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Abstract: Climate plays a key role in ecosystem services. Understanding microclimate change can be 

a significant help in making the right decision for ecosystems and buffering the effects of global 

warming. Given the large distances between meteorological stations and the changes in the climate 

variables within short distances, such variations cannot be detected just by using observed meteoro-

logical data. This study aimed at determining the spatial structure of the mean annual temperature, 

the annual average precipitation, and the climate zoning of Iran using data from 3825 stations from 

2002 to 2016.The multivariate regression demonstrated the dependence of these variables on longi-

tude, latitude, and elevation. Regression-kriging indicated a decline in temperature from east to west 

and northwest in high-altitude areas, while most precipitation values were observed over the Cas-

pian Sea coastline and the Zagros Mountains. Climatic zoning showed that using auxiliary variables 

was very effective in detecting 24 climatic classes and understating the climate diversity in Iran. Hot 

to very hot and arid to very arid climate classes occupy the largest part of Iran, including the south-

eastern and southern desert regions. According to the generated climatic map, the large climatic di-

versity of Iran needs accurate policymaking regarding cultivation patterns and biodiversity. Visual 

comparisons of climatic zones with four remotely sensed agricultural-related variables showed that 

using such carefully produced climatic maps would be beneficial in classifying, assessing, and inter-

preting the remote sensed agricultural-related variables. 

Keywords: Iran climate zones; precipitation classification; regression-kriging; temperature  

classification 

 

1. Introduction 

Nearly one-third of Iran’s territory is covered by mountains. The main characteris-

tics of the precipitation regimes in Iran include low annual precipitation, severe annual 

and seasonal fluctuations in precipitation, short precipitation periods, and heavy rain-

storms. Precipitation does not follow a specific pattern in Iran and varies with location. 

Differences depend on the direction and origin of the air masses affecting Iran, as well as 

the mountain aspect [1]. The air temperature in Iran is considerably dependent on eleva-

tion, longitude, and latitude, the effect of elevation being considerably greater than that 

of the latitude. The climate in mountainous regions with a heterogeneous topography 

significantly changes due to the large elevation gradient over a short distance [2]. 
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Large-scale temperature variations in the mountains are mainly dependent on physical 

processes such as airflow; solar radiation; and interactions with topographic complexities 

including aspect, roughness, and shape of the terrain [3]. Vegetation and geographical 

dispersion of humans locally affect the temperature [4]. Different climates have been 

formed in Iran due to the wide latitude and vegetation variations and different terrains, 

such as deserts, dense forests, coastal regions, and high mountains. 

Depending on the development level, between 20 and 80% of the changes in annual 

agricultural products are due to weather fluctuations, so between 1 and 5% of agricul-

tural products are lost because of changes in the weather, in addition to severe losses 

from indirect negative effects, such as pests and diseases [5]. 
Macroclimate data may be sufficient for plain physiographic units with small 

changes in land use, but the borders of climatic regions should be accurately delineated 

to explain the behaviors of animals and plants [6]. 
Fine-resolution climate data is required for the correct prediction of plant species 

and their behavior in natural and anthropogenic environments. It has been found that 

spatial nonuniformity in climate variables makes temperature calculated from the direct 

local measurements to be twice as much as that calculated through global interpolation 

techniques [7]. Spatial distribution models (SDMs) are increasingly growing around the 

world to respond to ecological questions ranging from climate changes to management 

challenges [4]. However, SDM predictions mainly rely on the conditions of coarse reso-

lution synoptic stations and fail to consider fine-resolution climate classes, because most 

climate variations in large-scale mountainous regions act as fine-resolution models. Ac-

cordingly, it is necessary to combine data collected from synoptic stations with auxiliary 

variables to achieve a finer spatial variability of climate variables. In a study of spatial 

variability of daily weather variables in the High Plains of the USA that was undertaken 

in a multivariable network, it is shown that, to explain more than 90% of the variation in 

the maximum temperatures between sites, a spacing of 60 km was sufficient on a 

year-round basis, while the minimum temperature required closer spacing (~30 km) to 

achieve this criterion. The spacing of precipitation gauges, for this criterion, would be less 

than 5 km [8]. In another study, to eliminate the effect of uneven stations, using 736 me-

teorological station data (from 1961 to 2010) and the Inverse Weighted Distance (IDW) 

method, researchers detected the trends in climatic variables, including average precipi-

tation, air temperature, solar radiation, and wind speed, for the whole of China and 

showed that there are three large-scale instrument replacements that increase the uncer-

tainties of the trend analysis [9]. 

Given the large distance between small-scale synoptic and climatological stations 

and the climate, class variations are smaller than these distances, and despite the need for 

accurate temperature and precipitation data, these stations cannot present microclimatic 

classes adequately. Moreover, establishing denser meteorological stations, even mobile 

stations or individual sensors, will be costly. To access more correct data, a change in 

scale towards a finer scale, known as interpolation, may be necessary [10]. Multiple cli-

mate parameters used in traditional methods fail to represent the real climate classes. 

Many efforts have recently been made to provide a more realistic picture of the regional 

climate using geographical parameters. Additionally, the selection of auxiliary variables 

to increase the accuracy of climate zoning should result in a finer spatial resolution to 

take into account the mean, borders, and nonuniformity of the climatic variables [4]. 

