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Abstract: Real-time monitoring of crop responses to environmental deviations represents a new
avenue for applications of remote and proximal sensing. Combining the high-throughput devices
with novel machine learning (ML) approaches shows promise in the monitoring of agricultural
production. The 3 × 2 multispectral arrays with responses at 610 and 680 nm (red), 730 and 760 nm
(red-edge) and 810 and 860 nm (infrared) spectra were used to assess the occurrence of leaf rolling
(LR) in 545 experimental maize plots measured four times for calibration dataset (n = 2180) and
145 plots measured once for external validation. Multispectral reads were used to calculate 15 simple
normalized vegetation indices. Four ML algorithms were assessed: single and multilayer percep-
tron (SLP and MLP), convolutional neural network (CNN) and support vector machines (SVM) in
three validation procedures, which were stratified cross-validation, random subset validation and
validation with external dataset. Leaf rolling occurrence caused visible changes in spectral responses
and calculated vegetation indexes. All algorithms showed good performance metrics in stratified
cross-validation (accuracy >80%). SLP was the least efficient in predictions with external datasets,
while MLP, CNN and SVM showed comparable performance. Combining ML with multispectral
sensing shows promise in transition towards agriculture based on data-driven decisions especially
considering the novel Internet of Things (IoT) avenues.

Keywords: machine learning; maize; stress; heat; classification; validation; python; IoT

1. Introduction

Human population growth has led to increasing food requirements and resource
depletion, intensifying the use of modern technologies in agriculture over the last few
decades. Thus, major achievements in sensing technologies, wireless communication and
artificial intelligence have been made by research efforts in agriculture globally [1,2]. In
the context of climate change, real-time monitoring of drought is of primary interest which
yielded a forked remote sensing approach, deploying satellite imagery to spot drought
occurrence [3–7], or utilizing the recent developments in affordable sensor solutions, gen-
erating data in a more (unmanned aerial vehicles—UAV) or less (pole, machine or tower
mounted) remote manner [8–12]. In conventional agricultural production, the only ob-
jective data collected on plant side (grain yield) are collected when the plant is already
dead, so the real-time monitoring practices represent a paradigmatic shift for most farmers
around the world.

Studies show that there is a growing occurrence of heatwave days accompanied by
longer spans of drought [13]. These deleterious climate changes come with increased
sensitivity of maize and soybean to heat and drought, despite ever strong breeding efforts
for tolerance to abiotic stress [14]. In maize, there is a large number of morpho-physiological
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adjustments in response to drought stress [15–17]. However, many of these changes are
irreversible, such as low fertilization rate, increased susceptibility to diseases or depleted
stands [18], and once they are expressed, the economic losses are unavoidable. There are
also some changes that are different among maize cultivars [19] and they are reversible in
nature providing an excellent signal of the current plant water status.

One such trait is transverse rolling of leaf blades (Figure S1), usually caused by
hydronastic changes. Many plant species use this mechanism as a drought avoidance
strategy [20]. It represents a mechanism of adaptation in plants to control stress mostly
by the means of auto-stress (cell-wall tension increase/decrease), reduction in the light
interception and transpiration, thus preventing dehydration and overheating [21]. Not all
genotypes express leaf rolling at the same conditions [22,23], nor the monotonic increase
in leaf curvature shows the same maximum over different genotypes [24]. While in some
genotypes it represents an avoidance strategy for stress conditions, in others it marks a
tipping point for the physiological damage [25–27], thus implying the need to dynamically
monitor for this trait in real time, for breeding and management purposes. So far, the use
of different methods of leaf rolling quantification was reported in the literature, most of
them grading responses in scales from 1 (no leaf rolling) to 5 (completely rolled leaves,
dead or lax) [28–30], or 1 (no leaf rolling) to 9 (completely rolled leaf blades) [31]. All of
the mentioned methods imply phenotyping at (i) drought stress treatment, or (ii) at the
time of solar noon, when the strongest leaf rolling is expected to occur [24]. However, all of
the conventional methods also imply a need for human screening limiting the ability to
capture trait dynamics, accompanied with the increased error in rolling grading between
scorers. In order to use phenotypic indicators, such as leaf rolling in some unfavorable
conditions, in decision support systems, the possibility for their remote monitoring is of
critical importance.

