and airborne), more developed passive 
scanning techniques (e.g., radar and lidar), and the innovation of modern field mapping 
technologies (echo sounding, drones, and terrestrial laser scanners) have allowed for 
detailed research into the dynamic interactions within riparian ecosystems [24]. 

The main challenge in remote sensing is capturing the different attributes or 
parameters that shape the riparian ecosystem. This includes understanding the physical 
factors and morphology of the channel, the flow parameters (velocity and temperature), 
the riparian vegetation, and the way individuals and populations mutually interconnect 
with processes [25]. Some clear advantages of remote sensing for assessing freshwater 
biophysical properties are the cost, the product accuracy, the data continuity, and the 
availability of programming software or personnel skills [23]. Remote sensing data are 
optimal for classifying or evaluating objects [26,27] and for estimating biophysical 
properties based on the algorithms linked to the spectral or intensity properties of a plant 
canopy, species composition [28], phenology [29], chlorophyll contents [30,31], water 
depth [32], sediment concentration and load, and amount of algae [33]. The physical 
properties reflected in the river morphology are key drivers affecting the topographical 
diversity, moisture gradients, and microhabitats [25]. The landform structure, substrate 
grain size and stratigraphy, geochemical properties, and water availability create the basic 
framework for riparian plant communities. Along with the flow regime and riparian 
vegetation, these parameters are essential for understanding the processes and 
interactions within the riparian landscape. Remote sensing offers efficient monitoring and 
detection of these three main riparian elements. 

The objectives of this paper were (i) to provide a comprehensive overview of the 
published literature that has used remote sensing techniques to study riparian 
ecosystems; (ii) to describe the current state of applications of remote sensing in river 
research; and (iii) to identify the possible gaps to future research. 

2. Database Processing 
We understand the riparian ecosystem as a complex system including physical 

habitat parameters, the flow regime, and biota. Fluvial interactions are key elements of 
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this system and are defined based on the functional and structural properties sensu Dufour 
et al. [34]. A systematic review was carried out by making structured queries in the WOS 
(http://apps.webofknowledge.com, accessed on 9 June 2021) portal according to the 
PRISMA protocols and workflow diagram (Figure 1). A combination of quantitative and 
qualitative approaches was used based on the topic search (TS) and individual 
assessments of all articles from the search queries [35]. For the analyses, we created a list 
of specific terms and their synonyms for three main groups: 
• The first group included articles related to the riparian ecosystem: “riparia*”, 

“floodplain*”, “ecosys*”, “vegeta*”, “change”, “success*”, “biogeo*”, and “ecol*”. 
• The second group focused on river system specification: “river*”, “channel*”, 

“fluvial*”, “hydromorph*”, “hydro*”, “planform*”, and “morpho*”. To refine the 
results, we used the operation NOT with topics such as “estuary” OR “coast” to focus 
primarily on river systems. 

• The third group was related to the remote sensing methods used in the article. In this 
case, we separated four basic types of sensors: (A) satellites, “satellite*”, “remote*”, 
“Landsat”, “sentinel”, and “image*”; (B) aerial images, “remote*”, “aerial*“, 
“photogra*”, and “image*”; (C) UAVs (unmanned aerial vehicles), “uav”, “drone*”, 
“uas”, “SfM”, “*motion”, and “raps”; and (D) airborne lidars (“lidar*”), with the 
NOT operator and the other word groups used to decrease noise within the search. 

 
Figure 1. Workflow diagram of article extraction from the WOS database and article analyses. 

The final query combined words from groups one and two and one of the sensor 
types (A–D) with the AND operator. The search was conducted in June 2021, and overall, 
1512 articles were found in the first iteration. After the abstracts were screened in WOS 
and the studies that were not relevant to the aims of this study were excluded, 744 papers 
were downloaded for manual processing. In the last iteration, we analysed 257 papers. 
Any articles investigating freshwater wetlands, coastal areas, or LCs on the catchment 
scale (not related to river research) were excluded from processing. These 257 articles were 
subjected to a deep-content expert analysis to answer the main research questions. The 
database of processed articles thus included the primary bibliographic information 
exported from WOS (authors, article title, volume, issue, DOI, and abstract) and the main 
characteristics extracted from the content analyses (remote sensor type (A–D), country, 

http://apps.webofknowledge.com/
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study area (km2/km), river name, planform, category, sensor type, horizons, resolution, 
number of horizons, study aim, data pre-processing, RS data analyses, classification 
parameters, field research, research related to hydrology, research related to morphology, 
research related to floodplain, ecology, or ecosystem, key analyses, and main results). 

The quantitative analyses of the article abstracts were performed using elementary 
text mining methods implemented in the tm package [36]. All 257 analysed abstracts were 
imported into a text document, denoted as the corpus. Several pre-processing methods 
were applied for cleaning up and structuring the input text such as whitespace 
elimination, lower-case conversion, stop word removal, and number and punctuation 
removal. While the stemming process was not applied, lemmatisation was performed 
using the textstem package with the function lemmantize_strings. This process reduces a 
word to its base form through morphological analysis. 

Count-based evaluation or term frequency analysis is one of the simplest methods 
used in text mining. Those terms have the highest frequencies of occurrence and thus 
should be rated as the most important. The results obtained using this approach can be 
easily interpreted and attractively visualised (e.g., using word clouds), while the process 
is computationally inexpensive [36]. An essential input for this analysis is the term-
document matrix (Document Term Matrix (DoTeMa)). DoTeMa uses the bag-of-words 
modelling assumption, in which the frequency of terms occurring is more important than 
their order and structure. DoTeMa can be easily transformed into a data framework that 
can be visualised and directly interpreted, emphasising the research objective [36]. 

As follows from the above, the term frequency analysis does not take into account 
the importance of a term. This means that a more sophisticated text mining method should 
be applied, such as weighting. The most popular weighting approach is a method called 
term frequency-inverse document frequency (tf-idf), which reduces the impact of irrelevant 
terms and highlights discriminative ones by normalising each matrix element when 
taking into consideration the number of total documents [36]. Tf-idf combines a local 
weighting method—term frequency—with a global weighting method—inverse document 
frequency—with high values suggesting that a term occurs many times in a few documents 
and low values suggesting that a term occurs in all, most, or many documents [37]. High 
values of tf-idf indicate which terms best characterise the topics discussed in the 
documents contained within the corpus. 