Geostatistical interpolation methods are often used for the interpolation of climatic 

variables [11]. The kriging method models the spatial correlation of regional climatic 

variables (such as temperature and precipitation) using a semi-variogram. Changes in 

patterns of the spatial autocorrelation of the maximum temperatures of Iran were inves-

tigated in a study using 125 synoptic stations’ data (from 2010 to 1980) and kriging in-

terpolation and showed areas with positive and negative spatial autocorrelations [12]. 

Regression-kriging(RK) combines climatic variable observations with auxiliary variables 

such as height for the optimal estimations [13]. The superiority of the regression-kriging 
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method over conventional geostatistical methods in the interpolation of climatic varia-

bles has been shown in several studies [14–16]. In the Jalisco state of Mexico, seven geo-

statistical interpolation methods were evaluated in predicting the monthly maximum 

temperature and monthly mean precipitation, and the results showed that the regres-

sion-kriging and thin-plate spline were the most efficient methods [17]. In Extremadura, 

a region of Southwestern Spain, different geostatistical approaches to map climate vari-

ables were evaluated. In this study, the ordinary kriging (OK), simple kriging (SK), and 

universal kriging (universal kriging) methods were compared with three multivariate 

algorithms that take into account the altitude: collocated ordinary cokriging (OCK), 

simple kriging with varying local means (SKV), and regression-kriging (RK). The dif-

ferent techniques were applied to monthly and annual precipitation data measured at 

136 meteorological stations in the region. Cross-validation showed that prediction per-

formances vary among algorithms. SKV and RK provide the smallest MSE of estimates 

and, therefore, performed better. The SKV and RK maps are influenced by the DEM 

pattern and showed more details than the co-kriged maps [18]. To determine the best 

interpolation method for the annual and seasonal precipitation of the Mashhad Plain in 

Iran, rainfall data from 63 stations (from 2004 to 2013) were collected. Five interpolation 

methods, namely Kriging, co-Kriging, Regression, regression-kriging, and Inverse 

Weighted Distance (IDW), were used. The root mean square error (RMSE) and mean bias 

error (MBE) were considered to select the best interpolation method. The results revealed 

that the regression-kriging and three-variable regression (x,y,z) methods were the most 

accurate models to interpolate the annual precipitation over the study area [19] . In an-

other study, regression-kriging was used to map the winter chilling hours of mainland 

Spain. Temperature data from 72 meteorological stations (from 1975 to 2015) were used. 

The results showed that elevation and latitude are related to the chilling hours, enabling 

their use as auxiliary variables to better estimate unsampled locations and generate more 

accurate maps [20]. 

Despite the vastness and nonuniformity of temperature and precipitation, climate 

studies in Iran have been conducted using limited meteorological stations. In a study, 

using some meteorological data such as temperature and precipitation, as well as solar 

radiation from 43 synoptic stations and multivariate statistics, Iran was divided into 6 

homogenous climate zones and 12 climate subzones [21]. In another research, underlying 

variables in the climate zoning of Iran were identified through factor analysis, decompo-

sition of the main components, and monthly data collected from 41 synoptic stations [22]. 

The most recent comprehensive study on climate zoning in Iran was conducted using 

meteorological data measured at 126 stations, through which, based on the UNESCO 

method and three indices of the humid regime, winter type, and summer type, a total of 

28 climate zones were identified in Iran [23]. Doostkamian and Mirmousavi [24] divided 

Iran into four regions, according to the precipitation thresholds. The first zone is located 

along the Zagros Mountains and some parts of the southwest, which are influenced by 

the Mediterranean low-pressure and Sudanese systems. The second zone includes some 

regions of the southeast and the northern and the southwestern belts (except for the 

Caspian Sea coastline). Under the influence of a deep trough in the northeast of Europe 

and its extension into the Caspian Sea, this zone causes the advection of the Siberian air 

masses from northern latitudes in the Caspian Sea. The cooccurrence of these factors, and 

an increase in the maximum temperature difference between the cold polar air and the 

sea surface, significantly increases the precipitation rate in this region [25]. The third zone 

includes the Caspian Sea coastline, where the negative vorticity of the sea at lower levels 

of the atmosphere, along with dominant, intense north–south currents, cause precipita-

tion [26]. The fourth zone is a low-precipitation area including the central, southeastern, 

and parts of the southern and southwestern areas of Iran. 
According to the literature, domestic studies in Iran have mainly focused on a single 

or two climate parameters. Even in studies using different parameters, only limited re-

gions in Iran have been investigated for certain land uses, and there has been no study on 
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the identification of the basic climate situation, regardless of certain land uses. This study 

then aimed at the climate zoning of Iran, with a reasonable spatial resolution, by com-

bining two important climate parameters (annual mean temperature and annual average 

precipitation, which were generated with all possible station data, carefully mapped, and 

classified using proper thresholds) and geographical auxiliary variables. 

2. Materials and Methods 

The methodology of the study is illustrated in Figure 1. 

 

Figure 1. The methodology of the study. 