Leaf rolling causes several easily detectable changes in plant level. One such change
is reduction in leaf area index (LAI), rendering the changes easily detectable by simple
hemispherical photography [31]. However, there are also more subtle changes in spec-
tral derivatives of leaf-rolled plants exposed to drought treatment, mostly caused by the
accumulation/translocation of biochemicals and decrease in photosynthetic activity [32],
allowing the drought detection using hyperspectral data along with several derived nor-
malized vegetation indexes such as normalized difference vegetation index (NDVI) [33].
Normalized difference vegetation index and other normalized vegetation indices (VI) rep-
resent a useful and sensitive tool in vegetation monitoring converting the raw sensor reads
to useful normalized and repeatable results [34,35]. Hyper/multispectral monitoring is
already a proven method of vegetation monitoring [36,37] coming more and more to focus
of researchers addressing high-throughput phenotyping and precision agriculture [38–40].
Moreover, different types of stress can be detected by combining ML with spectral moni-
toring [41–43]. There are many approaches for applied regression analysis of the remote
sensing data being used [44,45]; however, such models are inefficient when accounting for
nonlinearity of targets in multi-dimensional hyperplanes. On the other hand, these data
properties are efficiently handled by modern machine learning (ML) algorithms, extracting
numerical features from the data while retaining the information from the original dataset.
Moreover, there is a growing body of evidence of the superiority in performance of ML
algorithms in remote sensing data analysis for various agricultural applications such as
vegetation classification [46], biomass and soil moisture analysis [47], crop stress phenotyp-
ing [38], precision farming [48,49] and many others [50]. Furthermore, these methods also
have an ecological and humanitarian depth showing promise in helping to adhere to the
Sustainable Development Goals [51] presented by the United Nations [52].

In this research, we attempted to use a low-cost sensor capturing spectral responses
around several critical plant reflectance wavelengths and to apply machine learning to
detect changes in plant morphology for the envisioned use in precision agriculture and plant
breeding. Specifically, objectives were to determine the usefulness of a simple multispectral
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sensor to monitor leaf rolling in maize as a sign of stress, and to assess different machine
learning models readily applied in the classification of labeled data.

2. Materials and Methods
2.1. Field Experiments

The field experiments were carried out at the experimental station of the Agricultural
Institute Osijek (AIO) in Osijek Croatia (45◦32′N 18◦44′E). Fields are subject to barley–
soybean–maize rotation and are, following the soil analysis, fertilized and maintained with
non-limiting amounts of fertilizers following respective local best practices and regulations.
For the purpose of development of new cultivars AIO organizes several levels of field trials
with multiple cultivars, separated between early, early to medium, medium to late and late
maturity breeding programs. Maturity was categorized by FAO system [53] with reference
genotypes used as checks to categorize hybrids to groups 1 (early) to 7 (late). Besides
breeding programs, AIO organizes demonstrational trials with 3 to 75 hybrids representing
the pallet of latest breeding efforts. AIO is a certified seed producer, marketing maize
hybrids in Southeast and Central Europe and the Middle East. Thus, there is a considerable
diversity of hybrids present at breeding trials of every maturity group, aiming at adaptation
to different agro-ecological scenarios. For the purpose of this study, we chose seven trials
with different numbers of hybrids from the mentioned maturity groups, namely, single
irrigated demonstrational trial (DTir) and two rainfed demonstrational trials (DTrf and
SDTrf). Soil type in DTrf and DTir was anthropogenized eutric cambisol, while at SDTrf,
soil was sandy loam. In the gradient of trial qualities, SDTrf thus represented a low-water
availability trial, while DTir was not water limited during the screening. The DTir trial was
irrigated twice with 40 mm/m2 per irrigation, on 20th of June and 2nd of July. Irrigation
was carried out by gear-driven full circle sprinklers. Trials of early (ET), early to medium
(EMT), medium to late (MLT) and late maturity (LT) breeding programs were represented
by randomized complete block trials with 25 hybrids in four replicates on anthropogenized
eutric cambisol (ET, MLT and LT) and sandy loam (EMT). All trials were sown in a north–
south orientation except SDTrf and EMT which were sown in an east–west orientation.
Details on experimental design are shown in Table 1.