3. Quantitative Analysis of the WOS Database 
3.1. Search Results 

In the recent decade, the increasing interest in river ecosystems has been evident 
(Figure 2). Improvements in sensor technologies are reflected in the growing number of 
publications discussing the application of RS found in the WOS database. Most studies 
are from the Northern Hemisphere, mainly from Europe (43%) and North America (31%). 
On the other half of the world, Asia and Australia represent 13% and 8% of these studies, 
respectively (Figure 3). This result highlights the lack of studies in South America and 
Africa, with only 4% and 2% of the total number of studies, respectively, and with these 
studies focusing on the tropical forest ecosystem rather than a relationship with river 
morphology. 
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Figure 2. Number of articles in the WOS database over time for the topics (a) “riparian or river 
ecosystem”, (b) “remote sensing”, and (c) logical conjunction of both. Increases in the number of ES 
and RS topics are transformed into an increase in the use of RS in ecosystem research. 

 
Figure 3. Locations of the areas studied as found from the WOS search. 
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Increasing availability of remote sensing technologies and software has led to the 
study of specific river research applications. RGB images with a resolution of 
approximately 1 m have been primarily used for river reaches up to 100 km long in the 
research of riparian ecosystems (Figure 4). A second large group of articles has used data 
from Landsat satellites with 30 m resolution and has focused on river lengths from 100 to 
1000 km. Aerial images and Landsat data are the primary sources used for a detailed 
understanding of riparian ecosystems. Most of the articles did not address the river 
planform type (45%) and were related to the application of new technologies, the impact 
of stressors (dams and droughts), or the ecology and physiology of vegetation. 
Furthermore, 33% of the articles focused on the meandering and braided river system, 
and research focused mainly on dynamic river systems with active gravel bars, lateral 
movements, and multiple channel systems. 

 
Figure 4. Relationship between sensor resolution and channel length (a) and a number of different 
river planforms (b) studied in the publications obtained from the WOS search. For most 
publications, the channel type was not explicitly mentioned and was marked as NA. 

3.2. Abstract Term Analysis 
A quantitative analysis was performed based on the frequency of terms and on word 

importance obtained from the abstracts included in the database of collected articles. The 
word cloud analyses (Figure 5a) pointed out that the terms “river” (890×) and 
“vegetation” (569×) dominated in terms of frequency. This finding is consistent with the 
research aims and is reflected by the study design and selected keywords during the WOS 
search. Some other prominent keywords included the fluvial system (riparian, channel, 
floodplain, flood, and flow), ecosystem management and vegetation (habitat, species, and 
forest), physiognomy (land, cover, and island), and morphology (bar). The tf-idf value 
(Figure 5b) was calculated for each term included in the primary corpus, which consisted 
of 257 abstracts with keywords such as “vegetation” (tf-idf = 3.04), “floodplain” (2.76), 
“riparian” (2.65), “flood” (2.34), “channel” (2.30), “change” (2.26), and “habitat” (2.17). 
The absence of the word “river” in the tf-idf analysis showed its obvious insignificance, 
while the highest tf-idf values obtained for specific terms showed that this corpus of the 
published literature is relevant, with an emphasis on the review objectives and PRISMA 
protocols. 
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Figure 5. Term frequency (a) and term frequency-inverse document frequency (b) of the primary 
corpus. The size of the term is proportional to the term frequency and to the tf-idf values obtained. 

Word importance (tf-idf values) differed when the primary corpus was divided into 
four manually selected clusters based on the remote sensing sensors used (Figure 6a). In 
group A, wetlands, identification and classification of land cover structure (including 
vegetation, species, and individuals based on the spectral properties), and impact of 
hydrologic transformation of the river due to dam construction and decrease in flood 
inundation (negative impact on biodiversity) prevailed. While group A included abstracts 
dealing with satellite data, these findings predominantly corresponded with the use of 
satellite data in higher scales. 

The analyses of the abstracts within group B and their aerial images focused on the 
impact of hydrological alterations (flood and dam), morphological properties (depth, bar, 
and grain), and vegetative succession and land cover (LC) change in a riparian forest. In 
this group, the use of long-term datasets (year) with a focus on LC changes at different 
spatial scales (size) was significant. 

In the lidar group (C), most articles dealt with water temperature, modelling using 
the canopy high model (CHM) for shadow detection, and tree height calculation for 
species and land cover classification (vegetation, tree, cover, and species). The authors 
also dealt with analyses requiring high precision when identifying water flow or channel 
morphology. 

The last group (D) used UAV data for temperature modelling (temperature, 
insolation, and shade), vegetation change analyses, and wood detection. They were often 
related to morphological channel changes (erosion and soil), flow modelling, and fluvial 
habitat assessments (biotopes and conditions). 

Word importance using tf-idf was also analysed within six manually defined content 
clusters (Figure 6b). 
• Channel physical properties: “grain”, “depth”, “temperature”, etc.; 
• Morphology and vegetation or field survey: “species”, “change”, “habitat”, etc.; 
• Canopy detection: “island”, “denitrification”, “erosion”, etc.; 
• Application of vegetation and water indices: “wetland”, “floodplain”, “riparial”, etc.; 
• Riparian vegetation: “floodplain”, “bar”, “flood”, etc.; 
• Fauna habitat assessment: “nest”, “model”, “channel”, etc. 
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Figure 6. Word importance of the abstract clusters based on the tf-idf. Clusters were divided (a) into 
four main groups based on the types of remote sensing sensor and (b) the six main categories from 
the content analyses. 

The word importance calculated within those clusters and the selected words proved 
the relevance of each cluster and their consistency. At this point, word importance verified 
all of the explanations specified in the individual sub-sections below. 

4. Remote Sensing Application in River System Research 
After compilation of the WOS database, main research trajectories were organised 

into six main categories: (i) physical channel properties; (ii) morphology and vegetation 
or field survey; (iii) canopy detection; (iv) application of vegetation and water indices; (v) 
riparian vegetation; and (vi) fauna habitat assessment. 
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4.1. Physical Properties of a River Channel Detected by Remote Sensing 
The physical properties of a riparian zone create a baseline for ecosystem 

organisation along streams and lay out the requirements for survival, germination, 
succession of vegetation, and interactions between physical and biotic features. A number 
of remote sensing techniques have been used to identify the physical properties of river 
channels (Table 1). In general, the focus is primarily on identifying the properties of in-
channel bed sediments (grain size), channel geometry and bed morphology (bathymetry), 
flow properties (velocity and temperature), and physical habitats. Grain size mapping 
uses two main approaches related to individual grain size measurements from the in situ 
methods described by Wolman (1954, [38]). The first approach uses the spatial and 
textural properties of images acquired by remote sensing surveys and the correlation 
among image properties with the field measurement (field grain size). In this case, the 
local spatial structures derived from the image texture are linked to the measured grain 
size [39–41]. The second approach uses UAVs in the application of a predictive calibration 
between the point cloud 3D properties (roughness) and measured grain size [42,43], 
formerly dominating terrestrial laser scanner (TLS) survey grain size detections. Due to 
the spatial resolution of the objects, aerial images and SfM photogrammetry data with 
resolutions of several centimetres are commonly used for grain size detection. 