2.1. Description of the Study Area 

Iran, with an area of 1,648,195 km2, is located in the arid belt of the Eastern Hemi-

sphere, in West Asia, between the northern latitudes of 25–45° and the eastern longitudes 

of 44–63°. The country borders the Caspian Sea in the north and the Persian Gulf and 

Oman Sea in the south. Two ranges of high mountains, the Alborz in the north and the 

Zagros in the west, have a vital role in preventing the Mediterranean and the Caspian Sea 

winds near the central plateau of Iran. Based on atmospheric pressure, Iran is located in a 

low-pressure area, and accordingly, air currents form in the north and the northwest re-

gions. The country has a variable climate. It is mild and quite wet on the coast of the 

Caspian Sea, continental and arid on the plateau, cold in the high mountains, and hot on 

the southern coast and in the southeastern region. The weather conditions of Iran are 

controlled by various factors. The relatively constant weather features in different re-

gions of Iran have been formed because of different latitudes, reliefs, and proximity to 

large water bodies. The variable features are, however, influenced by the performances of 

atmospheric systems. Iran Meteorological Organization presented an agro-climatic clas-

sification for the country to organize and update the agricultural meteorological activi-
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ties. In this classification, based on the major meteorological and agricultural character-

istics of different areas, Iran was divided into six agro-climatic zones, including (1) the 

mountainous zone, (2) the Caspian humid zone, (3) the warm semi-humid zone, (4) the 

hot and humid coastal zone, (5) the semi-desert zone, and (6) the desert zone [27]. This 

agro-climatic zoning was used as the basis for the initial division in this study (desert 

zone, Figure 2). 

 

Figure 2. Location of the meteorological stations and agro-climatic zones in Iran. 

2.2. Meteorological Data 

Annual mean temperature and annual average precipitation data were calculated 

using data that were recorded from 2002 to 2016 at 185 synoptic stations and 3400 hy-

drometric stations from Iran Meteorological Organization (IRIMO) and 240 evaporation 

stations from the Ministry for Energy, which were used after being analyzed by the cu-

mulative deviation test and quality control (Figure 2). The annual mean temperature is 

calculated by averaging the whole period of daily temperature averages, and the annual 

average precipitation is calculated by averaging the annual summation of the daily pre-

cipitation data for each year. 

2.3. Auxiliary Data 

At first, using NASA’s Shuttle Radar Topography Mission (SRTM) instrument in a 

90 m × 90 m raster network, the digital elevation model (DEM) was produced. Then, in 

ArcMap (Arc GIS 10.30 software, Redlands, CA, USA), slopes derived from DEM and 

two separate raster layers for longitude and latitude were generated with the same extent 

and resolution to be used. In addition, a raster of distance from water bodies was gener-

ated with the Euclidian Distance tool using the sea boundary shapefile in ArcMap. Then, 

the values of these rasters were extracted for all stations. 

2.4. Remote Sensing Data 

Four raster maps related to remotely sensed agricultural-related variables were 

prepared: (1) the average soil moisture (m3/m3), which is related to the moisture content 

of 5 cm of the soil surface, for which the data of 4 SAMP satellites (statistical period from 
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2015 to 2021) were used. Then, to calculate it, three-hour data were intercepted, and its 

resolution was9 km [28] (2). The average potential evapotranspiration (m/year), which is 

the annual evapotranspiration of the statistical period from 2009 to 2021 and was re-

trieved from the WaPORdatabase, and their average was calculated. Its resolution 

was250 m(3).The average actual evapotranspiration (m/year), which is produced from 

the WaPORdatabase and is published by the FAO; ten-day data for the statistical period 

from 2009 to 2021 were downloaded, and the average statistical period was calculated. Its 

resolution was250 m [29] (4). The mean yearly TVDI (Temperature Vegetation Dryness 

Index) is one of the agricultural drought indexes and is calculated based on the NDVI 

and land surface temperature. Its resolution was1 km [30]. Each of the components was 

downloaded from the MODIS satellite for a statistical period from 2000 to 2021; then, the 

index was calculated for each year, and finally, the total average for 22 years was calcu-

lated. 

2.5. Descriptive Statistics 

The minimum, maximum, average, median, standard deviation, skewness, kurtosis, 

and the coefficient of variation (CV) of the annual average precipitation and annual mean 

temperature data were determined. The normal frequency distribution of the studied 

variables was evaluated by the skewness and kurtosis significance tests. The CV was 

classified according to CV ≤ Md − Ps, Md − Ps <CV ≤ Md + Ps, and CV> Md + Ps, respec-

tively, representing the low, moderate, and high classes where Md and Ps, respectively, 

represent the median and the pseudo sigma standard deviation, where the latter can be 

written as: 

PS =
�3 − �1

1/35
 (1)

where Q1 and Q3 denote the first and third quartiles, respectively [31]. 

2.6. Regression-Kriging 

Regression-kriging is a hybrid geostatistical method that combines multiple linear 

regression between the target variable and secondary parameters with geostatistical 

methods, such as ordinary kriging or simple kriging, on the residuals of the regression. 

This method is done to optimize the prediction of the target variable in unsampled loca-

tions [13] based on the assumption that the deterministic component of the target varia-

ble is accounted for by the regression model, while the model residuals represent the 

spatially varying but dependent component [32]. 

SPSS software was used for statistical and regression analysis. To achieve greater 

comprehensiveness and to determine more significant variables in each agro-climatic 

zone, a stepwise regression method was used to develop multivariate linear regression. 

In this method, the linear correlation of variables was first determined, and after entering 

a new variable, variables that decreased their significance when adding other variables 

were excluded. The accuracy of the regression fitting was evaluated using the adjusted 

coefficient determination (R2a). 

To reduce the temperature extrapolation error (as much as possible), a 10-km buffer 

was created around each agro-climatic zone, and the stations located in the buffer were 

also involved in the interpolation of the relevant zone. The equations obtained in each 

zone were applied to the whole zone and the surrounding buffer, and finally, by merging 

the zones and averaging the buffer zones, a particular thematic map was created for the 

whole country. 

