
Citation: Mao, W.; Liu, G.; Wang, X.;

Xie, Y.; He, X.; Zhang, B.; Xiang, W.;

Wu, S.; Zhang, R.; Fu, Y.; et al. Using

Range Split-Spectrum Interferometry

to Reduce Phase Unwrapping Errors

for InSAR-Derived DEM in Large

Gradient Region. Remote Sens. 2022,

14, 2607. https://doi.org/10.3390/

rs14112607

Academic Editor: Lionel Bombrun

Received: 5 April 2022

Accepted: 26 May 2022

Published: 29 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Communication

Using Range Split-Spectrum Interferometry to Reduce Phase
Unwrapping Errors for InSAR-Derived DEM in Large
Gradient Region
Wenfei Mao 1, Guoxiang Liu 1, Xiaowen Wang 1,* , Yakun Xie 1, Xiaoxing He 2 , Bo Zhang 1 , Wei Xiang 1 ,
Shuaiying Wu 1, Rui Zhang 1 , Yin Fu 1 and Saied Pirasteh 1

1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University,
Chengdu 611756, China; wenfeimao@my.swjtu.edu.cn (W.M.); rsgxliu@swjtu.edu.cn (G.L.);
yakunxie@my.swjtu.edu.cn (Y.X.); rsbozh@gmail.com (B.Z.); xiangwei@my.swjtu.edu.cn (W.X.);
shining@my.swjtu.edu.cn (S.W.); zhangrui@swjtu.edu.cn (R.Z.); rsyinfu@my.swjtu.edu.cn (Y.F.);
sapirasteh@swjtu.edu.cn (S.P.)

2 School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology,
Ganzhou 341000, China; xxh@jxust.edu.cn

* Correspondence: insarwxw@swjtu.edu.cn

Abstract: The use of the conventional interferometric synthetic aperture radar (InSAR) to generate
digital elevation models (DEMs) always encounters phase unwrapping (PU) errors in areas with a
sizeable topographic gradient. Range split-spectrum interferometry (RSSI) can overcome this issue;
however, it loses the spatial resolution of the SAR image. We propose the use of the RSSI-assisted In-
SAR-derived DEM (RID) method to address this challenge. The proposed approach first applies the
RSSI method to generate a prior DEM, used for simulating terrain phases. Then, the simulated terrain
phases are subtracted from the wrapped InSAR phases to obtain wrapped residual phases. Finally,
the residual phases are unwrapped by the minimum cost flow (MCF) method, and the unwrapped
residual phases are added to the simulated phases. Both the simulated and TerraSAR-X data sets are
used to verify the proposed method. Compared with the InSAR and RSSI methods, the proposed
approach can effectively decrease the PU errors of large gradients, ensure data resolution, and
guarantee the DEM’s accuracy. The root mean square error between the topographic phase simulated
from the real DEM and the topographic phase generated from the proposed method is 2.22 rad, which
is significantly lower than 6.60 rad for InSAR, and the improvement rate is about 66.36%.

Keywords: range split-spectrum interferometry (RSSI); interferometric synthetic aperture radar
(InSAR); digital elevation model (DEM); phase unwrapping error