The subaerial in-channel topography is detected using the spectral-depth approach 
(optical bathymetry) or light refraction correction in through-water photogrammetry or 
SfM. The spectral properties are correlated with the empirical data. This approach is 
limited by the maximum detectable water depth and is affected by channel morphology, 
illuminations, and water turbidity, which have been studied in technical papers (see 
details in Table 1). Direct topography mapping of a submerged channel needs refraction 
correction based on the position and elevation of the water’s edge [44] or using a multi-
angle refraction correction of the 3D point clouds available such as python script 
pyBathySfM v4.0 [45]. 

River flow monitoring is achieved through image velocimetry and particle 
identification for the tracking-phase movement. Previous methods developed for 
handheld cameras mounted on the bridges or riverbanks were combined with a drone 
planform for quick and safe methods of calculating discharge [46]. Temperature mapping 
of a river is focused on quantifying the spatiotemporal heterogeneity of temperature 
based on the acquisition of thermal infrared imagery (TIR) or using remote sensing data 
to extract tree cover data and a digital terrain model (DTM) or digital surface model (DSM) 
to simulate river temperatures (measure canopy opening and geomorphic data as an 
inputs for thermal modelling) or the effect of vegetation shadow on river temperature. 

A complex approach for mapping physical channel properties can be used for the 
detection and mapping of in-channel physical habitats. The main physical river habitat 
parameters are constituted by the flow regime (hydraulics) and the physical template 
(fluvial sedimentology and geomorphology). Remote sensing is helpful in the direct 
classification of in-stream morpho-hydraulic habitats (e.g., glides, riffles, pools, and deep 
water eddy drop zones [47–49]); surface flow types (SFTs [50]); substrate sediment [51]; a 
combination of the morpho-hydraulic unit and vegetation (trees, vegetated bar, vegetated 
bank, submerged vegetation, emergent vegetation, and grass [52]); a combination of 
substrate sediment grain size and vegetation [53]; or a combination of all three (hydraulic 
habitats, sediment, and vegetation [54]). Supervised classification methods (maximum 
likelihood classification (MLC) and artificial neural networks (ANNs)) and manual 
habitat delimitation have been used in such a classification. Another approach applies a 
combination of RS capabilities for detecting channel morphology and bathymetry using 
hydrodynamic modelling (velocity distribution) for the classification of aquatic habitats 
(including bathymetry, river hydraulic, grain sizes, undercut banks, vegetation, and large 
wood [55,56]). A detailed review measuring the properties of a biophysical freshwater 
ecosystem can be found in Hestir et al. [23], which focused primarily on hyperspectral 
data and aimed to analyse freshwater wetlands (not river channels). 
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Table 1. Physical properties of river channel detected by remote sensing. Studies are sorted based 
on a short description of the methodologies and sensors used. 

Feature Description Sensor (Data) References 

Grain size 

Detecting the textural variations  
(image semivariance, entropy)  

and optical granulometry 

Aerial images/non-metric camera 
from helicopter survey 

[39–41,57] 

Hyperspectral images [58] 
UAV (digital camera) [59–61] 

Point cloud properties (roughness) 
related to grain size 

UAV (digital camera) [42,43] 

Bathymetry 

Optical bathymetry: channel 
topography 

Satellite (WorldView-2) [62] 
Multispectral/hyperspectral [27,63,64] 

Aerial images/non-metric camera  [65–68] 
UAV (digital camera) [69–72] 

Optical bathymetry: sensor comparison 

Multispectral WorldView-3, 
Airborne hyperspectral CASI, 

UAS-based hyperspectral, 
Bathymetric LiDAR 

[73] 

Optical bathymetry: absence of field 
data 

Satellite (WorldView-2)/aerial 
images 

[74,75] 

Optical bathymetry: effect of 
morphology 

Hyperspectral [76] 

Optical bathymetry: depth-reflectance 
relations 

Hyperspectral [77] 

Optical bathymetry: illumination 
correction 

Aerial non-metric camera [78] 

Optical bathymetry: field sampling 
distribution 

Hyperspectral [79] 

Light refraction correction (digital 
photogrammetry) 

Aerial images [80,81] 

Light refraction correction (water 
refraction correction for SfM) 

UAV [44,45,82,83] 

Surface flow velocity 
Application of image velocimetry 

algorithms for flow velocity detection 
UAV [46,84–90] 

River temperature 

River temperature mapping 
UAV and thermal imaging 

camera 
[91–93] 

Data for a river temperature model 
UAV and thermal imaging 

camera 
[94–96] 

Aerial lidar [97] 
Riparian shading on direct and diffuse 

solar radiation 
Aerial lidar [98–100] 

Habitat mapping 

In-stream habitats classification and 
mapping 

Hyperspectral/multispectral [47–49,54] 
UAV [50–53] 

Habitat conditions (stream condition 
index) 

Lidar/multispectral [101] 

DEM (bathymetry) and hydraulic 
modelling (velocity) for habitat 

detection 

Hyperspectral [55] 
UAV [56,102] 
Lidar [103–105] 

Riparian zone 
morphology 

Floodplain 3D Aerial images [106,107] 
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4.2. Floodplain and River Morphology Related to Vegetation and Field Survey 
Floodplain and river channel morphology are closely related to vegetation 

development. Hicks et al. [108] used a combination of bathymetry and hydraulic 
modelling for the in-channel detection of physical habitats combined with topography 
data and floodplain vegetation classification. Airborne lidar data were used for detecting 
the microhabitat requirements, phytocoenological survey, and Ellenberg’s indicator 
values [109], and aerial images were used to classify floodplain habitats based on land 
cover physiognomy (Table 2) and their long-term evolution in relation to changes in the 
river morphology (pattern). 