The independent variables were the digital elevation model (DEM) components, in-

cluding the latitude (UTM), longitude (UTM), elevation (m), slope (%), and distance from 

the sea border (m), for all the stations. The dependent variables included the annual 

mean temperature and the annual average precipitation. 
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2.7. Geostatistics and Mapping 

The climate zones were identified in various geographical environments by the 

simultaneous use of data processing techniques and tools employed in spatial data 

analyses and geographical studies. 

To evaluate the spatial structure, variables lacking a normal frequency distribution 

were first normalized by logarithmic transformation. The spatial structure was then 

evaluated using the experimental semi-variogram. The values obtained from the exper-

imental semi-variogram were fitted to spherical, exponential, linear, and nugget effect 

(C0)semi-variogram models. The coefficient of determination (R2) and the residual sum 

of squares (RSS) were used to evaluate the accuracy of the fitted model. Each 

semi-variogram consists of three components, namely the nugget effect, sill (C0+C1), and 

the range. To determine the size and intensity of the spatial structure, the Cambardella 

Index (Ic) was used, which is the ratio of the nugget to the sill and indicates how the da-

taset is spatially arranged. Thus, Ic less than 25 show a strong spatial dependence and 

small erratic variance, while Ic between 25 and 75 show a moderate spatial dependence, 

and Ic greater than 75 demonstrate random spatial distribution [33]. Additionally, the 

mean correlation distance (MCD) was used to calculate the distance in which a high spa-

tial dependence occurred in the variogram. In fact, the MCD is an empirical index that 

provides some indication of the spatial structure [34],and it was originally derived for 

soil properties. The greater the MCD, the greater the spatial structure [35]. The index can 

be written as: 

��� =
3

8
�

�

�0 + �
� ∗ �           for a spherical model (2)

��� = (1 − ���)
��

3(�0 + �)
     for an exponential model (3)

where C0 is the nugget, C is the partial sill, C0 + C is the total sill, and a is the range. The 

nugget effect represents random nonsystematic variations, and the spatial dependence 

decreases as its contribution to the total variations increases. The range is a distance at 

which variables have spatial similarity and dependence. MCD is an empirical index that 

provides some indication of the spatial structure. 

Regression-kriging was used for zoning the spatial distribution of the parameters. It 

is a hybrid method that combines two approaches; that is, regression is used to fit the 

explanatory variation, and ordinary kriging, with an expected value of 0, is used to fit the 

residuals, i.e., unexplained variations [36]. The mean bias error (MBE), the mean absolute 

error (MAE), and the normalized root mean square error (NRMSE) were used to evaluate 

the accuracy of the interpolations. These three indicators can be written, respectively, as 

��� =
∑ (�� − ��)�

���

�
 (4)

��� =
∑ |�� − ��|�

���

�
 (5)

����� =  
100

��
× �

∑ (�� − ��)��
���

�
 (6)

where Oi is the observed value, Pi is the predicted value, �� is the mean of the observed 

values, and n is the number of observations. The MBE is used to estimate the average bias 

in the model, and the closer it is to 0, the lower the bias is. Its positive values represent 

overestimations, and its negative values indicate underestimations. The MAE is one of 
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the best overall measures for evaluating the agreement between observed and predicted 

data [37], and when it shifts to zero, the applied method simulates this fact well [38]. 

Moreover, a simulation is considered excellent if its NRMSE is less than 10%, good if it is 

greater than 10% and less than 20%, fair if it is greater than 20% and less than 30%, and 

poor if it is greater than 30% [39]. Based on the best interpolation method for the annual 

average precipitation and the annual mean temperature, the spatial distribution of the 

different parameters was generated for the whole country. The spatial patterns of data 

and fitting of the semi-variogram models were analyzed using geostatistical software 

GS+ version 5.1 for Windows (Gamma design, Inc., 2000, Cambridge, MA, USA). Then, 

Arc GIS 10.3 was employed for the interpolation methods and preparation of the annual 

mean temperature and annual average precipitation maps. 

2.8. Classification of Produced Maps and Preparation of Climatic Maps 

A great challenge facing climate classification is to delineate the borders of temper-

ature and precipitation classes because of the continuous nature of both parameters. 

Additionally, every parameter should be classified in such a way that the classes gener-

ated in combination with other classes lead to significant classes. The use of mathematical 

and statistical indices such as quartiles in determining the classes of each parameter may 

lead to insignificant climate classes, which are uninterpretable. Therefore, the borders of 

the precipitation and temperature classes were determined and delineated in meetings 

with IRIMO and the Iran Ministry of Agriculture experts. Then, the classified tempera-

ture and precipitation were sent to the selected synoptic stations to receive the experts’ 

opinions and assessments regarding the accuracy and consistency between the map 

outputs and the local data, as well as some ecological items such as vegetation patterns 

using Google Earth or some available maps. 

In the next step, using intersect tool in ArcMap, the two final classified maps (annual 

mean temperature and annual average precipitation) were overlayed to obtain a climatic 

map. To check the accuracy of the map, experts’ opinions were used. 

2.9. Significance and Application of the Generated Climatic Map 

Since a detailed quantitative comparison is beyond the objective of this study, just 

four raster maps related to remotely sensed agricultural-related variables, including the 

average soil moisture (m3/m3), average potential evapotranspiration (m/year), average 

actual evapotranspiration (m/year), and mean yearly TVDI (Temperature Vegetation 

Dryness Index), were visually compared with the generated climatic map to have a look 

at the qualitative significance of the generated map for future forthcoming studies. 