Table 1. Details about experimental design.

Experiment
Design

No.
Hybrids Replicates Plot Size

(m2)
FAO Relative

Maturity Planting Date Anthesis
Interval (Days)

Measurement
Time

DTir 61 n.a. 50 180–720 7th April 2021 2.7.–20.7.

06:30–08:30 &
12:30–14:30

DTrf 64 n.a. 50 180–720 16th April 2021 29.6.–17.7.
SDTrf 20 n.a. 50 350–680 22nd April 2021 5.7.–16.7.

ET 25 4 8.4 210–290 8th April 2021 29.6.–7.7.
EMT 25 4 8.4 350–490 22nd April 2021 3.7.–15.7.
MLT 25 4 8.4 500–590 9th April 2021 8.7.–19.7.
LT 25 4 8.4 >600 9th April 2021 9.7.–19.7.

2.2. Measurements and Agroecological Conditions

Measurements were carried out with AMS (ams-OSRAM AG, Austria) AS7263 sensor
unit with six spectral bands (3 × 2 photo diode array) responsive to wavelengths in red
and near-infrared spectra (610, 680, 730, 760, 810 and 860 nm) with 20 nm full width at half
maximum. Sensor consists of plastic housing, a lens and photodiode array with aperture of
0.75 mm and 20.5◦ viewing angle. The sensor was connected to Arduino Uno prototyping
board and the data were logged based on a programmed button-interrupt to SD card. Each
interrupt consisted of 10 consecutive measurements within 2000 ms and their average
was logged with timestamp. The wiring was mounted to a 3D printer printed mount
and set up on a 2.2 m telescopic tripod, and the 10 Ah power bank was used to power
the device (Figure 1c). The sensor was set 2 m from ground at 90◦ to capture leaves in
0.6 m2 of theoretical field width (to ground). The 2 m height was chosen as only 16 out
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of 545 plots showed height lower than 2 m (shortest hybrid in SDTrf was 1.77 m), so the
sensor captured the leaves intersecting the field of view. Measurements were carried out
during the morning and around solar noon (Figure 1a), when the weakest and the strongest
leaf rolling is expected to occur (Table 1) [31]. The tripod with mounted sensor wiring was
carried between the plots and set 1.5 m within rows for measurement (Figure 1b). The exact
data for plant height were collected for three experiments DTir, DTrf and SDTrf with 3 m
long ruler, and no connection was observed between multispectral reads and plant height
(correlations < 0.3). The mean height was 214.9 cm, with standard deviation of 6.05 cm.
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Figure 1. Schematic representation of measurement process. (a) shows diurnal temperatures (◦C),
vapor pressure deficit (hPa) and daily precipitation (mm/m2) for July 2021. Gray boxes show
measurement times, and the red box shows external validation set measurement time. (b) shows the
position of tripod mounted sensor in plant stands, and (c) is a tripod mounted sensor wiring used to
carry out the measurements. In (c), left image represents the tripod-mounted unit, in the middle is a
close-up of wiring and a printed mount, while the right image shows AMS AS7263 sensor unit on a
breakout board.

All 545 plots (Table 1) were assessed for four times with a sensor and labeled by a
maize breeder for leaf rolling, two times during the morning and two times in the solar
noon (Figure 1a) on sunny days, yielding 2180 labeled measurements and means of sensor
reads. Additionally, DTir, DTrf and SDRtf were assessed on 22nd of July, to obtain an
external validation set for testing the robustness of the modelling approach.