From detailed aerial images based on supervised classification, individual large 
woody (LW) pieces can be identified as a polyline and the log jams of large woody debris 
(LWD) can be supported by ground truth survey [110,111]. 

Another approach uses remote sensing data combined with field surveys. Optical 
images have been used to classify vegetation (vegetation cover) and to identify 
geomorphic processes. These data have been supplemented by field vegetation surveys 
(vegetation variation and floristic composition) and soil sampling [112–114]. Vegetation 
transition was studied to assess the mutual relation between vegetation and channel 
dynamics (environmental controls). A different group of studies [115–119] has evaluated 
the impact of floods, drought, post-dam hydrology alteration, and river regulation on the 
patterns and processes of identifying vegetation (vegetation survey and morpho or 
vegetation spatial delineation using RS) or with forest canopy metrics [120]. 

A combination of object detection related to channel morphology and vegetation is 
used for understanding riparian zone evolution. Studies have focused on a comparison of 
the changes in the land cover categories (vegetation, agriculture, residential, water body, 
and bars) and meander parameters (width, sinuosity, radius, etc., [121–123]) on the 
transformation of riparian vegetation (vegetated or unvegetated, woody vegetation, 
vegetated islands, etc.) classified from RS in relation to in-channel geomorphic changes 
(active channel width, pattern changes, and bar transformation [124–127]) or floodplain 
age mapping [128]. Moreover, several studies have explored the morphology–vegetation 
relationships and the effect of floods and high-magnitude events [27,129–131] or post-dam 
hydrology alteration [132–134]. Marteau et al. [135] used UAVs to carry out effective river 
restoration measures by combining DEMs of difference (DoD) and orthophoto (MLC 
classification). 

Satellite images are affected by a combination of hydrodynamics parameters in MLC 
classification and field surveys, with the information spectrally derived from RS to 
estimate the automated floodplain roughness [136]. 

Table 2. Detection and classification of river morphology and vegetation with a detailed field survey 
of vegetation and soil properties. Studies are sorted based on a short description of the 
methodologies and sensors used. 

Feature Description Sensor (Data) References 

Floodplain habitat 
Habitat detection (combined with LC 

classification, vegetation survey) 

Lidar/multispectral [108] 
Lidar [109] 

Lidar/aerial [137,138] 
Aerial images [139–141] 

LWD 
LWD detection (related to the field 

survey, channel morphology or 
application of supervised classification) 

Aerial images [142] 
Aerial images/lidar [110] 

UAV [111,143] 
Morphology and 

vegetation 
relationship + field 

data 

Environmental controls on vegetation 
dynamics (relation morphology with 
vegetation survey and bed material 

sampling) 

Aerial images [112–114,144,145] 
Aerial images/UAV [146] 

UAV (digital camera) [30] 
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Flow regime changes and flooding on 
vegetation dynamics (relation 
morphology with field survey) 

Satellite [118] 

Aerial images [115–117,119,147] 

Environmental controls on vegetation 
dynamics (forest canopy metrics) 

Aerial lidar [120] 

Morphology + 
vegetation detection 

and classification (LC) 

River morphology (bar age, channel 
pattern) with vegetation classification 

Satellite [121,122,148] 
Aerial images [123–128,149–154] 

Effect of floods on river morphology 
and vegetation 

Aerial images [27,130,131] 
UAV (digital camera) [129] 

Effect of post-dam hydro alteration 
Aerial images/satellite [133] 

Aerial images [132,134] 
River restoration UAV (digital camera) [135] 

Floodplain roughness 

Automated floodplain roughness 
parameterisation by assessing  

the vegetation spectral properties  
and field survey 

Satellite (SPOT-5) [136] 

4.3. Canopy Detection from RS 
Vegetation canopies within river zones have been studied by combining airborne 

laser scanning and photogrammetry from aerial images or UAVs. The ecological 
evolution and vegetation recruitment have been assessed based on the changes in 
vegetation patches [155–157]. A group of studies used canopy height models (CHMs) to 
explore the spatial distribution and dynamics of vegetation (Table 3). Vegetation 
dynamics are related to changes in the channel morphology and are defined based on the 
different successional stages of vegetation classified from a canopy. Tree height, growth 
rate, and morphology transformation from airborne laser scanning (ALS) data are 
combined with field surveys (stem diameter, age, density, species, height, etc.) for an 
investigation of the island’s evolution [158–162], the requirements of different habitats, 
and the life history of riparian tree species such as Alnus incana (L.) and Populus nigra (L.) 
[163]. Corenblit et al. [164] used a set of four aerial images to calculate the CHMs from 
photogrammetric elevation models and to analyse its relationship with geomorphic and 
biological in situ variables. Some studies have determined the direct relationship between 
the properties of biophysical vegetation (field survey) and the CHM [165,166]. Field 
surveys and three different sensors (ALS (0.5–2.4 m pixels), QuickBird (2.4 m pixels), and 
SPOT-5 (10 m pixels)) were used by Johansen et al. [167] for riparian zone mapping for a 
stream length of 26,000 km in Australia. 

Some other authors have used data from CHMs to classify vegetation based on the 
vegetation height [168,169], which is useful for vegetation and habitat mapping. 
Hortobágyi et al. [170] presented an approach for analysing past vegetation and 
morphology dynamics by combining historical aerial image stereophotogrammetry and 
Structure-from-Motion (SfM). ALS data have been applied in the floodplain roughness 
parametrisation, where spatially distributed canopy height (stage dependence of 
vegetated model) has been used in hydrodynamic modelling [171,172] or automated 
roughness parameterisation by fusing QuickBird satellite and ALS data to estimate plant 
density, crown diameters, tree height, stem diameter, crown base height, and leaf area 
index [173]. 
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Table 3. Canopy height model (CHM) used for an assessment of the biophysical properties, 
relationship between the CHM and field surveys, vegetation classification, and roughness 
parametrisation. Studies are sorted based on a short description of the methodologies and sensors 
used. 

