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Abstract: Building extraction is a popular topic in remote sensing image processing. Efficient build-
ing extraction algorithms can identify and segment building areas to provide informative data for
downstream tasks. Currently, building extraction is mainly achieved by deep convolutional neural
networks (CNNs) based on the U-shaped encoder–decoder architecture. However, the local percep-
tive field of the convolutional operation poses a challenge for CNNs to fully capture the semantic
information of large buildings, especially in high-resolution remote sensing images. Considering the
recent success of the Transformer in computer vision tasks, in this paper, first we propose a shifted-
window (swin) Transformer-based encoding booster. The proposed encoding booster includes a
swin Transformer pyramid containing patch merging layers for down-sampling, which enables our
encoding booster to extract semantics from multi-level features at different scales. Most importantly,
the receptive field is significantly expanded by the global self-attention mechanism of the swin
Transformer, allowing the encoding booster to capture the large-scale semantic information effectively
and transcend the limitations of CNNs. Furthermore, we integrate the encoding booster in a specially
designed U-shaped network through a novel manner, named the Swin Transformer-based Encoding
Booster- U-shaped Network (STEB-UNet), to achieve the feature-level fusion of local and large-scale
semantics. Remarkably, compared with other Transformer-included networks, the computational
complexity and memory requirement of the STEB-UNet are significantly reduced due to the swin
design, making the network training much easier. Experimental results show that the STEB-UNet
can effectively discriminate and extract buildings of different scales and demonstrate higher accuracy
than the state-of-the-art networks on public datasets.

Keywords: building extraction; deep learning; U-shaped network; swin Transformer; encoding
booster; self-attention; semantic information

1. Introduction

Building extraction is a hot topic in the field of remote sensing. It plays an essential
role in many practical applications, including regional administration, disaster prevention,
and map services [1–5]. In recent years, with the innovation and advancement of satellites,
UAVs, and other aerial photography equipment, the quality of high-resolution remote sens-
ing images (HRRSIs) has been continuously improved, which promotes the improvement
of the performance of the existing algorithms for HRRSI building extraction. However,
although the increase of image resolution is intuitively beneficial to the building extraction,
it also brings new challenges to the algorithms. For example, the increase of resolution
enriches the details of the texture and color of the objects on the image, which expands the
differences in the inherent characteristics of the same building, thus putting forward higher
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requirements for the algorithm to achieve more fine-grained segmentation. In addition, the
increase of image resolution can outline the building more completely. However, it could
also introduce more noise and amplify the appearance of other non-building objects in the
region of the target building, especially some buildings with a large area. Accordingly, the
algorithms are required to capture long-range features to reduce the problem of incomplete
or incorrect building extraction due to the above interference.

Existing building extraction algorithms can be divided into two categories: traditional
algorithms and deep-learning-based algorithms. Traditional methods utilized handcrafted
features based on the shadow, shape, color, line, and other information of the object in the
image [6–12], and used models such as support vector machine (SVM) [13,14], random
forest [15], Markov random field [16], and graph theory [17,18] to recognize and locate
buildings. For example, Manno-Kovacs et al. [12] utilized region orientation of buildings as
the main feature, followed by fusing with the existing features, including shadow and color,
and then performing morphological methods to obtain the final extraction result. Huang
et al. [7,19] used morphological methods for the building extraction task. In [19], they
proposed morphological building index (MBI) to model the relationship between implicit
features of buildings and the properties of morphological operators. Based on MBI, they
proposed a morphological shadow index (MSI) in [7] and realized the building extraction
by the fusion of MBI and MSI.

Deep learning has gained great success in the recent decade, and deep neural networks
(DNNs) have been employed in various fields, including computer vision [20–22] and
natural language processing [23]. DNNs also demonstrate high performance for HRRIS
building extraction tasks [24–33]. Since both building extraction and semantic segmentation
tasks need to achieve dense pixel prediction, many designs and ideas in segmentation fields
have been introduced into the algorithm for building extraction.

The U-shaped network (U-Net) with encoder–decoder structure [34] was initially
used for medical segmentation tasks and shows top performance among CNNs. Due
to its strong ability to extract and fuse multi-scale semantic and contextual information
by using skip connection and hierarchical encoding and decoding, U-Net is also widely
leveraged for building extraction [25–30,33,35–39]. For example, seeking to overcome the
lack of contextual information of each patch after image patching, Li et al. [25] proposed a
fully convolutional U-shaped network where dense connectivity was built to fully extract
the context of features at different levels. Ye et al. [28] introduced channel and spatial
attention on skip connections to reduce the differences of the semantic information between
low-level and high-level features and to avoid the inconsistencies in feature connection.
Shao et al. [30] added a residual enhancement module on the basis of U-Net. After the
image passes through the U-Net network, the segmented objects would be further adjusted
through the residual enhancement module to alleviate the incomplete and wrong segmen-
tation of the building. However, although U-Net can effectively extract local features and
performs well on building extraction datasets, there is still optimization room since it is
difficult to capture large-scale features due to the local perceptive field of the convolution
kernel, leading to incomplete or missing extraction, especially for HRRSIs.

Transformer [23,40,41] is a sequence-to-sequence model with an encoder–decoder
structure for natural language processing (NLP) tasks. Different from the previous imple-
mentations based on the recurrent neural network (RNN) [42,43], Transformer can model
the semantic feature of all the word vectors in high parallelism and efficiency by exploiting
the global self-attention mechanism. Considering that the global self-attention mechanism
is a potential method to extract large-scale semantic information efficiently in the com-
puter vision tasks, Dosovitskiy et al. proposed the vision Transformer (ViT) [44] for image
classification by projecting image patches to independent sequences. Based on the ViT,
Liu et al. [45] designed a swin Transformer by proposing shifted windows and restricting
the scope of global self-attention on features. Since a swin Transformer demonstrates higher
performance over CNN and lower computational cost than a ViT, Yuan et al. [46] and
Chen et al. [47] introduced it to their building extraction algorithms as encoding networks.
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The features at different scales are decoded separately by a series of convolutions and fused
by passing through bottleneck layers (i.e., 1× 1 convolutional layers) to extract and fuse
multi-scale semantic information.

Even though the Transformer-based networks have a global receptive field and can
effectively capture the long-range features, their extraction of local features is not empha-
sized due to the lack of restrictions on the local receptive field, resulting in relatively low
localization accuracy. To combine the advantages of local and long-range feature extraction,
some existing works tried to fuse a U-Net and a Transformer by integrating the Transformer
modules into the U-Net [48,49]. However, this direct fusion creates a potential ambiguity
and imbalance in local and global feature extraction, which reduces their feature-encoding
capabilities.

In this paper, inspired by the swin Transformer [45], we propose the Swin Transformer-
based Encoding Booster- U-shaped Network (STEB-UNet), which is composed of an inte-
grated encoding booster based on the swin Transformer and a specially designed U-shaped
network (U-Net). Instead of adjusting to the U-Net architecture as most current building
extraction networks do, we maintain the U-Net but combine it with our encoding booster
in a novel manner to expand the receptive field to the global level and enhance the en-
coding capability of the overall network. The proposed encoding booster includes a swin
Transformer pyramid to extract the large-scale semantic and contextual information in
multi-scale features. The features obtained by the encoding booster at different levels will
be further fused with the corresponding features of U-Net to compensate for the latter’s
lack of large-scale semantic extraction. By introducing such a highly-efficient encoding
booster, both small and large building targets in HRRSIs can be extracted by the STEB-UNet
with high accuracy. Experimental results show that the proposed network demonstrates
higher performance than other state-of-the-art (SOTA) building extraction algorithms on
public datasets.