3. Results 

3.1. Descriptive Statistics 

Table 1 shows the descriptive statistics, including the annual mean temperature and 

the annual average precipitation, for the whole of Iran for the 15-year period. 

Table 1. Descriptive statistics of the annual mean temperature and annual average precipitation of 

Iran from 2002 to 2016. 

Variable Minimum Maximum Range Mean Quartile1 Median Quartile3 Standard Deviation Skewness Kurtosis CV (%) 

annual mean temperature 

(°C) 
1.5 30.9 29.4 19.2 16 18.4 23.5 5.2 −0.78 −0.48 27 

Annual average precipitation 

(mm) 
30.1 1580 1549.9 252.6 111 190.1 325.3 204.3 2.11 6.11 81 

The mean and the median annual temperatures in Iran are, respectively, 18.4 and 

19.2 °C. In addition, the CV of the annual mean temperature (27%) based on the classifi-

cation proposed by [31] is large. 
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The annual average precipitation in Iran equals 329 mm. The minimum precipitation 

in desert regions is 50 mm, which reduces even to zero in some years. The maximum 

annual precipitation over 1500 mm is observed in Bandar Anzali City, near the Caspian 

Sea, in the north of Iran. 

3.2. Spatial Dependence 

The optimum semi-variogram models fitted to the studied variables are shown in 

Figure 3, and their components are presented in Table 2. Both parameters follow the ex-

ponential semi-variogram model. The range indicates the distance at which the variable 

has spatial dependence. 

According to Cambardella classification [33], both variables showed a strong spatial 

dependence, with a spatial dependence ratio (nugget effect to sill) equal to or less than 

25%. Besides, MCD was used to consider the role of the range in the strength of the spa-

tial structure. 

 

(a) 

 

(b) 

Figure 3. Semi-variogram of the annual mean temperature (a) and annual average precipitation (b). 
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Table 2. Components of the best optimum semi-variogram model fitted to the two studied varia-

bles. 

Variable Model 
Range 

(km) 

Nugget 

Effect 
Sill 

Nugget ef-

fect/Sill (%) 
MCD (km) R2 RSS 

Annual mean temperature 

( °C) 
Exponential 258 0.85 21.2400 4.001 78.45 0.991 1.43 

Annual average precipitation 

(mm) 
Exponential 162 1400 37,040 3.78 49.37 0.998 1.22 × 106 

3.3. Relationship of Annual Mean Temperature to Geographical Coordinates Components 

Table 3 shows the results of the stepwise multivariate regression fitting and the re-

lationship between the annual mean temperature and DEM components for different 

agro-climatic zones. In fact, after using the stepwise method, from the DEM components, 

only the elevation remained in the equation. As seen, the temperature decreases with the 

increasing elevation and latitude. 

Table 3. Relationship between the annual mean temperature and the components of the geo-

graphical coordinates in six agro-climatic zones. 

Agro-Climatic Zones Suggested Equation R2a RMSE p-Value 

Zone 1 � = 57.8 − 0.9949� − 0.005664ℎ 0.76 1.56 <0.01 

Zone 2 � = −8.0 + 0.4866� − 0.0043ℎ 0.9 0.54 <0.01 

Zone 3 � = −39.9 + 1.375� − 0.00545ℎ 0.92 1.37 <0.01 

Zone 4 � = 32.5 − 0.1935� − 0.00279ℎ 0.48 1.05 <0.01 

Zone 5 � = 62.9 − 0.131� − 0.905� − 0.00578ℎ 0.77 1.38 <0.01 

Zone 6 � = 49.8 − 0.7192� − 0.0054ℎ 0.88 1.01 <0.01 

T: annual mean temperature, x: longitude, y: latitude, and h: elevation of the meteorological sta-

tions considered. 

Given the large range (107,946 m), the annual average precipitation in most regions 

exceeded the agro-climatic borders. No significant correlation was obtained separately 

for each region. However, the annual average precipitation in Iran was correlated with 

the latitude, longitude, and elevation of the meteorological stations: 

� = 638 − 15.53� + 17.30� − 0.0626ℎ (7)

R2a = 0.45 

where p represents the annual average precipitation, x the longitude, y the latitude, and h 

the elevation. 

3.4. Validation of Interpolation Methods 

Evaluations of the interpolation accuracy of the annual mean temperature and the 

annual average precipitation are shown in Table 4. In regression-kriging, for both target 

variables, the longitude, latitude, and elevation ofthe meteorological stations were used 

as auxiliary variables. Significant relationships between the auxiliary variables and target 

variables caused good MBE, MAE, and NRMSE for the predictions of both the annual 

mean temperature and annual average precipitation. The NRMSE was less than 10% for 

the two interpolated variables. 

The annual mean temperature and the annual average precipitation obtained from 

regression-kriging aredisplayed in Figures 4 and 5. The maps were prepared with a res-

olution of 5 km. 
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Table 4. Statistical indicators for validation of the interpolation methods for the annual mean 

temperature and annual average precipitation. 