Feature Description Sensor (Data) References 

Canopy height model 
(CHM) generation 

Relation of CHM (tree height), 
vegetation survey (species, density,  

and diameter), and channel morphology 

Aerial lidar [158,161,167,174–176] 
Aerial images [164] 

Aerial lidar/aerial images [160,162,163] 
Aerial lidar/satellite images [177] 

Using CHM for vegetation classification 
Aerial images [168] 

UAV (digital camera) [169] 
Direct relation CHM and biophysical 

properties of vegetation 
Aerial lidar [166] 

UAV (digital camera) [165] 
Compare stereophotogrammetry  
and Structure-from-Motion (SfM)  

for CHM generation 
Aerial images/UAV [170] 

CHM and floodplain 
roughness 

parameterisation 
(vegetation height) 

Roughness impact in hydrodynamic 
modelling 

Aerial lidar [171,172] 

Regression model for roughness from 
tree heights, spectral properties, and 

field survey 
Multispectral/aerial lidar [173,178] 

Vegetation and 
riverbank erosion 

Generation of CHM and hydraulic 
modelling in HecRAS 

Aerial lidar [179] 

4.4. Application of Vegetation and Water Indices in Riparian Zone Assessment 
Medium resolution satellite images (~10–15 m) with multispectral bands are 

preferred in the regional and large-scale riparian surveys and calculation of vegetation 
properties based on the spectral transformation of two or more bands. In the riparian 
zone, the normalised difference vegetation index (NDVI) is primarily associated with 
healthy green vegetation, and the normalised difference water index (NDWI) is primarily 
used to monitor changes in water content. In recent years, developments in UAV 
technology and low-cost multispectral sensors have enabled users to capture vegetation 
indices (VIs) and modified VIs (for use with RGB drone images) for effective drone 
monitoring [180,181]. Multiband indices are used for the classification and delineation of 
vegetation (see Table 4), where the NDVI and NDWI threshold for vegetation is applied, 
and water objects are delineated [182,183]. 

Spectral indices are used as a class parameter for supervised classification [184–187], 
as a predictor variable in the calculation of a fractional vegetation cover (FVC) model 
[188], or are combined with structural vegetation properties and species composition 
(field survey) for vegetation classification [189–191]. Moreover, if multitemporal 
vegetation cover is delineated, succession can be detected by calculating the gain or loss 
in the vegetation area [180,192,193]. 

Several other studies have used spectral indices to identify the impact of changes in 
the hydrology regime by damming on vegetation [181,194] or to quantify vegetation 
dynamics as a function of flooding [195–197]. Chen et al. [198] used NDWI to identify the 
frequency of floodplain inundations, and Marchetti et al. [199] evaluated the relationships 
between NDVI patterns and floodplain hydrogeomorphic features. Spectral indices 
highlight the vegetation properties as the photosynthetic activity or chlorophyll content. 
Spatial–temporal variations in the vegetation coverage and spectral properties 
(greenness) can be used to evaluate the ecological condition of riparian vegetation [200–
203]. Güneralp et al. [204] estimated the above-ground biomass (AGB) on the meander 
bend using complex spectral information from the sensors SPOT 5 and Landsat ETM+, 
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and Fernandes et al., 2020 [205] estimated the carbon stock of a Mediterranean riparian 
forest based on UAV multispectral images. The NDVI with climate and field measured 
data (2000–2019) have been used for temporal and spatial variation of AGB and its 
response to climate change in the Tibetan Plateau [206,207]. Spectral indices can be used 
to explore changes in vegetation productivity (NDVI) during the monitoring of 
restoration projects [208,209], during the identification of vegetation responses to shifting 
management [210], or in the assessment of green infrastructure [211]. 

Table 4. Vegetation properties and water area detection based on vegetation and water indices 
calculated from multispectral sensors. Studies are sorted based on a short description of the 
methodologies and sensors used. 

Feature Description Sensor (Data) References 

Vegetation and LC 
classification 

Identification of vegetation cover and 
LC classification 

Satellite [182–185,187,212] 
Satellite + UAV [186,188] 

Combination of vegetation indices and 
Field survey (biophysical parameters) 

for model parametrisation and 
vegetation classification 

Satellite + lidar [189] 

Satellite [190,191] 

Vegetation classification and succession 
phase assessment 

Satellite [192,193] 
UAV [180] 

Vegetation impact to 
changes in hydrology 

regime 

Vegetation classification and effect of 
hydrology alterations (damming) 

Satellite [194] 
Satellite + UAV [181] 

Relationships between NDVI and the 
groundwater depth 

Satellite [213] 

Floodplain LC and inundation 
frequency 

Satellite [195–197] 

Inundation detection 
Inundated areas by classification images 

based on the water area frequency 
(WAF) index 

Satellite [198] 

Hydrogeomorphic 
dynamics 

Relationship between NDVI patterns 
and floodplain dynamics 

Satellite [199] 

Ecological indicators 
Assessment ecological condition of 

riparian zone based on VI 
Satellite [200–203] 

Biomass 
Mapping of aboveground biomass Satellite [204,206,207] 

carbon stock estimations UAV (multispectral images) [205] 

Restoration Using VI for restoration monitoring 
Satellite [208] 

UAV (digital camera) [209] 

Management 
Vegetation (VI) response to shifting 

management activities 
Satellite [210,211] 

4.5. Riparian Vegetation Analyses and Assessment 
Woody riparian vegetation is the most important element interacting with physical 

in-channel properties (sediment transport), channel morphology dynamics (erosion and 
deposition processes), and flow regime. Remote sensing provides continual datasets that 
facilitate the identification of spatial coverage and structural complexity of vegetation and 
its functions [214]. For an understanding and assessment of the vegetation habitat 
dynamics, land cover is used as a proxy, where land cover classes are detected and 
represent ecological habitats or process-oriented structures. Many authors have applied 
different methods of vegetation classification based on the physiognomic and texture 
patterns of a riparian landscape (Table 5). For vegetation detection, a general classification 
scheme is used, with vegetation as one feature of the riparian zone, broken down into 
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forest and grass classes. Some authors have used visual photointerpretation [215–219] of 
riparian land cover and categorized features into basic textural classes (channel and water, 
bar and sediments, settlement, forest, shrubland, grassland, and farmland). Hooke and 
Chen [220] mapped a complex system of woody vegetation in riparian areas with detailed 
successional stages of vegetation classification: shrub and herbs; juvenile sparse 
woodland; juvenile dense woodland; mature, sparse woodland; mature, dense woodland; 
old woodland; bank trees; and linear vegetation. Other authors have detected three main 
categories [26,221]: water, vegetation, and gravel by supervised classification (with main 
classification algorithms: maximum likelihood classification (MLC), random forest (RF), 
or convolutional neural network (CNN)). Vegetation land cover approaches have been 
used to detect the effects of flood events based on LC changes [222] and a combination of 
historical time-series for tracing the coevolution of river channels and riparian forests, and 
for investigation of the negative impact of human manipulation on river flow by post-
dam hydrology alteration [223–226]. Furthermore, human disturbances and pressures in 
floodplain embankment and catchment land-use transformation over the last 50–60 years 
have been detected [227–230]. If the LC classification is applied, calculations of the 
landscape metrics are used to identify spatiotemporal land cover changes and variations 
in the riverscape patterns [231–234]. Dufour et al. [235] identified homogeneous 
vegetation units based on object-oriented aerial image classification (eight horizons), 
floristic composition, physiognomic parameters, and censed species and described 
landscape pattern dynamics based on landscape metrics. Morphological and vegetation 
responses mapped from land-cover changes are used to establish spatial priorities for 
conservation, restoration assessments, or its functional links with freshwater ecological 
status (Table 5). 