The rest of this paper is organized as follows. Section 2 introduces the proposed
network design. Section 3 tests the performance of our network. We also compare the
performance of the STEB-UNet with several SOTA algorithms and STEB-UNet variants
on public datasets. Section 4 discusses the performance of different loss functions, the
requirement of computational and memory resources for the network training platform,
and a brief introduction of the future work. Section 5 summarizes the paper with the
conclusion.

2. Methodology
2.1. Overall Architecture

In this section, we propose the swin Transformer-based encoding booster and integrate
it into a specially designed U-shaped network (U-Net) for building extraction. The overall
network is called the Swin Transformer-based Encoding Booster- U-shaped Network (STEB-
UNet), whose architecture is shown in Figure 1. The encoding booster is the key to our
design because it significantly improves the network’s capability of capturing large-scale
semantics by introducing the global self-attention mechanism via a swin Transformer. In the
STEB-UNet, the input image will be fed to the encoding booster and the U-Net simultane-
ously. In the encoding booster, the input image will first pass through an embedding layer,
where patch embedding and position embedding are performed for encoding the image to
initial low-level features. The initial features will then pass through a swin Transformer
pyramid composed of continuous swin Transformer blocks and patch-merging layers for
higher-level feature extraction and down-sampling, respectively.
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Figure 1. The architecture of the proposed STEB-UNet, including a swin Transformer-based encoding
booster (within the gray box) and a specially designed U-shaped network.

For the U-Net, based on the original convolution stages, up- (down-) sample layers and
the skip connections design [34], we introduce the fusion block to achieve the feature fusion.
The input image will go through a series of down-sample layers and convolutional layers
on the encoding side. The features from the encoding booster and the U-Net at the same
level will be fused in the fusion block and serve as the input features of the next encoding
stage. The decoding side contains multiple convolutional layers and up-sample layers for
restoring the spatial resolution of the feature. The encoded features will be transferred to
the decoding side via the skip connections and concatenated with the decoded features of
the same level to serve as the input feature of the next stage decoder. The final prediction is
obtained after passing through all the decoding stages.

2.2. Transformer and Shifted-Window Design

The core of the Transformer is the use of a global self-attention mechanism to represent
the global correlation between features. The self-attention mechanism can be described by:

Attention(Q, K, V) = softmax(
QKT
√

d
)V, (1)

where matrices Q, K, and V represent the query, key, and value, respectively. d is a scaling
factor used to avoid the vanishing gradient of the softmax(·) function. This kind of attention
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mechanism is called global because it is performed on a full feature instead of within a local
receptive field. The self-attention is reflected in that in most implementations, the matrices
Q, K, and V are the linear projections (i.e., the output results of several fully-connected
layers) of the same embedded word vectors.

In most Transformer implementations [44,45], for reducing the O(n2) computational
complexity brought by the matrix multiplications in the global self-attention computation,
the input image is partitioned into multiple patches by a patch-embedding operation
to reduce the length of the sequences before passing through the Transformer blocks.
However, it is empirically shown that even after the patching embedding, the self-attention
calculations on each patch still cause high computational and high memory requirements
for the training platform. For addressing this problem, we utilize the shifted-window (swin)
design [45] to further optimize the computational complexity. Based on patching, in a
swin design the whole patched image is further partitioned into multiple non-overlapping
shifted windows, and the computation of the self-attention will be restricted within each
local window. Thus the complexity of the self-attention computation can be significantly
reduced because each window contains a smaller number of patches than the whole image.

Figure 2 demonstrates the global self-attention computation with the swin design.
The whole calculation process includes two steps as Figure 2a,b respectively, show. In the
lth calculation, the whole feature map is divided into four areas by 4× 4 windows. The
self-attention computations are performed independently within areas bounded by each
window. At the beginning of l + 1th calculation, to cover the patch areas where the lth
calculation has not been performed due to the shifted windows’ boundaries, all windows
will shift 2× 2 patches to the lower right. Although window shifting can establish the
cross-window feature connections, it causes an increase in the number of areas (within
solid orange boxes in Figure 2b), leading to the rebound in computational complexity. The
newly generated areas with various sizes, such as the area A, B, and C, are also challenging
for the self-attention computation on a uniform scale.

Patch Shifted Window

B B

A

A

C

C

(a) 𝑙𝑡ℎ calculation (b) 𝑙 + 1𝑡ℎ calculation

Figure 2. The global self-attention computation with the shifted-window (swin) design, comprising
two continuous calculation steps (a) normal computation on each window area (within solid orange
box) and (b) masked computation on each unmoved window area (within solid orange box) and each
spliced window area (within dotted orange box).

To solve the above problem and unify the computational scale, as Figure 2b shows,
window splicing and masking [45] are introduced. In the l + 1th calculation after window
shifting, first, the area A, B, and C will move to the lower right. Thus the moved and
unmoved areas can splice together to form a new feature, which can still be divided by four
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4× 4 windows. Accordingly, the regular self-attention computation can be performed on
this new feature as in the lth computation. Furthermore, to ensure the semantic relevance
of the adjacent regions, the moved and unmoved regions will be masked, respectively, to
prevent interference during the l + 1th self-attention computation. After calculation, area
A, B, and C will move back. These two calculation steps described above illustrated in
Figure 2 will repeat until the end of the global self-attention computation.

2.3. Swin Transformer-Based Encoding Booster

The embedding layer contains two operations: patch embedding and position em-
bedding. Since the computational complexity of the self-attention in the Transformer is
O(n2), the amount of computation grows exponentially with the length of the sequence.
Accordingly, if we directly flatten the whole image, especially the high-resolution image,
into a long pixel sequence, it will lead to high computational and memory costs. Therefore,
it is of great necessity to perform image patching and treat each flattened patch as an input
sequence of the shorter length to the swin Transformer block. Assume that the RGB input
image is I ∈ RH×W×C, and the patch size is set to 2× 2. First, we can obtain H

2 ×
W
2 patches

by image patching, and the dimension of each patch is 4×C. Afterward, due to the position
insensitivity of the self-attention computation, we exploit a learnable absolute position
encoding [44] to avoid confusion in the semantics of the image representation. The position
encoding can model the semantic relationships between patches at different positions and
generate features with implicit position and spatial information through training. Then we
project the patches by a fully-connected layer to the original dimension C for satisfying the
subsequent feature fusion operation. Accordingly, the feature size after embedding layer
becomes H

2 ×
W
2 × C.