Timing of measurements (Figure 1a) was chosen to capture the window of highest
maize susceptibility to drought [54], heat [55] and the combination of these two stressors.
This window covers growth stages from floral transition to early grain filling. During
the experiments, different hybrids transitioned between developmental stages; however,
the aim of this study was not to analyze genotypic responses but rather the ability of
a simple multispectral sensor to capture leaf rolling occurrence. Initial grades of leaf
rolling (samples available as Supplementary Figure S1) were taken following methodology
described in Bolaños and Edmeades [30] on scale 1 (green erect leaf blades) to 5 (rolled,
lax or dead). However, the experimental design limited appropriate account for all factors
affecting the rolling occurrence. Furthermore, as the leaf morphology affects the rolling
maximum [24], the lower grades (higher than 1) also indicate leaf rolling, whose occurrence
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was of primary interest of this study. Reads were thus binary labeled with 0 for no leaf
rolling (below 15% of the plants within the plot showing leaf rolling) and 1 (more than
15% of the plants within the plot showing leaf rolling). The 15% threshold represents
the tolerable amount of secondary plants that are usually more susceptible to leaf rolling.
The images of leaf-rolled plants in the field are available as Figure S1.

2.3. Data Analysis and Model Assesment

Six raw sensor reads were used to calculate 15 unique, simple vegetation indexes (VI).
The indexes were calculated as absolute values of the quotient between differences of the
subtracted and added values of each two pairs of wavelengths (wla... f ):

VIi =

∣∣∣∣wlb − wla

wla + wlb

∣∣∣∣ (1)

The raw sensor reads and VIs were scaled, centered and log-transformed and the
principal component analysis (PCA) was carried out in R [56]. The raw sensor reads
and the VI values (21 original features) were tested for differences between LR+ and
LR− by the means of a Welch two-sample t-test. Prior to tests, the data were visually
assessed for normality of distribution densities. The raw data and VIs were read into
Python environment and four machine learning models were constructed. First model
was the single layer perceptron (SLP) with single fully connected layer with 128 nodes
with rectified linear unit (ReLu) activation function. The dense neural network layer
was flattened and passed through softmax function to obtain predictions. For multilayer
perceptron (MLP), another hidden layer was added with 32 fully connected nodes prior to
flattening. Convolutional neural network (CNN) was setup with single 1D convolution
layer of length 64, followed by two hidden fully connected layers with 48 and 24 nodes
before flattening and passing to the softmax function (Figure 2). These three models were
setup in TensorFlow library with training in 100 epochs with batch size of 16. Additionally,
a support vector machine (SVM) model was built with scikit-learn module svm with linear
kernel and penalty of the error term (C) set to 1. Three procedures of model validation
were followed using calibration (n = 2180) and external (n = 145) labeled datasets:

1. Stratified 5-fold cross-validation with 85% (1853) of the 2180 records;
2. Validation based on a 15% random subset (327) of the 2180 records with random seed

number 109;
3. Validation with an external validation set consisting of 145 separate records.

To ensure reproducibility of the results, the same subsets were used to validate
each model.

The model performance was assessed by model accuracy and its standard deviation
across folds in cross-validation, and by measuring accuracy, precision and recall in random-
subset validation and validation with external dataset. The breeder’s classifications at solar
noon (explained above) to LR− and LR+ were used as ground truth in model evaluation
metrics. The performance indicators were calculated as:

Accuracy =
TN + TP

n
, Precision =

TP
TP + FP

, Recall =
TP

TP + FN
(2)

where TN is number of true negatives, TP is number of true positives, FP is a number of
false positives, FN is number of false negatives and n is a number of relevant samples.
Furthermore, F1 score was calculated as

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

F1 score represents a harmonic mean between the ability of a model to classify true
positives among all positively labeled examples (precision) and the fraction of examples
classified as positives among all positive plots (recall).
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The CPU time was assessed on an Intel® i7 9750H 6-core, 12-thread processor with
12 MB internal cache memory. Full notebook with Python code is available from the
corresponding author upon request.
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3. Results
3.1. Changes in Multispectral Sensor Reads in Leaf Rolling Conditions