A dynamic series of RS data was used to understand the process of vegetation 
succession and to identify the spatiotemporal trajectories of vegetation patches in different 
successional phases. Previous work has identified physical and biological processes 
governing the establishment of vegetation by manual digitalisation of vegetation classes 
[236–241], object-based semi-automated vegetation classification [242], or random forest 
classifier algorithm (29 detailed land cover classes, [243]) and related its spatial changes 
to channel morphology changes (ecotope transition from succession to rejuvenation or 
stability). Vautier et al. [244] used spatiotemporal stereophotogrammetric analyses of the 
CHM to identify geomorphic, pioneer, and biogeomorphic phases based on the vegetation 
heights. Tree ring analysis [245,246] with remote sensing land-cover delineation has been 
used for the early successional stages of woody vegetation detection on the surrounding 
gravel bar, and landscape metrics (Shannon diversity, dominance, fragmentation, patch 
metrics, and edge density) have been applied for assessments of the landscape habitat 
turnover [247–249]. A spatial aspect of sediment deposition, erosion, and vegetation 
colonisation (fine-scale vegetation encroachment) has been examined in several studies 
based on the detection of vegetation patches [155,250,251]. 

The mapping of riparian woody species in the riparian zone is necessary for 
understanding the cause-and-effect relationships between the vegetation community and 
channel and floodplain morphology, where individuals start from the germinant seedling 
stage and grow into the juvenile stage. RGB data prevail in the manual interpretation of 
areal extent, structure, and species composition [252–255], and multispectral and 
hyperspectral data prevail for semi- and automatic classification [256–260] on the different 
levels of plant composition (individuals, populations, and community). 

A specific application is mapping riparian invasive taxa as a critical task for 
management and its threat to the ecosystem. Michez et al. [261] identified patches of 
invasive species from UAV orthophotos based on object classification (RF classification in 
eCognition). The spectral–structural workflow for classifying invasive species was 
developed using UAV multispectral data (combination of NDVI, NDWI, soil-adjusted 
vegetation index (SAVI), normalized difference snow index (NDSI), enhanced vegetation 
index (EVI-2), green normalized difference vegetation index (GNDVI), RGB, near-infrared 
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(NIR), and red edge (RE)) combined with the CHM model from SfM algorithms and field 
surveys [262]. Aerial multispectral data were used for the classification of Tamarisk 
(Tamarix spp.) and greenness calculated from the NDVI for an assessment of a beetle-
impacted Tamarisk area [263]. The effects of flow regime on manually digitised floodplain 
invasive vegetation based on 67 flow metrics (indicators of hydrologic alteration and 
environmental flow components) have been studied on the 1.1 km long reach of the 
Ahuriri River [264,265]. 

A sub-decimetre resolution of UAV images has allowed for the classification of 
aquatic macrophytes (Eichhornia crassipes and Phragmites australis) [266,267] or green algae 
(Cladophora glomerate) [33], where the authors have emphasised the importance of 
lightweight and rapid response aerial imaging systems for quick and low-cost monitoring. 

Table 5. Vegetation detection, successional phase identification, and individual species population 
classification in the riparian zone. Studies are sorted based on a short description of the 
methodologies and sensors used. 

Feature Description Sensor (Data) References 

Riparian vegetation 
detection 

LC and vegetation classification in the 
riparian zone 

Satellite [216,219] 
Aerial images/(satellite) [218] 

Aerial images [215,217,220,268] 
UAV (multispectral/digital 

camera) 
[26,221,269] 

Effect of floods on the vegetation LC 
and vegetation recruitment 

Satellite [222] 

Effect of damming on the vegetation LC 
Satellite [226] 

Aerial images [223–225] 
Disturbances and pressures on the 

vegetation LC 
Aerial images [227,229,230] 

Google Earth images [228] 
Changes in vegetation LC and 
landscape metrics calculation 

Satellite [231–233] 
Aerial images [234,235,270] 

Vegetation LC for ecological indicators 
assessment 

Satellite [271,272] 
Aerial images [273] 

Structure of LC for management plans 
Satellite [274] 

Aerial images [275–277] 
Vegetation dynamics simulation Aerial images [278] 

Vegetation variable from field survey 
and RS data 

Multispectral [279] 

Vegetation succession 

Biogeomorphic succession supported 
with vegetation survey 

(dendrochronology) 
Aerial images [245,246] 

Vegetation phase dynamics for 
identification of vegetation 

establishment (biogeomorphic phases) 

Satellite [243,280] 
Aerial images/satellite [237,241] 

Aerial images [236,239,242,281] 
Aerial images/lidar [244,282] 

UAV (digital camera) [240] 
Biogeomorphic phases detection and 

landscape metrics 
Aerial images [247–249] 

Vegetation colonisation and 
encroachment 

Aerial images [155,250] 
Multispectral/lidar [283] 

UAV (digital camera) [251] 
Manual classification of riparian 

vegetation 
Aerial images/satellite [252,284] 

Aerial images [254,255] 
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Vegetation 
communities/species 

classification 

UAV (digital camera) [253] 
Unsupervised (ISODATA) classification 

of riparian vegetation 
Hyperspectral/lidar [256] 

Supervised classification 
Satellite [257,259,260] 

Hyperspectral [258] 

Invasive riparian 
vegetation 

Manual classification 
Satellite/aerial non-metric 

camera 
[285] 

Aerial images [264,265] 

Supervised classification 
Multispectral [263] 

UAV (RGB, multispectral 
camera) 

[261,262] 

Aquatic vegetation 
Manual classification UAV (digital camera) [266,267] 

supervised classification UAV (digital camera) [33] 