After the embedding layer, the feature will pass through the swin Transformer pyra-
mid, which consists of multiple swin Transformer blocks for extracting the global semantic
information, and patch merging layers [45] for down-sampling. The swin Transformer
block (shown in Figure 3) is composed of multiple encoders (shown in the blue dot-
ted boxes), and each encoder contains layer normalization (LN), windowing multi-head
self-attention (W-MSA) or shifted-windowing multi-head self-attention (SW-MSA), and
multi-layer perception (MLP). It is built to implement the self-attention computation with
the shifted window design. In particular, since the swin transformer block is a sequence-
to-sequence model, the 2D features are flattened to sequences before input. In contrast,
the output sequences are resized to 2D features to serve as the input of the patch-merging
layer. The feature processing in the swin Transformer block can be described by the
following equation:

ẑ` = W-MSA(LN(z`−1)) + z`−1, ` = 1 . . . L (2)

z` = MLP(LN(ẑ`)) + ẑ`, ` = 1 . . . L (3)

ẑ`+1 = SW-MSA(LN(z`)) + z`, ` = 1 . . . L (4)

z`+1 = MLP(LN(ẑ`+1)) + ẑ`+1, ` = 1 . . . L (5)

where L, ẑ`, and z` represent the number of encoders, the output sequences of (S)W-MSA
and MLP, respectively. The encoder containing the W-MSA computation realizes the l-
th self-attention calculation demonstrated in Figure 2, and the encoder containing the
SW-MSA computation realizes the l + 1-th self-attention calculation. Each pair of these
two types of encoders realizes a whole cycle of the shifted-window global self-attention
computation. Since the length of sequences is maintained before and after the computation,
the encoders can be constantly stacked, enabling the swin Transformer block to capture
global semantics.
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Figure 3. The internal structure of the swin Transformer block.

In the swin Transformer pyramid, since the intermediate features produced by each
swin Transformer block contain global semantic information of different scales, they will
be treated as the output features at different levels of the encoding booster and utilized
for the following feature fusion. Because the swin Transformer block does not change the
feature scale, the input feature size of the first patch-merging layer is still H

2 ×
W
2 × C. We

use patch merging to down-sample and obtain the multi-scale features at different levels.
In the patch merging layer, the feature is first partitioned to 2× 2 patch squares, and the
patches at the same position in each square will be then reorganized in order and stacked
in the channel dimension to form a H

4 ×
W
4 × 2C features. Similarly, the feature size will

be down-sampled to H
8 ×

W
8 × 4C after the second patch-merging layer. With the patch

merging, the image size shrinks, and the spatial dimensions expand gradually in the swin
Transformer pyramid, allowing the encoding booster to construct more diverse spatial
feature properties and extract richer multi-scale semantic and contextual information.

2.4. U-Shaped Network with Feature Fusion

As we mentioned above, the proposed network includes a swin Transformer pyramid
and a specially designed U-shaped network (abbreviated as U-Net, shown in the right-hand
of Figure 1). In this work, the feature fusion block is introduced into the U-Net to realize
the feature-level fusion with the encoding booster mentioned above. Since down-sample
layers are utilized to shrink the feature size, we call the data path on the encoding side of
the U-Net the contracting path. Similarly, due to the utilization of up-sample layers for the
feature size restoration, we call the data path on the decoding side the expansive path. In
the following, we will introduce these two kinds of data paths and especially our fusion
methodology of the swin Transformer-based encoding booster and the U-Net.

On the contracting path, as illustrated in Figure 1, each stage contains a down-sample
layer and convolution layers. A 2× 2 max-pooling layer is deployed in each down-sample
layer. The max-pooling can expand the receptive field by shrinking the feature size,
allowing fixed-scale features to include contextual information of larger areas. The scaled
features are then passed by two successive 3× 3 convolutional layers, where the dimensions
of the features maintain.

As described above, the features extracted by our proposed encoding booster contain
large-scale semantic information, while the convolutional operation and the special U-
shaped structure enable the U-Net to extract local semantic features efficiently. Seeking to
combine global and local semantic information on the contracting path, we fuse the features
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at each scale generated by U-Net encoders and Transformer blocks and serve the fused
features as the input of the next-stage encoder. In the fusion blocks, the fusing operation
includes a channel concatenation and 1× 1 convolutions, which achieves the fusion of the
extracted global and local semantic information and enhances the informative features
through the network training. All operations in the STEB-UNet can be represented by

Ek = Conv×2(Fk−1
down), k = 1 . . . H (6)

Bk = Merge(Swin(Bk−1)), k = 1 . . . H (7)

Fk = Conv1×1(Concat(Ek, Bk)), k = 1 . . . H (8)

where E denotes the output of the U-Net encoder, B denotes the booster’s output, and F
denotes the output of the fusion block. H is the height of the swin Transformer pyramid,
and in Figure 1, H is equal to 3.

The feature fusion doubles the dimension of the feature due to the feature concatena-
tion we exploit. With going to the deeper encoding stages on the contracting path, the scale
of features continuously shrinks. Hence, the multi-scale semantic and contextual informa-
tion can be extracted by convolutions on different-sized features. Overall, the contracting
path promotes the efficiency of feature encoding by expanding the receptive and enabling
multi-scale feature extraction. Most importantly, it fuses the features produced by the swin
Transformer pyramid and the U-Net. Through our experiment, we empirically show that
this highly-efficient fusion method enables our network to achieve state-of-the-art (SOTA)
performance.

For the expansive path, we employ a regular design [34]. In contrast to the contracting
path, the nearest interpolation algorithm is utilized in the up-sample layer on the expansive
path to double the height and width of the features. After passing by two 3× 3 convolu-
tional layers which do not change the dimension, the features are concatenated with the
features on the contracting path transmitted by the skip connection. In the U-Net, skip
connection refers to the data path used to connect the corresponding encoding stage on the
contracting and the decoding stage on the expansive paths. By using skip connections, the
features which have not been fully encoded and still retain the original image information
can be propagated to the decoding sides and fused with the decoded features. Therefore,
the low-level and high-level semantic and contextual information contained in the features
can be fused, which significantly improves the localization accuracy for segmentation tasks
and the final prediction performance.

2.5. Loss Function

Dice loss [50] is a metric used to quantify the similarity of two sets. In terms of the
building extraction task, given the prediction ŷ and the ground truth (GT) y, the Dice loss
Ldice can be calculated by the following equation:

Ldice = 1− D, (9)

In this equation, D represents the Dice coefficient [50] in the range of [0, 1] . It can be
obtained by

D =
2 ∑N

1 yi × ŷi

∑N
1 y2

i + ∑N
1 ŷi

2 , (10)

where ŷi refers to the ith pixel of the flattened prediction vector, yi refers to the ith pixel
of the flattened label vector, and N refers to the number of pixels. Obviously, D can be
used to measure the similarity between prediction and GT. The closer D is equal to 1, the
more similar the prediction and GT are. On the other hand, the closer D is equal to 0, the
more different they are. This means that it is consistent with minimizing the Dice loss
with converging the network. Therefore, we utilized Dice loss as the loss function of the
STEB-UNet in this work.
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3. Experiments and Results
3.1. Experiment Dataset

The Massachusetts building dataset contains 151 aerial images covering the 340 km2

Boston area, and each image with the size of 1500× 1500 pixels covers a 2.25 km2 area. The
entire dataset is split into a training set containing 137 images, a validation set containing
4 images, and a testing set containing 10 images. In the experiments of this paper, we will
expand this dataset by performing data augmentation based on this division ratio.