1. Introduction

The digital elevation model (DEM) describes ground elevation information, which
plays an important role in the national economy and defense construction. DEM can be gen-
erated by optical stereo image pairs, LiDAR, and traditional measurement methods [1–4].
However, these are either highly affected by clouds, rain, and fog, or extremely inefficient
and costly. Interferometric synthetic aperture radar (InSAR) is extensively used to generate
DEM because it can effectively overcome the defects mentioned above [5,6]. Unfortu-
nately, phase unwrapping (PU) is an essential step for InSAR DEM extraction, which can
directly affect the DEM quality [7]. For regions with a large topographic gradient, the phase
fringes of InSAR-derived DEM are extremely dense. Therefore, it is easy to cause phase
unwrapping errors and thus seriously affect the quality of InSAR-derived DEM. Several
PU methods exist to address the problem of InSAR phase unwrapping. The most common
PU methods include: (1) single-baseline PU (SB-PU) method and (2) multibaseline PU
(MB-PU) method [8–11]. The SB-PU method can quickly retrieve the unwrapping phase
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based on the phase continuity assumption, which was first proposed by Itoh [12]. This
assumption works in the scenario where the phase difference between any two adjacent
pixels is less than π [7,13]. The SB-PU method mainly includes the path-following meth-
ods (e.g., the branch-cut method), optimization-based methods (e.g., minimum cost flow
method, MCF; SNAPHU method), and integrated denoising and unwrapping methods
(e.g., Kalman-filter-based PU method) [8,14–19]. Nevertheless, the phase continuity as-
sumption is not always true, especially in scenes with large gradient deformation and
topographic changes. Therefore, the unwrapping performance of the SB-PU method for
InSAR-derived DEM phases of areas with large topographic gradients is vastly reduced.
In contrast to the SB-PU method, the MB-PU method uses more InSAR interferometric
pairs and significantly increases the ambiguity intervals of interferometric phases, effec-
tively overcoming the phase continuity condition [8,13,20]. The MB-PU method mainly
consists of parametric-based (e.g., Maximum-likelihood estimation and maximum a poste-
rior estimation), nonparametric-based (Chinese remainder theorem), and cluster-analysis
(CA)-based methods [8,21–24]. Although the MB-PU method can effectively overcome the
phase continuity assumption, its implementation is quite difficult, and it suffers from poor
robustness and low efficiency.

With the continuous enrichment of external data and the rapid development of data
processing technology, on the one hand, the external data-assisted PU method has captured
widespread attention, e.g., external DEM-assisted methods [25,26]. Unfortunately, the
effectiveness of this method depends heavily on the accuracy and immediacy of external
data, e.g., the external DEM is too old to reflect the real surface information. Moreover,
the performance of the external DEM-assisted PU method will be significantly reduced.
On the other hand, the deep learning technique has presented powerful performances
in terms of detecting, segmentation, and recognizing objects with optical images [27–29].
Recently, a few studies have revealed that the deep learning technique has immense
potential in InSAR phase unwrapping and can effectively overcome phase unwrapping
errors [30–38]. However, the number and diversity of samples struggle to meet the actual
situation. Additionally, the InSAR phase unwrapping model of deep learning is limited by
its generalization ability, which leads to phase-unwrapping distortion in complex scenes.

Although the PU methods mentioned above can effectively reduce the unwrapping
errors of InSAR-derived DEM in some scenarios, they are limited by the phase continuity
assumption, robustness and efficiency, the accuracy and immediacy of external data, or
samples and generalization ability. In this context, the range split-spectrum interferometry
(RSSI) has gradually caught the attention of the InSAR community in recent years [39].
Several studies have demonstrated that the RSSI method has immense potential to reduce
phase unwrapping errors for InSAR-derived DEM [40,41]. The RSSI method uses the
split-spectrum technique to generate low- and high-frequency SAR image sub-bands. The
SAR sub-bands are then used to form low- and high-frequency interferograms. Finally,
the difference between the sub-band interferograms (double differential interferogram) is
used to simulate an interferogram with a longer carrier wavelength than that of the SAR
system [40]. This simulation can increase the height of ambiguity (HoA) to a pixel where
phase unwrapping is unnecessary. Therefore, the apparent advantage of the RSSI method is
that the phase unwrapping error can be ignored [40,41]. However, using the RSSI method
to simulate an interferogram with a larger carrier wavelength requires multiplying by a
scale factor. This factor will amplify the noise in the double differential interferogram. To
overcome this problem, a low-pass filter is needed to reduce the variance in the double
differential interferogram. Unfortunately, this smoothing process will sacrifice the reso-
lution of the double differential interferogram. Although the RSSI method cannot obtain
DEMs with high accuracy, it can assist conventional InSAR in generating DEMs to reduce
the influence of phase unwrapping errors.