All measurements in the calibration set were carried out during the extremely dry
conditions (Figure S2) and high temperature and VPD (Figure 1a). Conditions changed
to very wet when the external validation set was assessed, leading to a low number (7) of
plots showing leaf rolling. The analysis of original features showed recognizable patterns
of increase/decrease in both calibration (n = 2180) and external (n = 145) datasets showing
no leaf rolling (LR−) and leaf rolling (LR+, Table 2). High standard deviations of raw
wavelengths indicate the changes in light quality. However, the deviations decreased in VI
values reflecting the normalization of the data. Interestingly, all VI values decreased in the
LR+ in both datasets except VI680610 which increased slightly in LR+. According to the two-
sample t-test, all differences between LR− and LR+ were significant in the calibration set
in both original features and Vis. In the external set, significant differences were observed
only in reads at 610 and 680 nm among original features. In VIs, a lack of significant
differences was observed among all indexes with reads at 730 nm as denominator, and 860
as numerator.

Principal component analysis (Figure 3) showed diverse and substantial correlations
between original variables and their projections (PCs), seen as red arrows, e.g., eigenvectors.
Full list of loading weights is available online as Table S1. First three principal components
explained 74.0% of total variability in the dataset, separate PCs explaining 43.2, 19.0 and
11.8%, respectively. Principal component analysis confirmed patterns from Table 2, render-
ing two partially overlapping, but separable groups of wavelength changes in leaf rolling
conditions in three latent variables. Despite the overlap in part of the responses in lower-
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dimensional hyperplane (3 PCs), the ability of PCA to capture 74% of variance between
groups in only three components with spread in eigenvectors indicates high information
density in a small number of underlying features.
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Table 2. Raw sensor output at six wavelengths and 15 values of normalized difference vegetation
indexes (VI) calculated from unique combinations of six wavelengths expressed as a mean± standard
deviation for maize plots showing leaf rolling (LR+) and no leaf rolling (LR−) in calibration (n = 2180)
and external (n = 144) datasets measured by a multispectral sensor. Column p denotes significance
according to two-sample t-test at values of α < 0.05 (*), <0.01 (**) and <0.001 (***). p values of
differences >0.05 are denoted as non-significant (n.s.).

Feature
Calibration Set (n = 2180)

p
External Set (n = 144)

pLR− (0) LR+ (1) LR− (0) LR+ (1)

n 1631 549 139 7

610 3309 ± 1974 5769 ± 1971 *** 4131 ± 1239 8047 ± 2398 **
680 3207 ± 2010 6459 ± 2151 *** 3886 ± 991 7220 ± 2118 **
730 7916 ± 4211 10,721 ± 3514 *** 12,097 ± 3171 12,927 ± 4985 n.s.
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Table 2. Cont.

Feature
Calibration Set (n = 2180)

p
External Set (n = 144)

pLR− (0) LR+ (1) LR− (0) LR+ (1)

n 1631 549 139 7

760 12,809 ± 5873 15,143 ± 4967 *** 19,996 ± 5037 18,570 ± 5429 n.s.
810 14,895 ± 6610 16,900 ± 5552 *** 22,564 ± 5671 19,548 ± 5309 n.s.
860 14,831 ± 6418 17,208 ± 5139 *** 22,762 ± 6197 20,578 ± 4996 n.s.