The WHU dataset consists of more than 220,000 independent buildings extracted
from aerial images with 0.075 m spatial resolution and 450 km2 covering Christchurch,
New Zealand. The original aerial images are down-sampled to 0.3 m ground resolution
and cropped into 8189 tiles with the size of 512× 512 pixels, including 4736 tiles (includ-
ing 130,500 buildings) for the training set, 1036 tiles (including 14,500 buildings) for the
validation set and 2416 tiles (including 42,000 buildings) for the testing set.

Figure 4 shows the examples of source images and ground truth (GT) from the above
datasets. Obviously, for images of the same size in the WHU and Massachusetts datasets,
the regions covered by the former are significantly larger than that of the latter. Thus, the
buildings in the Massachusetts dataset are denser and comprise fewer pixels. In contrast,
the buildings in the WHU dataset occupy a larger pixel area and are sparser. Therefore,
the challenge of extracting buildings in the WHU dataset is being able to extract buildings
with clear and complete borders. For the Massachusetts dataset, the challenge is avoiding
missing the small-scale buildings in the image.

(a) (b)

(c) (d)

Figure 4. The source and ground truth images in the datasets: (a) Massachusetts source image;
(b) Massachusetts ground truth; (c) WHU source image; (d) WHU ground truth.
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3.2. Evaluation Metrics

Precision and recall are two evaluation metrics commonly used for segmentation
networks. They can be obtained by

precision =
TP

TP + FP
, (11)

recall =
TP

TP + FN
, (12)

where TP, FP, and FN represent the number of true positive, false positive, and false
negative samples. In terms of the building extraction task, TP represents the number of
pixels in the overlapping region of the predicted building and the GT building, TP + FP is
the total number of pixels in the predicted building, and TP + FN is the total number of
pixels in the GT building.

Even though the precision and recall can be used to evaluate models, they are usually
negatively correlated, i.e., the larger the former, the smaller the latter, or vice versa, which
makes it difficult to use either of them to fully assess the model’s performance. Therefore,
in this paper, we employed the F1 score for evaluation. The F1 score can effectively alleviate
this problem by considering both accuracy and recall. It can be obtained by

F1 = 2× precision× recall
precision + recall

(13)

In addition, IOU is also utilized in this work. It can measure the similarity between
the prediction and the true label. In the image segmentation task, IOU can be obtained by
dividing the area of the intersection region of the prediction and ground truth by the area
of their union region. IOU can be calculated by

IOU =
TP

TP + FP + FN
, (14)

In terms of the building extraction task, TP represents the number of pixels in the
overlapping region of the predicted building and the GT building, and TP + FP + FN
represents the number of pixels of their union region.

3.3. Experimental Setting

In this experiment, we performed data processing on the original Massachusetts and
WHU datasets. In terms of the Massachusetts dataset, we tiled each aerial image into 3× 3
non-overlapping images at 500× 500 pixels and performed data augmentation to further
expand the dataset, including rotating and shifting. After processing, the Massachusetts
dataset contains 5436 images in total. We used 4932 images for training, 144 images for
validation, and 360 images for testing, keeping the same division ratio as the original dataset.
In terms of the WHU dataset, we directly utilized its divided dataset, i.e., 4736 images for
training, 1036 images for validation, and 2416 images for testing. Moreover, due to the
limitation of the hardware memory, the images in both datasets were cropped randomly
further to different sizes (shown in Table 1) before being fed into different networks.

Our proposed network STEN-UNet was implemented using the Pytorch deep-learning
framework. All experiments were performed on the machine with an Intel Xeon Silver
4214r (2.4GHz frequency) CPU and Nvidia 3090 (24G memory per) × 4. All experimented
networks were trained for 2000 epochs. The detailed training configurations for the pro-
posed STEB-UNet and comparison networks are shown in Table 1. We selected the best
models at a particular epoch on the validation dataset for testing and the performance
comparison in Section 3.5.
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Table 1. Training configurations for different networks.

Network Input Size Batch Size Optimizer Parameter Setting

STEB-UNet 2562 32 Adam
lr = 0.001, betas = (0.9, 0.999),
eps =1 × 10−8 , weight decay = 0

U-Net [34] 2562 32 RMSProp
lr = 0.001, momentum = 0.9,
weight decay =1 × 10−8

U2-Net [51] 2562 32 Adam
lr = 0.001, betas = (0.9, 0.999),
eps = 1 × 10−8, weight decay = 0

SETR-Naïve
[52] 1282 2 Adam

lr = 0.0001, betas = (0.9, 0.999),
eps = 1 × 10−8, weight decay = 0

BRRNet [30]
(reported)

2562 8 Adam lr = 0.001

RFA-UNet [28]
(reported)

5122 (WHU)
3202 (Mass) 8 Adam lr = 0.001

TEB-UNet 1282 4 Adam
lr = 0.0001, betas = (0.9, 0.999),
eps = 1 × 10−8, weight decay = 0

3.4. Comparison Network

We compared our proposed network (shown in Figure 1) with the state-of-the-art
(SOTA) segmentation networks, including the U-Net [34], the U2-Net [51], and the Seg-
mentation Transformer (SETR) [52], as well as the building extraction networks, including
the Building Residual Refine Network (BRRNet) [30] and the RFA-UNet [28]. Since the
BRRNet [30] and the RFA-UNet [28] do not provide publicly available source codes or
processed images, their experimental results and settings are the references of reports in
the papers. For the other networks, we re-trained and selected the best models with the
highest metrics for the comparisons in the following subsections. A detailed introduction
to comparison networks is in the following paragraphs.

U-Net [34] is a fully convolutional network (FCN) and was originally used for medical
image segmentation. The subsequent research also discovered its high accuracy in most
segmentation tasks, including the building extraction tasks. The introduction to the U-Net
is included in Sections 1 and 2. Since all the CNNs in this experiment are based on the
U-shaped architecture, the U-Net is regarded as a baseline network for comparisons.

U2-Net [51] introduces a two-level nesting design based on the U-shaped architecture.
Each encoder or decoder stage of the U2-Net comprises a small nested U-Net. This nesting
design enables the extraction of more contextual information from multi-scale features
and increases the network depth without causing a dramatic growth in the number of
parameters. The U2-Net demonstrates SOTA performance in segmentation tasks.

SETR [52] regards the training for segmentation tasks as a sequence-to-sequence
learning. Different from the previous FCNs, which were the main approaching for image
segmentation, SETR is a fully transformer-based network that uses the sequentialTrans-
former block to progressively extract the semantics and context. SETR provides three
different decoder designs, and in this paper, we utilized the simplest and the most com-
monly used one called SETR-Naïve, where the encoder is composed of Transformer layers,
and the decoder only contains two 1× 1 convolutional layers and an up-sample layer to
restore the image resolution.

BRRNet [30] and RFA-UNet [28] are FCNs for the building extraction task. The BRRNet
contains a predict module and a refinement module. The predict module is a U-shaped
network used to extract features. Taking the output of the predict module as an input,
the refinement module is used to correct the prediction to reduce the deviations from the
ground truth and further improve the network’s accuracy. The RFA-UNet is based on a
standard U-shaped architecture. In particular, the RFA-UNet contains an attention module
to re-weight the features along spatial and channel dimensions, which can bridge the
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gap between high-level and low-level features, thus enhancing the consistency of features
before the concatenation.