According to the above statements, this study proposes a method that uses the RSSI
method to assist InSAR-derived DEM (RID) in overcoming phase-unwrapping errors. The
proposed method first uses the RSSI to simulate a topographic phase. Then, the simulated
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topographic phase is subtracted from the InSAR phase. Afterward, the residual InSAR
phase is unwrapped. Finally, the simulated topographic phase is added to the unwrapped
residual InSAR phase and converted to DEM. In contrast to the PU methods mentioned
above, conventional InSAR, and RSSI, the proposed method has the following advantages:
(1) it does not need a large number of SAR images, the implementation process is simple,
and it can guarantee the immediacy of assisted data, (2) it can effectively reduce the phase
unwrapping errors of conventional InSAR-derived DEM, and (3) it can vastly compensate
the loss of resolution in the RSSI method. To test the proposed method, both the simulated
and TerraSAR-X data sets are used. In addition, we used the topographic phase simulated
from a Copernicus DEM to validate the proposed method.

2. Methods

InSAR measurements’ high resolution, extensive range, and high accuracy make it a
hot technology to generate DEMs. For the InSAR measurement, the relationship between
the absolute phase and the terrain height can be expressed as follows:

ϕ0(a, r) =
4π · B⊥ · f0 · h(a, r)
c · R(a, r) · sin(θ)

(1)

where a and r represent the coordinates of a pixel, along with its azimuth and range
directions, respectively, h(a, r) is the terrain height, c represents the light speed in a vacuum,
R(a, r) is the slant range, θ represents the incidence angle, f 0 is the radar carrier frequency,
B⊥ represents the perpendicular baseline, and ϕ0(a, r) represents the absolute phase.

2.1. Basic Principle of the RSSI Method

Equation (1) shows that the terrain height is proportional to the absolute phase and
inversely proportional to the radar carrier frequency. Any SAR image with a carrier
frequency of f 0 can be split into two non-overlapping sub-band SAR images at slightly
different carrier frequencies (i.e., high and low frequencies) by the band-pass filter [13–16].
Therefore, a pair of SAR images can be used to generate four sub-band SAR images, which
can be used to form two sub-band interferograms. Equation (1) can thus be rewritten as ϕH(a, r) = 4π·B⊥ · fH·h(a,r)

c·R(a,r)·sin(θ)

ϕL(a, r) = 4π·B⊥ · fL·h(a,r)
c·R(a,r)·sin(θ)

(2)

where f H and f L represent the carrier frequencies of the high- and low-frequency sub-band
SAR images, respectively; ϕH(a, r) and ϕL(a, r) represent the high and low frequencies
absolute phases, respectively. Equation (2) can calculate the terrain height, i.e.,

h(a, r) =
c · R(a, r) · sin(θ)

4π · B⊥ · ( fH − fL)
· ϕH-L(a, r). (3)

where ϕH-L(a, r)= ϕH(a, r) − ϕL(a, r).

2.2. Basic Principle of the RID Method

Since the difference between f H and f L is very small, the difference between ϕH(a, r)
and ϕL(a, r) is also tiny. This means, on the one hand, that the phase fringes of the wrap
(ϕH-L) are so sparse that it is easy to unwrap, and on the other hand, the robustness of
Equation (3) is poor, i.e., a small amount of noise in ϕH-L(a, r) will significantly affect the
accuracy of h(a, r). Therefore, to improve the accuracy of terrain height, several executions
of low-pass filter are required for ϕH-L(a, r) to reduce noise. This filtering process can
significantly reduce the result’s resolution, thus losing some terrain information. To rectify
this problem, the RSSI-assisted InSAR-derived DEM (RID) method is proposed. This
method first uses the RSSI method to obtain the prior terrain height, which is used to
simulate an unwrapped terrain phase ϕRSSI(a, r). Then, ϕRSSI(a, r) to [−π, π] is rewrapped,
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i.e., ϕ
wrap
RSSI (a, r), and ϕ

wrap
RSSI (a, r) is subtracted from the wrapped terrain phase ϕ

wrap
0 (a, r)

obtained from the conventional InSAR. This process can reduce the phase fringes of the
InSAR phase to overcome the phase continuity assumption obeyed by traditional phase
unwrapping methods. The residual wrap phase is