4.6. Fauna Habitat Assessment in the Riparian Zone 
Assessments of wildlife habitat status are required to successfully implement 

restoration projects as well as to successfully manage perspectives. The landscape 
properties detected from RS data create a proxy for fish habitat assessment or predictive 
animal models (abundance, preference, and suitability) in different riparian zones 
[286,287]. Fauna abundance and distribution depend on the in-channel and floodplain 
morphology, water depth, bed material, woody debris accumulation, bank vegetation, 
and floodplain vegetation composition (Table 6). Remote sensing data were used for 
detecting the riparian zone land cover based on water class and vegetation and for 
creating relationships between the field physical metrics and parameters derived from 
satellite data [288]. Other authors focused primarily on manual in-channel habitat 
classification from RS (pool-riffles, bed material, and flow properties) as a potential fish 
habitat [289] and its changes due to vegetation removal [290] or to identify parameters 
(geomorphic and potential fish habitat variables) for calculating the habitat richness index 
[287]. 

Arantes et al. [291] and Mollot et al. [292] combined in situ fish habitat data, 
environmental data, and landscape structures mapped from satellites for the 
identification of habitat preferences and to assess habitat conditions. Moreover, some 
studies focused on the identification of the habitat suitability index for alligators [293], on 
ground nest probability and its reflections in environmental constraints [294] and the 
application of vegetation indices (NDVI, EVI, and EVI2) from multispectral images as a 
predictor for insect habitats [295,296], or on avian abundance [297]. 

Table 6. Wildlife habitat status assessment using RS technologies. Studies are sorted based on a 
short description of the methodologies and sensors used. 

Feature Description Sensor (Data) References 

Fish habitat detection 
Habitat complexity  

assessment and distribution 

Satellite [288] 
Aerial images [287,289,290] 

Aerial lidar [286] 

Habitat sustainability 

Fish habitat preference 
Satellite [291] 

Satellite/lidar [292] 

Suitability index for alligator/caiman 
Satellite [294] 

Satellite/lidar [293] 
Insect habitat prediction based on VI Satellite [295,296] 

Predictive models for avian abundance 
and species richness 

Satellite [297] 
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5. Remote Sensing in the Riparian Zone: Global Challenges and Opportunities 
This review analysed 257 studies and pointed out the wide range of uses for remote 

sensing in riparian ecosystem research, with focuses on ecological functioning and 
dynamic interactions between biota and the fluvial landscape. The aerial and satellite 
imagery are widely used in fluvial geomorphology for the identification in-channel 
planform and morphological changes [298–301]. Based on the study objectives, these areas 
were excluded from our evaluation but still present an extensive field of RS applications 
in the long-term evaluation of river trajectories. The advancement in sensors, platforms, 
and software innovation may facilitate the adoption of RS technology for effective and 
less time-consuming research and monitoring of rivers. 

Multiple uses of the different sensor combinations and interconnections between 
scientific disciplines led to problems with categorising of selected papers into several 
research groups. Therefore, a subjective approach was applied to include these articles 
into the six main categories using expert and text mining content analyses. Potential 
limitations are related to the selection of the research query samples and topics that 
reflected the database creation process, e.g., selected specific terms and synonyms for 
main groups. The issue arose from detailed analyses of the result wherein the third group 
focused on basic sensor types and did not include satellites with very high resolution (e.g., 
Skysat, Pleiades). This could be result of search query composition or content analyses 
(these types were not used in riparian ecosystem research within our specific groups). 
Moreover, the selection of the articles was limited. Only papers published to June 2021 
and in the WOS database were incorporated into analyses. During the quantitative text 
mining, a total of 4586 unique terms were used after pre-processing. Despite a relatively 
high number of analysed articles (257), only terms included within abstracts were used 
and a relatively low number of non-sparse entries (27,565/1,141,865), which resulted in a 
sparsity of 98%. Full-text quantitative text analysis should be considered as the next step 
for detailed, unsupervised clustering and more precise quantitative analysis. Further, 
user-based clustering (used in this paper) is subject to a high risk of expert malignancy 
and also, this process is time consuming and requires a high level of expertise. 

However, riparian ecosystem scientists still need to face the challenge of monitoring 
the evolution of river zones and assessment of ecosystem functions. Current limited 
knowledge of the riparian zones’ evolution requires new analytical tools for inferring past 
evolutions that are essential for predicting future trajectories and for understanding the 
complexity of river systems [302]. From the literature review and state-of-the-art RS 
applications in riparian ecosystem research, several main challenges could be addressed: 
- Knowledge transfer between the evolution of remote sensing processing and river 

scientists or managers; 
- The technical availability of user-friendly methods and its routine application in river 

research; 
- The effectiveness of RS techniques for information mining; 
- The transfer of pixel data to processes and the integration of quantitative and 

qualitative information; 
- Near real-time monitoring; 
- Data mining;  
- Open data repositories and policies. 

An interdisciplinary approach is necessary for understanding riparian zone systems 
and the complex responses caused by multiple agents. Knowledge transfer from a 
technical background and RS data processing to river research and management are 
highly important. Moreover, precise monitoring and data mining are required. 
Huylenbroeck et al. [214] emphasised the mutual benefits for managers (e.g., ecologists, 
hydrologists, and geomorphologist) and remote sensing experts and pointed out that 
developments in technology often precede application in real-field situations. An example 
is the application of UAVs for detailed topography mapping in which Structure-from-
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Motion (SfM) emerged as a flexible and operational method [303] that allows many users 
without formal training and knowledge of the correct methodologies to apply this method 
for topography modelling while mitigating systematic errors, uncertainty, and 
independent quality assurance measurements [85,304,305]. Systematic monitoring and 
detailed analyses combined with empirical and field research create important sources for 
decision making and the successful management of riparian zones and river restoration. 
Benefits of detailed RS data such as quantitative assessments and modelling outweigh 
more traditional decision-making processes, which often lack the quantification and 
requirements for formalisation and operationalisation. 