Transformer-based Encoding Booster- U-shaped Network (TEB-UNet) is built as a
variant of the proposed STEB-UNet to verify the effectiveness of our swin Transformer-
based encoding booster. The overall architecture of the TEB-UNet is the same as the STEB-
UNet (shown in Figure 1), except the swin Transformer block in the encoding booster which
we replaced with the basic vision Transformer module [44]. The basic Transformer module
does include the shifted-window design, which means the self-attention is calculated
directly on the whole feature map instead of in each fixed-size shifted window. In addition,
the patch merging as a down-sampling method used in the swin Transformer pyramid
was replaced with a simple 2 × 2 max-pooling operation to ensure size matching for
feature concatenation.

3.5. Experimental Result and Analysis

Figure 5 demonstrates the comparison of extraction results of different approaches.
The first three rows show the WHU dataset, and the last three rows show the Massachusetts
dataset. The areas where the STEB-UNet shows greater advantages have been marked in red
boxes. Since our network can better identify the internal feature similarity of building areas
and the differences between buildings and non-building objects, therefore, the extracted
buildings by our network have clearer boundaries and more complete outlines. In Figure 5,
the images in the first three rows show that for some buildings occupying large areas, our
proposed network can segment the edges more accurately compared to other networks.
The images in the last three rows show that our network can extract large areas of buildings
more completely and minimize the missing of buildings of small areas extracted from aerial
photographs, thus effectively improving the accuracy of building extraction.

STEB-UNet TEB-UNet SETR-Naïve U2-Net U-NetSource Ground Truth

Figure 5. The comparison of the building extraction results of different networks on the WHU (first
to third line) and Massachusetts (fourth to sixth line) dataset. The building areas are drawn white.
The areas where the STEB-UNet shows greater advantages are in red boxes, whose zoom-in figures
are shown in their near yellow boxes.
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To highlight the advantages of the STEB-UNet over traditional CNN-based meth-
ods, we visualize the performance of the STEB-UNet and the U2-Net on the WHU and
Massachusetts datasets in Figure 6. We chose the U2-Net for comparison because its com-
putation is entirely based on convolutional operations. The examples show that the U2-Net
misses a lot of building areas (blue boxes), especially for buildings on a large scale (e.g.,
the last column of Figure 6b, and the middle column of Figure 6d). In contrast, the seg-
mentation of building boundaries by the STEB-UNet is sharper and more accurate, and the
missed, as well as the incorrectly extracted building areas (red boxes), are much less than
those of the U2-Net. This indicates that our Transformer-based encoding booster exhibits a
good performance of large-scale semantic extraction, which significantly improves building
extraction.

(a)

(b)

(c)

Figure 6. Cont.



Remote Sens. 2022, 14, 2611 14 of 21

(d)

Figure 6. The building extraction results of: (a) STEB-UNet on the WHU dataset; (b) U2-Net on
the WHU dataset; (c) STEB-UNet on the Massachusett dataset; (d) U2-Net on the Massachusett
dataset. The boxes in green, blue, and red indicate true-positive, false-negative, and false-positive
classifications, respectively.

In addition to the visual comparison of the experimental results, we also quantified
the comparison of results using the F1 score and IOU metrics. The higher F1 score or
IOU indicates a better performance of the model. The comparisons of metrics of different
networks are shown in Table 2. The results in Table 2 show that the proposed STEB-UNet
achieves the best performance compared with other networks, especially on the WHU
dataset. Compared with the U-Net as the baseline, the STEB-UNet shows great advantages
on both datasets, which verifies the effectiveness of the proposed swin Transformer-based
encoding booster. Compared with other fully convolutional networks based on U-shaped
structures (i.e., BRRNet, U2-Net, and RFA-Net), our integrated swin Transformer-based
encoding booster can effectively break through the limitations of local perceptive fields and
extract richer feature information, especially large-scale features. The performance of SETR
in the building extraction task is limited because SETR does not include the utilization of
convolutional operations in the encoding stage, resulting in the lack of some inductive
biases, such as a strong correlation of local semantics, shift in-variance, etc. Compared with
SETR, the STEB-UNet significantly improves the performance because of the convolution-
based-encoding structure, which greatly improves the localization accuracy. Moreover,
the slight performance improvement of the STEB-UNet over the TEB-UNet verifies that
our swin Transformer pyramid can extract semantic information at different scales more
efficiently and accurately.

Table 2. Experimental results of different methods on WHU and Massachusetts datasets.

Massachusetts [53] WHU [36]

F1 Score ↑ IOU ↑ F1 Score ↑ IOU ↑

U-Net [34] 82.81% 73.34% 85.45% 87.98%
BRRNet [30]

(report) 85.36% 74.46% 92.40% 85.90%

U2-Net [51] 85.91% 80.56% 92.47% 91.34%
RFA-UNet [28]

(report) 85.65% 74.91% 94.75% 90.02%

SETR-Naïve [52] 87.05% 77.39% 93.41% 88.47%
TEB-UNet 89.74% 76.91% 94.55% 88.63%

STEB-UNet 89.90% 81.66% 96.85% 93.89%
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3.6. Generalization Testing

In deep supervised learning, we trained and tested the network on the same dataset.
However, we often faced target data with different feature distributions from the train-
ing dataset in practical applications. In such conditions, the generalization ability of an
algorithm is important because it can affect the performance on unknown data. To explore
the generalization ability of our proposed network, we performed the generalization test-
ing experiment to simulate and evaluate the effectiveness of experimental networks in
real applications.

The experimental results are illustrated in Table 3. The results in the “Massachusetts”
column were obtained by training networks on the WHU dataset and testing on the
Massachusetts dataset. Similarly, the results in the “WHU” column were obtained by
training networks on the Massachusetts dataset and testing on the WHU dataset. Table 3
shows that the testing metrics of different networks generally decrease compared to the
ordinary learning, while the decline is more pronounced on the WHU dataset than on the
Massachusetts dataset. According to our analysis, the possible reason is that since the sizes
of most buildings in the Massachusetts dataset are relatively small, the shapes and edge
characteristics of these low-resolution buildings are fuzzy and different from those of the
larger-sized buildings in the WHU dataset. This makes it difficult for the model trained
on the Massachusetts dataset to perform well on the WHU dataset. In contrast, due to the
high resolution of buildings in the WHU dataset with clear boundaries, the trained model
can still recognize the inherent features of buildings and distinguish them from the features
of surrounding non-building objects when detecting small buildings targets.

Table 3. The generalization testing of different methods on WHU and Massachusetts datasets.