ϕwrap
resid

(a, r) = [ϕ0(a, r)− ϕRSSI(a, r)]wrap (4)

Afterward, the MCF method is used to unwrap the residual wrap phase and then add
it to ϕRSSI(a, r). This process can compensate for the loss of the DEM resolution generated
from the RSSI method. The last terrain phase can be written as follows

ϕRID(a, r) = ϕresid(a, r) + ϕRSSI(a, r) (5)

where ϕRID(a, r) is the terrain phase obtained from the RID method; ϕresid(a, r) represents
the unwrapped residual phase. Substituting ϕRID(a, r) into Equation (1) can obtain the
terrain height,

h(a, r) =
c · R(a, r) · sin(θ)

4π · B⊥ · f0
· ϕRID(a, r). (6)

2.3. Implementation of the RID Method

To implement the proposed method, eight steps are needed, as follows:
Step 1: Generate the sub-band single look complex (SLC) SAR images with high and

low carrier frequencies from the primary and secondary SAR images, respectively.
Step 2: Coregister the full-bandwidth SLCs and obtaining the refined coregistration files

(e.g., lookup table and polynomial), which are used for the sub-band SLCs’ coregistration.
Step 3: Generate the high- and low-frequency interferograms and the conventional

InSAR interferogram.
Step 4: Remove the flat earth phases in the high- and low-frequency interferograms and

the conventional InSAR interferogram and use the high- and low-frequency interferograms
without a flat earth phase to obtain the double differential interferogram.

Step 5: Convert the double differential phase to the terrain height using Equation (3).
Step 6: Use the terrain height obtained from step 5 and the orbit data of SAR satellite

to simulate a terrain phase and subtract it from the conventional InSAR interferogram
without a flat earth phase.

Step 7: Unwrap the residual phase obtained in step 6 and add it to the simulated
terrain phase from step 6 to generate the last terrain phase.

Step 8: Convert the last terrain phase generated to terrain height using Equation (6).
The implementation details of the RID method are shown in Figure 1. The RID method
uses the prior terrain height obtained by the RSSI method to circumvent the unwrapping
problem in the region with a large terrain gradient and uses the terrain phase extracted by
conventional InSAR to ensure the resolution of the generated DEM.
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Figure 1. The implementation flowchart of the RID method.

3. Experimental Results and Analyses

In this study, we used both the simulation data and a pair of TerraSAR-X data on
spotlight mode to verify the validity of the RID method. Furthermore, we compared
the results generated from the conventional InSAR and RSSI methods with the proposed
method. Finally, the accuracy was evaluated by the root mean square error (RMSE) between
the results obtained from the three methods mentioned above and that of the reference
data. The RMSE can be expressed as follows:

RMSE =

√√√√√ N
∑

i=1

(
ϕi

M − ϕi
r
)2

N
· (7)

where N is the number of pixels; M represents the different methods, i.e., InSAR, RSSI, or
RID; ϕM represents the terrain phase obtained from InSAR, RSSI, or RID; ϕr is the reference
terrain phase; and i represents the ith pixel.



Remote Sens. 2022, 14, 2607 6 of 13

3.1. Simulated Experiment

To test the performance of the proposed method, we first employed the peaks function
to simulate a DEM that the elevations varied from [0, 1000] m, which is shown in Figure 2a.
We then used the simulated DEM and a MATLAB toolbox of the simulated InSAR system
provided by the Delft University of Technology to generate the InSAR-based DEM phase,
shown in Figure 2b. The major parameters used to simulate the InSAR-based DEM are
presented in Table 1. Similar to the literature [23], we also took the Gaussian noise using
corrected sigma as the phase noise, which accounts for geometric decorrelation. The
corrected sigma can be calculated based on coherence and number of looks [23]. Figure 2c
shows the simulated phase noise (Gaussian noise), and Figure 2d presents the rewrapped
InSAR terrain phases of Figure 2b added Figure 2c.
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Figure 2. Performance comparison of the conventional InSAR, RSSI, and RID methods based on
the simulated data set: (a) represents the simulated DEM; (b) is the unwrapped phase converted
from (a), i.e., full-bandwidth InSAR-based DEM phase; (c) is the Gaussian noise, and (d) is the
rewrapped phase of (b) added (c); (e,f) show the simulated noisy high- and low-frequency DEM
interferometric phases; (g–i) represent the terrain phase from conventional InSAR, RSSI, and RID
methods, respectively; (j–l) present the differences between (b,g–i).