Statistical Index Annual Mean Temperature Annual Average Precipitation 

MBE −0.05 0.69 

MAE 0.93 0.76 

NRMSE 6.41 9.18 

According to the spatial distribution of the variables, on the one hand, the annual 

mean temperature decreases from south to north and from east to west, and on the other 

hand, the mean temperature in the mountainous regions, such as the Zagros and the 

Alborz Mountains, is lower than that over the plain areas (Figure 4a). The temperature 

decline from east to west and from south to north is mainly due to the Zagros Mountains 

and the movement of the Siberian air masses towards the central desert of Iran. The 

lowest temperature was observed in Northwest Iran and over the Zagros Mountains. In 

contrast, the highest temperature was seen in the Oman Sea coastal region and the Strait 

of Hormoz. The temperature decreases from the southeast to the northwest and west of 

Iran, which correspond to very high altitudes. Consistent with the mountainous regions 

but with lower elevations than the very cold regions, most regions are cold from the 

southeast to the southwest and west of Iran. Temperate temperatures are observed in 

some regions of the east, the Caspian zone, center, and west of Iran. Some regions of 

Central and Eastern Iran correspond to the hot temperature class. These regions are 

mainly consistent with the desert areas and the Sistan Plain in Southeastern Iran. The 

southeastern areas and southern and southwestern coastlines are very hot (Figure 4b). 

 

(a) 
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(b) 

Figure 4. Spatial variability of the annual mean temperature (a) and its qualitative classes (b). 

The evaluation of the spatial distribution of the annual average precipitation 

showed that the higher precipitation values are concentrated on the Caspian coastlines in 

the north and western hillsides of the middle of the Zagros, followed by other regions 

along the Alborz and the Zagros hillsides. The central and southeastern areas are among 

the regions with the lowest precipitation in Iran. A low-precipitation core is observed in 

the central deserts of Iran, with three high-precipitation cores in the Zagros (Figure 5a). 
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(a) 

 

(b) 

Figure 5. Spatial variability of the annual average precipitation (a) and its qualitative classes (b). 
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The eastern regions towards Central Iran are areas with very low precipitation (very 

arid), and precipitation is still much lower in the southeastern regions towards the 

southern coasts of Iran (arid). The southeastern regions towards the west and the 

southwest matching the Alborz and the Zagros foothills are semi-arid, and high-altitude 

regions with higher precipitation rates correspond to the semi-humid class. The 

high-precipitation (most humid) areas are located along the Caspian Sea coasts and some 

regions in the west of Iran (Kuhrang) (Figure 5b). 

The annual mean temperature and annual average precipitation base maps were 

used for climate zoning (Figures 4 and 5). Based on the IRIMO and the Iran Ministry of 

Agriculture’s expert opinions, the borders were determined, and each map was classified 

into five classes, representing certain precipitation or temperature situation. The tem-

perature classes included very cold (<10 °C), cold (10.1–15 °C), temperate (15.1–18.5 °C), 

hot (18.6–22 °C), and very hot (>22.1 °C) areas. The precipitation classes also included 

very arid (<100 mm), arid (100.1–250 mm), semi-arid (250.1–400 mm), semi-humid 

(400.1–700 mm), and humid (>700.1 mm) areas. By combining these classes, 24 tempera-

ture–precipitation classes were then obtained. 

The different climate classes obtained by combining the precipitation and tempera-

ture classes are shown in Figure 6, and the properties of the climatic classes in terms of 

the annual average precipitation, annual mean temperature, and elevation are listed in 

Table 5. The largest climate class area in Iran is the very hot arid class, followed by the hot 

very arid regions. The annual precipitation in these two classes is 100–250 mm and less 

than 100 mm, respectively. The corresponding mean temperature is above 22 °C and 

18–22 °C, respectively. These two classes cover around 31% of Iran’s mainland. The hot 

arid climate classes mainly extend into the non-mountainous regions, including deserts 

and the southern and southeastern margins. These climate classes often have lower 

minimum and median elevations than other climate classes. The very cold humid to 

semi-arid climate classes cover the smallest area of Iran as a mosaic in the Alborz and the 

Zagros Mountains with higher minimum and median elevations. The temperate arid 

class showed the highest frequency among the moderate classes, which is extended to the 

southern margin of the Alborz Mountain chains and the eastern margin of the Zagros 

Mountain chain. 
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Figure 6. Spatial variability of the climatic classes. 

Table 5. Characteristics of Iran’s climatic classes. 

Climatic Classes 

Annual Aver-

age Precipita-

tion 

(mm) 

Precipitation 

Classes 

Annual Mean 

Temperature 

(°C) 

Temperature 

Classes 

Minimum 

Elevation 

(mm) 

Maximum 

Elevation 

(m) 

Median of 

Elevation 

(mm) 

Area 

(km2) 

Relative 

Area (%) 

Very hot Arid 100.1–250 Arid >22.1 Very hot −82 2115 1020.5 266,769.3 16.47 

Hot very arid < 100 Very arid 18.6–22 Hot 433 2316 1349 232,878.5 14.38 

Temperate Arid 100.1–250 Arid 15.1–18.5 Temperate −50 4107 1950.5 215,553.7 13.31 

Cold semi-arid 250.1–400 Semi-arid 10.1–15 Cold 205 3874 2016 183,679.1 11.34 

Cold Arid 100.1–250 Arid 10.1–15 Cold 528 4209 2450 102,490.3 6.33 

Hot Arid 100.1–250 Arid 18.6–22 Hot 3 3113 1492 98,980.1 6.11 

Very hot Very arid <100 Very arid >22 Very hot 105 1502 800.5 81,956.5 5.060 

Cold Semi-humid 400.1–700 Semi-humid 10.1–15 Cold 291 3662 1949 71,112.0 4.39 

Temperate Very arid <100 Very arid 15.1–18.5 Temperate 768 2868 1800.5 55,103.5 3.40 