Massachusetts [53] WHU [36]

F1 Score ↑ IOU ↑ F1 Score ↑ IOU ↑

U-Net [34] 74.20% 72.45% 81.01% 78.49%
U2-Net [51] 81.83% 74.54% 84.13% 80.92%

SETR-Naïve [52] 85.74% 74.51% 85.84% 81.43%
TEB-UNet 85.11% 75.80% 87.11% 84.87%

STEB-UNet 87.08% 78.95% 87.64% 85.22%

Table 3 also illustrates that first, the network including Transformers still outperforms
CNNs in the generalization testing, and the drop of their experimental metrics is less
than that of CNNs. Our explanation of this phenomenon is that due to its advantages
in extracting large-scale contextual and semantic information, the Transformer can still
identify buildings of different sizes with high accuracy when generalizing to other datasets.
Second, we can find that SETR-Naïve is less affected on both datasets than other networks.
We analyze the possible reasons are the feature extraction of SETR-Naïve only achieved
by Transformer layers, and the lack of fusion of multi-scale semantic and contextual
information that other U-shaped networks include. Therefore, although the testing results
are still not as good as the TEB-UNet and the STEB-UNet, the feature extraction of SETR-
Naïve can be consistent on different datasets, and thus the performance of SETR-Naïve
can also be maintained to a certain extent when processing data with different feature
distributions. Most importantly, the proposed STEB-UNet still demonstrates the highest
performance in generalization testing, indicating a good generalization to extract buildings
on different datasets with high accuracy.

4. Discussion

To alleviate the problem that traditional convolutional neural networks (CNNs) have
difficulty extracting large-scale semantic information from high-resolution remote sensing
images (HRRSIs), we propose a swin Transformer-based encoding booster to enable the
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network to capture global features. We integrated this encoding booster into a U-Net,
which has performed well in segmentation tasks, to alleviate the incomplete or incorrect
segmentation of large buildings due to the local receptive fields in the convolution process,
thus improving the accuracy of the building extraction. We call the integrated network
the Swin Transformer-based Encoding Booster- U-shaped Network (STEB-UNet). In this
section, first, we will compare the performance of the STEB-UNet with different loss
functions. Then we will discuss the resource requirements of the proposed network for the
training platform and compare it with other networks mentioned in Section 3. Finally, we
will briefly introduce our future work.

4.1. Loss Function

As mentioned in Section 2.5, we used Dice loss [50] as the target function for network
training in this work. Dice loss was originally applied for medical segmentation task [50],
but it is also utilized in existing building extraction works [30,54]. In addition to Dice loss,
the binary cross-entropy (BCE) loss is another widely used loss function. In particular, it has
been employed in some Transformer-related networks [45,46,55,56] and demonstrates good
performance. BCE is utilized to reflect the similarity between two probability distributions.
For the building extraction task, given the prediction ŷ and the true label y, BCE loss can be
obtained by the following equation:

Lbce = −
1
N

N

∑
i=1

[yi ln ŷi + (1− yi) ln(1− ŷi)], (15)

Similar to the definitions of the Dice loss calculation, in the above equation, ŷi refers to
the ith pixel of the flattened prediction vector, yi refers to the ith pixel of the flattened label
vector, and N refers to the number of pixels.

Since the proposed STEB-UNet also contains Transformer blocks, we experimented to
use BCE as the loss function and compared the testing results with those obtained by using
Dice loss. Furthermore, inspired by TransFuse [56] and Msst-net [46], whose loss functions
are composed of several different targets, we tried a weighted combination of Dice and
BCE loss to experiment whether the combined loss function could enable the network to
obtain better testing results through supervising the network training. The combined loss
Lcmb can be calculated by

Lcmb = αLbce + (1− α)Ldice α ∈ (0, 1), (16)

where α is an adjustment factor used to adapt the weight of two loss functions. The
definition of Ldice can be found in Section 2.5.

Table 4 illustrates the performance comparison of the STEB-UNet with different afore-
mentioned loss functions, including the BCE loss, the Dice loss, and the combined loss.
From Line 1 and Line 2, we can see that the Dice loss achieves better performance than
the BCE loss. Moreover, the combination strategy of two loss functions does not show
apparent superiority, and its performance is between Dice loss and BCE loss. Also, different
settings of the α values to adjust the weight of the Dice and the BCE loss do not yield much
difference since the testing metrics are almost the same. Therefore, through the experiments
in this subsection, we empirically show that using the Dice function as the loss function for
the STEB-UNet can achieve better performance for the building detection task than using
BCE loss or a combination of two losses.
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Table 4. The performance comparison of the proposed STEB-UNet with different loss function on the
WHU dataset.

Loss Function F1 Score IOU

BCE 96.74% 93.62%
Dice 96.85% 93.89%

Combine (α = 0.4) 96.76% 93.61%
Combine (α = 0.5) 96.79% 93.65%
Combine (α = 0.6) 96.79% 93.64%

4.2. Resource Requirement Analysis

Large-scale networks tend to have higher accuracy, but their numerous parameters
will also bring significant storage challenges to the computing platforms, especially mobile
devices. Therefore, the trade-off between accuracy and the number of parameters is an
important part of the network design. To this end, we counted the number of parameters
of different networks. Figure 7 demonstrates that the proposed STEB-UNet has a relatively
fewer number of parameters while maintaining high accuracy (shown in Section 3).

U2Net UNet TEB-UNet SETR BRRNet RFA-Unet STEB-Unet

44.01 

17.27 

25.86 

51.95 

17.00 

26.11 
21.14 

Figure 7. The number of parameters (Millions) of different methods.

From Figure 7, we can also find that the number of parameters of Transformer-included
networks (TEB-UNet, SETR, and STEB-UNet) is generally higher than the convolution-
based networks at the same depth. In fact, despite the high performance in segmentation
tasks, Transformer-included networks are much more training costly in practice. The reason
is that the computation of the global attention mechanism leads to a higher requirement of
memory and computational power because of the enormous computational complexity,
which is always one of the major challenges in training Transformer-included networks.

To explore the memory and computational requirement for training different
Transformer-based networks mentioned in this paper, we counted the number of parame-
ters, the GPU memory, and the training time of a single epoch for the SETR, TEB-UNet, and
the proposed STEB-UNet. Table 5 shows the experimental results. SETR has the most num-
ber of parameters, almost 2×more than the other networks whose quantities of parameters
are close. Due to the high computational complexity of the global attention in Transformer,
larger GPU memory is needed to train SETR and TEB-UNet, nearly 9× and 7×more than
training the STEB-UNet, respectively. Since 20 GB GPU memory is required to train them
feeding with a single 128 × 128 image, the batch size can only be set to one even on a 3090
(24 GB) high-performance computational platform. In contrast, due to the window-shifting
design, STEB-UNet’s global self-attention computation is limited to a fixed-size window;
thus, the GPU memory required for training is greatly reduced. We experimented that up
to 12 input images can be fed to the STEB-UNet in a single batch. Considering that the
comparisons in this table were obtained when the batch size was set to one, the difference
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in actual training time will be further enlarged due to the distributed training with multiple
GPUs in real applications where the batch size is much larger than one.

Table 5. Data statistics in training of different networks, where batch size is set to one, the size of
input image is 128 × 128, and the loss function is set to BCE loss.

Model Parameter (M) Memory (MB) Training Time/Epoch

SETR-Naive [52] 51.95 22165 1769.4 s
TEB-UNet 25.86 16579 1385.8 s

STEB-UNet 21.14 2465 807.3 s

4.3. Future Work

Despite STEB-UNet’s relatively inexpensive computational and storage resource cost,
it can only achieve 7 to 8 FPS training speed and 19 to 20 FPS inference speed in experi-
ments. Therefore, compared to other slightly less accurate but lighter networks, currently
the STEB-UNet is unsuitable for real-time building extraction tasks or deployed on low-
computational mobile platforms. In the future, we can probably address this challenge
by introducing the lightweight design, such as knowledge distillation, tensor decomposi-
tion, and deep separable convolution, to achieve model compression with minimal loss
of accuracy.