Table 1. Major Parameters of the Simulated InSAR System.

Orbit Altitude Range
Bandwidth

Incidence
Angle

Carrier
Frequency

Perpendicular
Baseline

518 km 300 MHz 45◦ 9.65 GHz 230 m
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To obtain the conventional InSAR result, the MCF PU method was used to unwrap the
rewrapped terrain phases in Figure 2d, and Figure 2g shows the unwrapped terrain phases.
For the implementation of the RSSI method, we first simulated the high- (Figure 2e) and
low-frequency (Figure 2f) terrain phases with Gaussian noise and then calculated the terrain
phases based on Equations (1)–(4); the simulated result is illustrated in Figure 2h. Note that,
according to [42], the accuracy and resolution of the DEM extraction by the RSSI method
are relatively ideal when the carrier frequencies of the high- and low-frequency sub-bands
are f 0 + 0.4B (B is the range bandwidth) and f 0 − 0.4B for the TerraSAR-X data with a range
bandwidth of 300 MHz, respectively. Therefore, we used the same strategy here to simulate
the implementation of the RSSI method. The RID method was implemented following the
steps described in Figure 1, and the result is presented in Figure 2i.

Figure 2d shows the simulated data with dense phase fringes, which can be considered
the area with large gradient terrain changes. Figure 2j–l illustrate the residual errors
between Figures 2b and 2g–i, respectively. Figure 2g,j indicate that DEM extraction using
the conventional InSAR encounters serious PU errors in areas with large terrain gradient
changes and the maximum residual error reaches about 20 rad. In contrast, the PU problem
is trivial for the RSSI and proposed methods. Figure 2h,i revealed that the results of the
RSSI and proposed methods are in reasonable agreement with the original simulated data
(Figure 2b); the corresponding absolute residual errors are less than 6.5 rad (Figure 2k)
and 2.0 rad (Figure 2l), respectively. The results showed that the RMSEs are 2.7666 rad,
1.4885 rad, and 0.3827 rad for conventional InSAR, RSSI, and RID methods. Compared with
InSAR and RSSI methods, the RMSE improvement rate of the RID method is 86.17% and
74.29%, respectively. The RMSRE reveals that the accuracy of the RID method is optimal.
As illustrated above, the simulation experiments testify to the superiority of the proposed
RID method. Nevertheless, Figure 2j–l show that the residual errors for the RSSI and
our methods are distributed in the whole region, while those of the conventional InSAR
method are mainly distributed in the region with large terrain gradient variation. This
is mainly because the RSSI method amplified the noises in the simulated terrain phases.
These phenomena also reveal that the RSSI and proposed methods are more sensitive to
noise than the conventional InSAR method.

3.2. TerraSAR-X on Spotlight Mode

To further illustrate the performance of the RID method, a pair of TerraSAR-X images
in spotlight mode, with a range bandwidth of 300 MHz, were used. This pair of SAR images
cover parts of the Uluru-Kata National Park (the white rectangle in Figure 3a), including
both flat terrain and the Ayers Rock with a large terrain gradient (Figure 3a,b), which is
helpful to adequately verify the applicability of the RID method under different terrain
conditions. The major parameters of the SAR image pair are shown in Table 2. Additionally,
we selected the Copernicus DEM with a resolution of 30 m to validate the accuracy of
the proposed method (Figure 4a). This type of DEM was chosen for validation, mainly
because it has been proven to be superior to other similar DEM products (such as ALOS,
ASTER, NASA, and SRTM) in high relief, and with different vegetation types and gentle
and steep slopes, and the absolute vertical accuracy is below 2 m in some regions of the
world [43,44]. The Copernicus DEM was derived from the editing of the WorldDEM™
products, which are based on X-band SAR data acquired by the TanDEM-X mission in the
time period 2010–2015; it is, therefore, newer than the other DEM products (such as ALOS,
ASTER, NASA, and SRTM) [45].