Very cold Semi-arid 250.1–400 Semi-arid <10 Very cold 1091 5597 3212.5 53,710.2 3.32 

Very hot Semi-arid 250.1–400 Semi-arid >22 Very hot −49 2225 1070 45,550.9 2.81 

Temperate Semi-arid 250.1–400 Semi-arid 15.1–18.5 Temperate −72 3534 1753 42,982.1 2.65 

Temperate 

Semi-humid 
400.1–700 Semi-humid 15.1–18.5 Temperate −297 3487 1702.5 29,567.0 1.83 

Very cold 

Semi-humid 
400.1–700 Semi-humid <10 Very cold 939 4794 2861 23,290.5 1.44 

Temperate Humid >700.1 Humid 15.1–18.5 Temperate −90 2915 1397 23,016.1 1.42 

Cold Humid >700.1 Humid 10.1–15 Cold 24 3514 1752.5 22,505.8 1.39 

Hot Semi-arid 250.1–400 Semi-arid 18.6–22 Hot −14 3065 1497.5 20,080.9 1.24 

Hot Semi-Humid 400.1–700 Semi-humid 18.6–22 Hot −25 2780 1381 19,904.6 1.23 

Very hot Semi-humid 400.1–700 Semi-humid >22 Very hot 30 1914 954 15,974.1 0.99 

Very cold Humid >700.1 Humid <10 Very cold 413 4178 2303.5 5825.0 0.36 

Hot Humid >700.1 Humid 18.6–22 Hot 34 2520 1232.5 4808.3 0.30 

Cold Very arid <100 Very arid 10.1–15 Cold 1352 3138 2231 2568.3 0.16 
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Very cold arid 100.1–250 Arid <10 Very cold 1513 4042 2765.5 1352.6 0.084 

Very hot Humid >700.1 Humid >22.1 Very Hot 355 1242 801 171.04 0.011 

3.5. Significance and Application of the Generated Map 

A visual comparison showed that there was a sort of agreement between the pro-

duced climate map and the remote sensing agricultural variable (Figure A1). 

4. Discussion 

The large nonuniformity of the annual mean temperature is expected due to the 

vastness of Iran, large elevation variations, and proximity to the Persian Gulf and Oman 

Sea in the south and the Caspian Sea in the north. 

The annual average precipitation is a function of latitude and elevation. The maxi-

mum annual precipitation is mainly observed near the Caspian Sea in the north of Iran. 

Considering Equation (7), it can be concluded that relief plays a key role in the arrange-

ment of different precipitation classes in Iran. The annual temperature increases by 2.6 °C 

from west to east per 10,000 km, whereas the temperature increases by 7.8 °C from north 

to south. However, increases in elevation have different impacts on precipitation. Pre-

cipitation usually increases as the elevation increases up to a certain amount, decreasing 

afterward. Furthermore, a change in the latitude of different regions may cause a change 

in the precipitation rate due to permanent rotation cycles of the atmosphere [40]. Ac-

cording to the calculated equation, precipitation increases with the increasing latitude, 

which is relatively connected to Iran’s topography. The precipitation system influencing 

Iran from the Mediterranean Sea causes the maximum precipitation in the Zagros 

Mountains, which gradually decreases with the increasing longitude towards the center 

and east of Iran. Precipitation also increases with the increasing elevation, except for the 

Caspian Sea coastline, with a negative elevation below the sea level, the zone that is 

rainier than other regions due to specific climatic and topographic conditions. Lower 

precipitation rates are usually recorded at the stations located at positive elevations 

above the sea level in other regions. The combination of these two factors leads to a neg-

ative regression coefficient with increasing elevation. 

According to the semi-variogram model fitted to the studied variables, the annual 

mean temperature showed more spatial dependency than the annual average precipita-

tion. It may be assumed that the decrease in spatial dependency in the annual average 

precipitation is due to the nonuniform topography, and most parts of the western and 

northern areas are more affected by the Mediterranean humid air masses than the central, 

eastern, and southern areas of Iran. Based on Cambardella classification [33] and MCD, 

the annual mean temperature showed a higher spatial dependency at larger distances. 

The results of the stepwise multivariate regression fitting showed that the annual 

mean temperature follows the geographical coordinates and height in six agro-climatic 

zones. In fact, the temperature decreases with the increasing elevation and latitude. The 

changes in the atmospheric parameters, including temperature and precipitation, are 

consistent with the variations in the spatial and topographical characteristics. The lapse 

rate, the rate at which the temperature changes with the height in the atmosphere, is an 

indicator of the direct impact of elevation on the temperature. Due to the effect on the 

angle of solar radiation, the latitude causes a change in the temperatures of different re-

gions. The air temperature decreases from east to west and from south to north. Latitude 

plays a much more significant role than longitude in the spatial variability of the tem-

perature across Iran. 

The generated map for the annual mean temperature is highly consistent with a 

previous study by Aliabadi and Roudbari [12], in which the combination of the spatial 

statistics methods and autocorrelation indices demonstrated a negative spatial autocor-

relation of the maximum temperature (low-value temperature clusters) on the Caspian 

Sea coastline and the west, northwest, and southeast of Iran. In contrast, some regions in 

the center and southwest of Iran showed a positive spatial autocorrelation (high-value 
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temperature clusters) [12]. Accordingly, most mountainous regions and highlands in Iran 

are dominated by lower temperature values. However, the southeast and southwest of 

Iran show the maximum temperature due to high humidity, and the Dasht-e Lut and 

Dasht-e Kavir with poor cloudiness. 