5. Conclusions

In this paper, to promote large-scale semantic extraction in remote sensing building
extraction tasks, we proposed a shifted-window Transformer-based encoding booster.
Compared with the convolution-based encoders, our encoding booster can capture large-
scale semantic information more efficiently because of the significant expansion of the
perceptive field by the global self-attention mechanism of the swin Transformer. Moreover,
due to the utilization of patch merging for down-sampling, our encoding booster can extract
semantic information from multi-level features. Furthermore, through integrating the
encoding boosters into a U-Net with feature fusion blocks in a novel manner, our network
called the Swin Transformer-based Encoding Booster- U-shaped Network (STEB-UNet) can
fully exploit their advantages in large-scale feature extraction and high localization accuracy.
Particularly, due to the shifted-window design, the STEB-UNet has lower computational
and memory costs than other Transformer-included networks while maintaining high
performance. Experiments on public datasets demonstrated that our proposed network
achieves higher building extraction accuracy than state-of-the-art networks.

Author Contributions: X.X. supervised the study, gave suggestions and revised the manuscript; W.G.
proposed the original idea, completed the programming and wrote the manuscript. R.C. completed
the experiments and collected the data; Y.H. collected the data and revised the manuscript; J.W. and
H.Z. gave suggestions and revised the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the NSFC under Grant 61901341 and 61403291, in
part by the China Postdoctoral Science Foundation under Grant 2021TQ0260, in part by the GHfund
under Grant 202107020822 and 202202022633, and in part by the National Natural Science Foundation
of Shaanxi Province under Grant 2020JQ-301.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this work are WHU buildings dataset [53] and
Massachusetts buildings dataset [36]. They can be download from http://gpcv.whu.edu.cn/data/
building_dataset.html (accessed on 2 January 2022) and https://www.cs.toronto.edu/~vmnih/data
(accessed on 7 January 2022), respectively.

http://gpcv.whu.edu.cn/data/building_dataset.html
http://gpcv.whu.edu.cn/data/building_dataset.html
https://www.cs.toronto.edu/~vmnih/data


Remote Sens. 2022, 14, 2611 19 of 21

Acknowledgments: We would like to thank the anonymous reviewers for their constructive and
valuable suggestions on the earlier drafts of this manuscript.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Enemark, S.; Williamson, I.; Wallace, J. Building modern land administration systems in developed economies. J. Spat. Sci. 2005,

50, 51–68. [CrossRef]
2. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [CrossRef]
3. Li, X.; Li, Z.; Yang, J.; Liu, Y.; Fu, B.; Qi, W.; Fan, X. Spatiotemporal characteristics of earthquake disaster losses in China from

1993 to 2016. Nat. Hazards 2018, 94, 843–865. [CrossRef]
4. Liu, Y.; Li, Z.; Wei, B.; Li, X.; Fu, B. Seismic vulnerability assessment at urban scale using data mining and GIScience technology:

Application to Urumqi (China). Geomat. Nat. Hazards Risk 2019, 10, 958–985. [CrossRef]
5. Zhang, B.; Chen, Z.; Peng, D.; Benediktsson, J.A.; Liu, B.; Zou, L.; Li, J.; Plaza, A. Remotely sensed big data: Evolution in model

development for information extraction [point of view]. Proc. IEEE 2019, 107, 2294–2301. [CrossRef]
6. Saeedi, P.; Zwick, H. Automatic building detection in aerial and satellite images. In Proceedings of the 2008 10th International

Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December 2008; pp. 623–629.
7. Huang, X.; Zhang, L. Morphological building/shadow index for building extraction from high-resolution imagery over urban

areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 5, 161–172. [CrossRef]
8. Ok, A.O.; Senaras, C.; Yuksel, B. Automated detection of arbitrarily shaped buildings in complex environments from monocular

VHR optical satellite imagery. IEEE Trans. Geosci. Remote Sens. 2012, 51, 1701–1717. [CrossRef]
9. Manno-Kovács, A.; Ok, A.O. Building detection from monocular VHR images by integrated urban area knowledge. IEEE Geosci.

Remote Sens. Lett. 2015, 12, 2140–2144. [CrossRef]
10. Femiani, J.; Li, E.; Razdan, A.; Wonka, P. Shadow-based rooftop segmentation in visible band images. IEEE J. Sel. Top. Appl. Earth

Obs. Remote Sens. 2014, 8, 2063–2077. [CrossRef]
11. Li, E.; Xu, S.; Meng, W.; Zhang, X. Building extraction from remotely sensed images by integrating saliency cue. IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens. 2016, 10, 906–919. [CrossRef]
12. Manno-Kovacs, A.; Sziranyi, T. Orientation-selective building detection in aerial images. ISPRS J. Photogramm. Remote Sens. 2015,

108, 94–112. [CrossRef]
13. Inglada, J. Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of

geometric image features. ISPRS J. Photogramm. Remote Sens. 2007, 62, 236–248. [CrossRef]
14. Turker, M.; Koc-San, D. Building extraction from high-resolution optical spaceborne images using the integration of support

vector machine (SVM) classification, Hough transformation and perceptual grouping. Int. J. Appl. Earth Obs. Geoinf. 2015,
34, 58–69. [CrossRef]

15. Du, S.; Zhang, F.; Zhang, X. Semantic classification of urban buildings combining VHR image and GIS data: An improved
random forest approach. ISPRS J. Photogramm. Remote Sens. 2015, 105, 107–119. [CrossRef]

16. Katartzis, A.; Sahli, H. A stochastic framework for the identification of building rooftops using a single remote sensing image.
IEEE Trans. Geosci. Remote Sens. 2007, 46, 259–271. [CrossRef]

17. Sirmacek, B.; Unsalan, C. Urban-area and building detection using SIFT keypoints and graph theory. IEEE Trans. Geosci. Remote
Sens. 2009, 47, 1156–1167. [CrossRef]

18. Liu, Z.; Cui, S.; Yan, Q. Building extraction from high resolution satellite imagery based on multi-scale image segmentation and
model matching. In Proceedings of the 2008 International Workshop on Earth Observation and Remote Sensing Applications,
Beijing, China, 30 June–2 July 2008; pp. 1–7.

19. Huang, X.; Zhang, L. A multidirectional and multiscale morphological index for automatic building extraction from multispectral
GeoEye-1 imagery. Photogramm. Eng. Remote Sens. 2011, 77, 721–732. [CrossRef]

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef]

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

22. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

24. Liu, Y.; Piramanayagam, S.; Monteiro, S.T.; Saber, E. Dense semantic labeling of very-high-resolution aerial imagery and lidar
with fully-convolutional neural networks and higher-order CRFs. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 76–85.