Analyses of 257 articles pointed to the different utilisation of the RS data, where their 
application enables substitute intensive fieldwork collection (low-density data coverage) 
with the continuous dataset for identification of physical channel properties, water flow 
parameters, or vegetation attributes. In some cases, they are applied as a complementary 
tool for field mapping (e.g., depth [27], floodplain DEM [109], changes of channel 
environmental properties [112–114,144,145], or vegetation parameters from the CHM 
[165,166]). RS data are mostly used for direct object detection and quantifying object 
parameters. Based on our analyses, vegetation (together with channel morphology) was 
the main object extracted from RS in the riparian ecosystem by analyses of the spatial 
extent or land cover changes [216,219]. Vegetation objects were often linked with the 
assessment of the external impacts that led to ecosystem transformation (flood [222], 
damming [273], and catchment-scale management [275–277]) and were analysed by using 
the spectral transformation of two or more bands to indices [184–187], lidar data, sensor 
combination, or detailed mapping and monitoring of the species composition [189–191]. 
Multitemporal data acquisition led to long-term change analyses and succession detection 
by identification of the gain or loss in the vegetation area [180,192,193]. Furthermore, 
riparian ecosystem transformation could be detected over the last 50–60 years [227–230], 
where could be integrated with data from historical aerial surveys, satellite data, and new 
technology such as is lidar or UAVs for conservation, restoration, and freshwater 
ecological status assessments. The significant group of the papers described and tested 
methodology for riparian ecosystem parameter extraction (e.g., channel depth [44,45,78] 
or grain size [39–41]) and object delineation (vegetation automatic classification [26], 
stereophotogrammetric analyses of historical data [244], or automatic classification of 
riparian woody species [257,259,260]). Appearance of user-friendly software applications 
(for SfM processing, orthorectification, correction, and classification) and open data 
repositories (e.g., Copernicus Open Access Hub and Earth Explorer) with pre-processed 
free temporal data [24,214] opens a new method of RS application in research of riparian 
ecosystems. These data can be processed with minor investments (open source software 
for monitoring and classifications based on spectral characteristics with object detections) 
or complemented with field data measurements and surveys (canopy properties, 
vegetation health status, or image texture granulometry determination). In recent years, 
we have witnessed the progress in the development of open-access toolboxes 
incorporated into commercial or open-access GIS solutions [306], such as Fluvial-
Corridor-Toolbox-ArcGIS [307], River Bathymetry Toolkit [308], Geomorphic Change 
Detection [309], BASEGRAIN (https://basement.ethz.ch/download/tools/basegrain.html, 
accessed on 17 February 2022), and GRAINet [59]. 

The application of RS is time-effective and cost-effective; therefore, accuracy and 
uncertainty must be considered. Application of RS still focuses mainly on the local or 
regional scale and on the reach segment. The historical archive of RS data enables insight 
into past and back processing of historic datasets for new emerging scientific applications; 
diachronic analyses for past process detection and scaling actual models; and predicting 
future development. A retrospective reassessment of the hypotheses of landscape 
evolution and processes is also necessary [310]. 

RS technology enables the creation of spatially representative information stored in 
pixels or a XY(Z) point system. For process-oriented applications, reducing information 
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to methodologically effective descriptions of objects is essential. The surface of the Earth 
and vegetation properties are reduced to homogeneous riparian objects represented by 
statistically processed spectral, elevation, geometric, or morphometric characteristics. The 
detection of river system objects based on the identification of processes can be used to 
apply such procedures automatically to assess their variability, associated ecological 
integrity, and the diversity of the system. The transfer of point-based quantitative 
information to analytical and qualitative structures such as habitats and processes still 
remains a challenge. At the same time, spatial referenced data enable evaluation of the 
spatial context and conduction of the structured multi-scale analyses. A new technique 
for analysing images has arisen by applying “big data” processing and artificial 
intelligence (AI, machine learning, and convolutional neural networks) to object detection, 
analytical assessments, and riparian zone process understanding [26]. Application of AI 
increases classification performance over 90% and makes it possible to increase detectable 
features in the riparian landscape, and as stated Carbonneau et al. [26], potentially enables 
using RGB images instead of multi- and hyperspectral sensors for high-accuracy 
classifications. At the same time, higher spatial and temporal resolutions enable 
transformation of river monitoring from irregular and traditional point mapping to 
continuous monitoring at any point in the riparian ecosystem. 

A combination of methods for automated data processing and improvement of the 
big data infrastructure and computational power facilities provides the ability to conduct 
continual or near real-time environmental monitoring [24,306]. This challenge is now 
included at smaller scales for hydrologic monitoring (velocity measurement) or 
management activities related to restoration processes. Integration of multiple systems 
such as camera-based monitoring stations, surveys of surface hydrology, river channel 
morphology, and riparian vegetation structure and density conducted at near real-time 
could reveal their detailed interactions even on the catchment scales. The derived data 
could also serve as an important additional refinement for catchment-based hydrological 
modelling [311]. 

Tomsett et al. [24] proposed an open repository for sharing data and knowledge as 
an important tool for decision making and good-practice dissemination. To study riparian 
ecosystems effectively, support for planning and policy is important. Research findings 
and RS data are essential for combating unsustainable riparian ecosystem changes or 
transformations and should be included in policy making and its implementation. 
However, the transformation of real riverine processes to complex models and the 
conceptualisation of a complex landscape system with many drivers and connections are 
extremely difficult, and it is imperative to continue the development in RS practice. 
Therefore, anticipating solutions to future problems, thus helping to make interventions 
and providing resilience to future negative changes, is important. 

6. Conclusions 
In the recent decade, the number of new remote sensing methods and sensor 

development has led to its wide application in the riparian zone studies. The higher 
resolution and affordable price for technical equipment and software processing have 
allowed faster field data acquisition and processing, which have led to a more detailed 
understanding of the functioning of riparian zones while simultaneously reducing the 
amount of cost, time, and effort taken for processing. Additionally, the extensive coverage 
of publicly available satellite images (e.g., Sentinel and Landsat) gives a unique 
opportunity to study riparian zones all over the world in resolution that was not available 
ever before. This opportunity allows for researchers to study riparian zones both at the 
local and global scales. 

The combination of sensor improvement and technical availability contribute to 
increasing the use of remote sensing for detailed analyses and monitoring of in-channel 
processes, morphology of rivers, vegetation properties, floods, and river-floodplain 
connections. Together with the improvement of drones, equipped with different types of 
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sensors, they accelerate field data acquisition and information mining to transfer of pixels 
to process-oriented information. The comprehensive analysis of 257 articles that have 
used RS in riparian ecosystems pointed to main areas of application in the current state of 
its application that is linked with detecting physical channel properties, morphology, 
canopy and riparian vegetation changes, and habitats. The application of RS clearly shows 
potential for transfer of knowledge to local managers and stakeholders and for the 
successful management of riparian zones. 
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