The resulting zoning for precipitation is very similar to that reported by Doost-

kamian and Mirmousavi [24], who divided Iran into four regions according to precipita-

tion thresholds. 

Comparisons of the existing maps from previous studies such as Heidari and Alijani 

[21] and Ghaffari and Ghasemi [23]in Iran showed that the newly generated map has 

acceptable and more realistic classes thatare due to: (1) the use of the maximum data 

(3825 stations) to increase the spatial density of the stations and, thus, increase the spatial 

resolution, (2) the preparation of two temperature and precipitation rasters using the re-

gression-kriging method, which provided a good basis for creating a microclimate map, 

and (3) Instead of using global thresholds, an attempt was made to use the opinions of 

experts to find theappropriate thresholds for classification, which resulted in the creation 

of more climatic classes. In fact, the 24 climate classes showed that using auxiliary varia-

bles and careful classification of the basic maps were very effective in detecting different 

climatic classes and, therefore, understating the climate diversity in Iran. Hot to very hot 

and arid to very arid climate classes were identified as the largest climatic classes of Iran, 

which cover Iran’s southeastern and southern desert regions. As a result, the generated 

map can be very beneficial for many environmental and agricultural studies, such as land 

evaluation studies, which consider soil and landscape characteristics and climatic pa-

rameters to suggest the most proper plant for each land to tackle the water shortage, 

preserve soil, and achieve sustainable agriculture. 

The visual comparison of four raster maps related to remotely sensed agricultur-

al-related variables, including average soil moisture (m3/m3), average potential evapo-

transpiration(m/year), average actual evapotranspiration (m/year), and meanyearly 

TVDI (Temperature Vegetation Dryness Index) with the generated climatic map, showed 

that there was a sort of agreement between these variables and the climatic generated 

map; thus, such high-resolution climatic maps can be a very good starting point to gen-

erate microclimatic maps, as well as it is suggested to use climatic maps to better classify, 

assess, and interpret remote sensing-based agricultural applications to be planned out in 

the close future. 

5. Practical Application 

Climatic information is of particular importance in any study and strategic planning 

of all environmental projects and the basis of many activities, especially in agriculture, 

animal husbandry, rangeland management, natural resources protection, and suitable 

cultivation pattern programs. In other words, a climatic map that is carefully classified 

can be a great basis for many ecological studies and decisions. It can also be used to better 

classify and interpret remote sensing-based agricultural rasters. As a result, the more 

accurate the climatic map with proper classification, the better. 

The strengths of this study can be considered the generation of basic data maps 

(annual mean temperature and annual average precipitation) and then classification 

based on their thresholds in the country instead of using global ranges. Regres-

sion-kriging also helped to prepare a more accurate temperature and precipitation map. 

The validations showed that the prepared climatic map has acceptable accuracy. The 

accurate thresholds for both the annual mean temperature and the annual average pre-

cipitation resulted in a climatic map with 24 classes, which is a new and valuable 

achievement for the country. Therefore, it is suggested that these approaches be consid-

ered for other countries as well and not be limited to global classifications, which may 

result in the identification of a small number of climatic classes in a country. 
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6. Conclusions 

In this study, using the long-term average precipitation and temperature measure-

ments for the 2002–2016 period from 3825 meteorological stations, geographical auxiliary 

variables, regression-kriging, knowledge of Iran Meteorological Organization and Iran 

Ministry of Agriculture experts, all attempts have been made to generate new and precise 

maps of the temperature and precipitation for the country. Based on the CV, the annual 

average precipitation and the mean annual temperature, respectively, showed moderate 

and large variations. The generated annual mean temperature map indicated a decline in 

temperature from east to west and northwest in high-altitude areas,while the Caspian 

Sea coastline and the Zagros Mountains experienced the highestprecipitation values. By 

applying five delineation thresholds on the maps and intersecting the classified maps, 

Iran was divided into 24 climates (precipitation–temperature) zones. According to the 

evaluation statistics and matching generated maps with expert knowledge and some 

ecological items, the delineation and diversification of the climatic classes were really 

acceptable. According to the generated climatic map, hot to very hot and arid to very arid 

climate classes occupy the largest part of Iran, which are located in the southeastern and 

southern desert regions. The climatic diversity indicated that the regression-kriging 

method was useful for mapping climate zones, and the resulting map can be used for 

decoding natural selections andthe management of resources, especially water con-

sumption, sustainable agricultural planning, determining the cultivation pattern, and 

optimizing agricultural and horticultural calendars. Furthermore, the simple visual 

comparison between the climatic zones from the generated climatic map and four re-

motely sensed agricultural variables clearly shows the usefulness of these carefully 

produced climatic maps for classifying, evaluating, and interpreting these and other re-

motely sensed agricultural-related variables and producing microclimatic maps using 

these types of remotely sensed variables. 
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Appendix A 

Figure A1 shows the classification boundaries of the generated climatic map, which 

are shown with blue lines. They are mostly close to the variations in four remotely sensed 

agricultural-related variables. 
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Figure A1. Visual comparison of the climate zones with four remotely sensed agricultural-related 

variables: average soil moisture (a), average potential evapotranspiration (b), average actual 

evapotranspiration (c), and mean yearly TVDI (d). 
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