Table 2. The Major Parameters of The Realistic Sar Image Pair.

Acquisition
Date

Bandwidth
(MHz)

Incidence
Angle (◦) Wavelength (m) Perpendicular

Baseline (m)

12 February 2009
300 45.8374 0.031 233.379423 February 2009
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Figure 3. The study area: (b) represents the google image of the black dotted rectangle in (a), (c) is
the coherence of the pair of TerraSAR-X images.

Figure 4a shows the Copernicus DEM with a spatial resolution of 30 m × 30 m, and
Figure 4b is the reference phase converted from Figure 4a. Figure 4c is the rewrapped phase
of Figure 4b, and the dense phase fringes demonstrate the edges of the Ayers Rock with
large terrain gradients. By computing the difference between adjacent pixels, the maximum
azimuth gradient of the Ayers Rock reaches 53.7089 m, and the corresponding height of
ambiguity (HoA) is only 34.1284 m. This means that it is difficult for conventional InSAR
to perform phase unwrapping in the Ayers Rock area. Figure 4d–f displays the terrain
phases generated by conventional InSAR, RSSI, and RID methods. Figure 4g–i exhibits the
residual errors between Figure 4b,d–f. Distinctly, the conventional InSAR method suffers
from severe PU errors in the Ayers Rock area due to the large gradient. In contrast, the PU
is trivial for the RSSI and RID methods, but significant residual errors still appear on the
edges of the Ayers Rock. We suspect that this is mainly due to the poor coherence of these
regions. Additionally, Figure 4f shows more delicate topographic features than Figure 4e,
revealing that the RID method can obtain a DEM with higher resolution than the RSSI
method. To further demonstrate the performance of the proposed RID method, we also
calculated the RMSEs between these three methods and the real DEM. The results show that
the RMSEs are 6.60 rad, 2.74 rad, and 2.22 rad for the conventional InSAR, RSSI, and RID
methods, respectively. Compared to the conventional InSAR, the accuracy improvement
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rates are increased by 58.48% and 66.36% for the RSSI and RID methods, respectively. This
improvement demonstrates that the effectiveness of the proposed method is significantly
higher than that of the other two methods.
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low 0.2 (null in Figure 3c). Apparently, the edges of the Ayers Rock have poor coherences, 
which is quite consistent with the results of Figure 4g–i. This reveals that the main reason 
for the large residuals along the edges of the Ayers Rock is the poor coherence of the in-
terferometry pair, which confirms the above speculation. 

Figure 4. Performance comparisons of the conventional InSAR, RSSI, and RID methods based on the
realistic TerraSAR-X data set: (a–c) represent the Copernicus DEM, unwrapped phase converted from
the Copernicus DEM, and rewrapped phase converted from the Unwrapped phase, respectively;
(d–f) show the reconstructed DEM phase using the conventional InSAR, RSSI, and RID methods,
respectively; (g–i) present the differences between (b) and (d–f).

As described in Figure 4g–i, the edges of the Ayers Rock have more significant residual
errors. To further explore the cause of this, we presented the coherence of the SAR image
pair in the study area (Figure 3c). Note that we masked the areas with the coherence low 0.2
(null in Figure 3c). Apparently, the edges of the Ayers Rock have poor coherences, which is
quite consistent with the results of Figure 4g–i. This reveals that the main reason for the
large residuals along the edges of the Ayers Rock is the poor coherence of the interferometry
pair, which confirms the above speculation.