25. Li, L.; Liang, J.; Weng, M.; Zhu, H. A multiple-feature reuse network to extract buildings from remote sensing imagery. Remote
Sens. 2018, 10, 1350. [CrossRef]

http://doi.org/10.1080/14498596.2005.9635049
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.1007/s11069-018-3425-6
http://dx.doi.org/10.1080/19475705.2018.1524400
http://dx.doi.org/10.1109/JPROC.2019.2948454
http://dx.doi.org/10.1109/JSTARS.2011.2168195
http://dx.doi.org/10.1109/TGRS.2012.2207123
http://dx.doi.org/10.1109/LGRS.2015.2452962
http://dx.doi.org/10.1109/JSTARS.2014.2369475
http://dx.doi.org/10.1109/JSTARS.2016.2603184
http://dx.doi.org/10.1016/j.isprsjprs.2015.06.007
http://dx.doi.org/10.1016/j.isprsjprs.2007.05.011
http://dx.doi.org/10.1016/j.jag.2014.06.016
http://dx.doi.org/10.1016/j.isprsjprs.2015.03.011
http://dx.doi.org/10.1109/TGRS.2007.904953
http://dx.doi.org/10.1109/TGRS.2008.2008440
http://dx.doi.org/10.14358/PERS.77.7.721
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.3390/rs10091350


Remote Sens. 2022, 14, 2611 20 of 21

26. Kang, W.; Xiang, Y.; Wang, F.; You, H. EU-Net: An efficient fully convolutional network for building extraction from optical
remote sensing images. Remote Sens. 2019, 11, 2813. [CrossRef]

27. Yi, Y.; Zhang, Z.; Zhang, W.; Zhang, C.; Li, W.; Zhao, T. Semantic segmentation of urban buildings from VHR remote sensing
imagery using a deep convolutional neural network. Remote Sens. 2019, 11, 1774. [CrossRef]

28. Ye, Z.; Fu, Y.; Gan, M.; Deng, J.; Comber, A.; Wang, K. Building extraction from very high resolution aerial imagery using joint
attention deep neural network. Remote Sens. 2019, 11, 2970. [CrossRef]

29. Guo, M.; Liu, H.; Xu, Y.; Huang, Y. Building extraction based on U-Net with an attention block and multiple losses. Remote Sens.
2020, 12, 1400. [CrossRef]

30. Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A fully convolutional neural network for automatic
building extraction from high-resolution remote sensing images. Remote Sens. 2020, 12, 1050. [CrossRef]

31. Chen, M.; Wu, J.; Liu, L.; Zhao, W.; Tian, F.; Shen, Q.; Zhao, B.; Du, R. DR-Net: An improved network for building extraction from
high resolution remote sensing image. Remote Sens. 2021, 13, 294. [CrossRef]

32. Jin, Y.; Xu, W.; Zhang, C.; Luo, X.; Jia, H. Boundary-aware refined network for automatic building extraction in very high-
resolution urban aerial images. Remote Sens. 2021, 13, 692. [CrossRef]

33. Chen, D.Y.; Peng, L.; Li, W.C.; Wang, Y.D. Building Extraction and Number Statistics in WUI Areas Based on UNet Structure and
Ensemble Learning. Remote Sens. 2021, 13, 1172. [CrossRef]

34. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2022; Springer: Cham, Switzerland, 2015, pp. 234–241.

35. Pan, X.; Gao, L.; Marinoni, A.; Zhang, B.; Yang, F.; Gamba, P. Semantic labeling of high resolution aerial imagery and LiDAR data
with fine segmentation network. Remote Sens. 2018, 10, 743. [CrossRef]

36. Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery
data set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [CrossRef]

37. Ji, S.; Wei, S.; Lu, M. A scale robust convolutional neural network for automatic building extraction from aerial and satellite
imagery. Int. J. Remote Sens. 2019, 40, 3308–3322. [CrossRef]

38. Ma, J.; Wu, L.; Tang, X.; Liu, F.; Zhang, X.; Jiao, L. Building extraction of aerial images by a global and multi-scale encoder-decoder
network. Remote Sens. 2020, 12, 2350. [CrossRef]

39. Wierzbicki, D.; Matuk, O.; Bielecka, E. Polish cadastre modernization with remotely extracted buildings from high-resolution
aerial orthoimagery and airborne LiDAR. Remote Sens. 2021, 13, 611. [CrossRef]

40. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

41. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

42. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
43. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the Advances in

Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 3104–3112.
44. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
45. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted

windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; pp. 10012–10022.

46. Yuan, W.; Xu, W. MSST-Net: A Multi-Scale Adaptive Network for Building Extraction from Remote Sensing Images Based on
Swin Transformer. Remote Sens. 2021, 13, 4743. [CrossRef]

47. Chen, X.; Qiu, C.; Guo, W.; Yu, A.; Tong, X.; Schmitt, M. Multiscale feature learning by transformer for building extraction from
satellite images. IEEE Geosci. Remote. Sens. Lett. 2022 , 19, 2503605. [CrossRef]

48. Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders
for medical image segmentation. arXiv 2021, arXiv:2102.04306.

49. Petit, O.; Thome, N.; Rambour, C.; Themyr, L.; Collins, T.; Soler, L. U-net transformer: Self and cross attention for medical image
segmentation. In Proceedings of the International Workshop on Machine Learning in Medical Imaging; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 267–276.

50. Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation.
In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016;
pp. 565–571.

51. Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going deeper with nested U-structure for
salient object detection. Pattern Recognit. 2020, 106, 107404. [CrossRef]

52. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6881–6890.

53. Mnih, V. Machine Learning for Aerial Image Labeling; University of Toronto: Toronto, ON, Canada, 2013.

http://dx.doi.org/10.3390/rs11232813
http://dx.doi.org/10.3390/rs11151774
http://dx.doi.org/10.3390/rs11242970
http://dx.doi.org/10.3390/rs12091400
http://dx.doi.org/10.3390/rs12061050
http://dx.doi.org/10.3390/rs13020294
http://dx.doi.org/10.3390/rs13040692
http://dx.doi.org/10.3390/rs13061172
http://dx.doi.org/10.3390/rs10050743
http://dx.doi.org/10.1109/TGRS.2018.2858817
http://dx.doi.org/10.1080/01431161.2018.1528024
http://dx.doi.org/10.3390/rs12152350
http://dx.doi.org/10.3390/rs13040611
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.3390/rs13234743
http://dx.doi.org/10.1109/LGRS.2022.3142279
http://dx.doi.org/10.1016/j.patcog.2020.107404


Remote Sens. 2022, 14, 2611 21 of 21

54. Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely
sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [CrossRef]

55. Valanarasu, J.M.J.; Oza, P.; Hacihaliloglu, I.; Patel, V.M. Medical transformer: Gated axial-attention for medical image segmen-
tation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention,
Strasbourg, France, 27 September–1 October 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 36–46.

56. Zhang, Y.; Liu, H.; Hu, Q. Transfuse: Fusing transformers and cnns for medical image segmentation. arXiv 2021, arXiv:2102.08005.

http://dx.doi.org/10.1016/j.isprsjprs.2020.01.013

	Introduction
	Methodology
	Overall Architecture
	Transformer and Shifted-Window Design
	Swin Transformer-Based Encoding Booster
	U-Shaped Network with Feature Fusion
	Loss Function

	Experiments and Results
	Experiment Dataset
	Evaluation Metrics
	Experimental Setting
	Comparison Network
	Experimental Result and Analysis
	Generalization Testing

	Discussion
	Loss Function
	Resource Requirement Analysis
	Future Work

	Conclusions
	References