To analyze the performance of the RID method under different terrain conditions, we
divided the study area into large gradient regions and flat regions corresponding to A1 and
A2 in Figure 5a, respectively. Figure 5b–d presents the residual error histograms of regions
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A1 (light blue bar) and A2 (green bar) for the InSAR, RSSI, and RID methods, respectively.
The statistics illustrate that the residual errors in A1 are mainly distributed in the ranges
from −28.0 to 7.0 rad, −14.0 to 7.0 rad, and −15.0 to 4.0 rad and the corresponding RMSEs
are 11.95 rad, 3.64 rad, and 3.66 rad for the InSAR, RSSI, and RID methods, respectively.
These analyses demonstrate that the accuracies of the RSSI and RID methods are relatively
close in the area with large terrain gradients but much higher than that of the conventional
InSAR method; the improvement rates are 69.54% and 69.37%, respectively. In contrast, in
A2, the residual errors vary from −2.0 to 5.0 rad, −4.0 to 6.0 rad, and −4.0 to 4.0 rad, and
the corresponding RMSEs are 1.97 rad, 2.28 rad, and 1.25 rad for the InSAR, RSSI, and RID
methods, respectively. Compared with InSAR and RSSI methods, the RMSE of the RID
method is significantly lower than that of the other two methods; the improvements are
36.55% and 45.18%, respectively. These results reveal that the RID method can obtain the
optimal accuracy in the flat region of the study area.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 13 
 

 

To analyze the performance of the RID method under different terrain conditions, 
we divided the study area into large gradient regions and flat regions corresponding to 
A1 and A2 in Figure 5a, respectively. Figure 5b–d presents the residual error histograms 
of regions A1 (light blue bar) and A2 (green bar) for the InSAR, RSSI, and RID methods, 
respectively. The statistics illustrate that the residual errors in A1 are mainly distributed 
in the ranges from −28.0 to 7.0 rad, −14.0 to 7.0 rad, and −15.0 to 4.0 rad and the corre-
sponding RMSEs are 11.95 rad, 3.64 rad, and 3.66 rad for the InSAR, RSSI, and RID meth-
ods, respectively. These analyses demonstrate that the accuracies of the RSSI and RID 
methods are relatively close in the area with large terrain gradients but much higher than 
that of the conventional InSAR method; the improvement rates are 69.54% and 69.37%, 
respectively. In contrast, in A2, the residual errors vary from −2.0 to 5.0 rad, −4.0 to 6.0 
rad, and −4.0 to 4.0 rad, and the corresponding RMSEs are 1.97 rad, 2.28 rad, and 1.25 rad 
for the InSAR, RSSI, and RID methods, respectively. Compared with InSAR and RSSI 
methods, the RMSE of the RID method is significantly lower than that of the other two 
methods; the improvements are 36.55% and 45.18%, respectively. These results reveal that 
the RID method can obtain the optimal accuracy in the flat region of the study area. 

 
Figure 5. Comparison of residual statistical results of the conventional InSAR (b), RSSI (c), and RID 
(d) methods. The light blue bar represents the residual distribution of A1 area in (a). The green bar 
represents the residual distribution of A2 area in (a). The red and purple curves represent the fitted 
probability distribution functions of the residual for A1 and A2, respectively. 
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probability distribution functions of the residual for A1 and A2, respectively.
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4. Conclusions

This study proposed a range split-spectrum interferometry (RSSI)-assisted InSAR-
derived DEM (RID) method to overcome phase-unwrapping errors. The performance of the
RID method was verified using simulation and real data. The experiments show that the
proposed method can significantly improve the influence of the phase-unwrapping errors of
the conventional InSAR in generating DEM and compensate for the loss of resolution of the
RSSI method. Additionally, this study concluded that the proposed method could provide
an immediate DEM to overcome the difficulty of removing topographic errors in InSAR
monitoring results of large gradient deformations using outdated DEM. Simultaneously,
the proposed method provides the new idea of generating DEM from the new generation
of dual-frequency SAR satellite images, such as NISAR and ALOS-4.
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