VI680610 0.082 ± 0.069 0.109 ± 0.082 *** 0.101 ± 0.081 0.147 ± 0.107 n.s.
VI730610 0.417 ± 0.107 0.299 ± 0.094 *** 0.489 ± 0.091 0.218 ± 0.075 ***
VI760610 0.6 ± 0.107 0.445 ± 0.102 *** 0.651 ± 0.095 0.395 ± 0.048 ***
VI810610 0.647 ± 0.096 0.488 ± 0.097 *** 0.683 ± 0.093 0.418 ± 0.065 ***
VI860610 0.645 ± 0.101 0.497 ± 0.099 *** 0.68 ± 0.109 0.44 ± 0.095 ***
VI730680 0.431 ± 0.13 0.249 ± 0.126 *** 0.508 ± 0.089 0.253 ± 0.215 *
VI760680 0.611 ± 0.116 0.397 ± 0.132 *** 0.67 ± 0.062 0.426 ± 0.15 **
VI810680 0.656 ± 0.11 0.44 ± 0.139 *** 0.699 ± 0.072 0.45 ± 0.138 **
VI860680 0.657 ± 0.104 0.452 ± 0.121 *** 0.699 ± 0.078 0.474 ± 0.125 **
VI760730 0.25 ± 0.079 0.173 ± 0.059 *** 0.245 ± 0.08 0.193 ± 0.075 n.s.
VI810730 0.32 ± 0.099 0.225 ± 0.088 *** 0.299 ± 0.113 0.219 ± 0.102 n.s.
VI860730 0.318 ± 0.128 0.236 ± 0.104 *** 0.301 ± 0.134 0.246 ± 0.141 n.s.
VI810760 0.088 ± 0.06 0.069 ± 0.049 *** 0.083 ± 0.057 0.041 ± 0.022 ***
VI860760 0.102 ± 0.073 0.086 ± 0.063 *** 0.093 ± 0.074 0.087 ± 0.052 n.s.
VI860810 0.057 ± 0.043 0.053 ± 0.037 * 0.05 ± 0.037 0.047 ± 0.032 n.s.

Calculation of different normalized vegetation indices represents a convenient mean of
auto-normalization of the raw sensor reads. The 15 normalized vegetation indices (termed
VI) assessed in this study (Table 2) showed significant variability between leaf rolling and
plots without leaf rolling. Interestingly, between wavelengths from the red spectra (610 and
680 nm), lower difference was observed between LR− and LR+ (Figure 4). The same pattern
was observed in VIs assessing wavelengths > 700 nm. The largest differences between LR−
and LR+ reads were observed in VIs combining wavelengths > 760 nm and <700 nm.
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3.2. Assesment Different of Machine Learning Algorithms for Prediction of Leaf Rolling

In stratified 5-fold cross-validation, considerable variability was detected between
the performance of different models. Highest prediction accuracy with lowest standard
deviation was observed for SLP, followed by CNN, SVM and MLP, respectively (Table 3).
Highest precision in cross-validation was observed for SVM, accompanied by second-
highest standard deviation between folds. Recall was the highest for SLP, followed by CNN.
The highest F1 was observed for CNN. The compute times increased with model complexity
in the order SLP < MLP < CNN < SVM. However, when attempting to generalize the results
of the calibrated models with the random 15% subset, the prediction accuracies changed.
The SLP was shown to be the least accurate model, however, with high recall. According to
the precision metrics, the model aimed at target many times (many false positives) which
was followed by many hits. Such results indicate overfitting in the model architecture
possibly caused by many nodes (128) and only a single layer. Briefly, the model was able to
extract features linked to leaf rolling in a stratified set, but when attempting to generalize
an unrelated dataset, the performance metrics dramatically decreased.

Table 3. Results of two validation procedures for single and multilayer perceptron (SLP and MLP),
convolutional neural network (CNN) and support vector machines (SVM) with calibration dataset (n
= 2180). Number in brackets for stratified 5-fold cross-validation represents standard deviation of
accuracy across folds.

Model Validation
Procedure

No.
Observations Accuracy Precision Recall F1 CPU

Time (s)

SLP
5-fold

cross-validation
1853/2180

83.76 (2.29) 69.67 (8.26) 66.52 (5.72) 65.3 (3.02) 38.6
MLP 81.27 (1.75) 64.42 (4.52) 63.91 (10.44) 61.13 (5.50) 49.8
CNN 83.49 (2.53) 68.88 (6.14) 64.13 (8.10) 64.55 (4.82) 94.0
SVM 82.68 (1.14) 70.85 (8.01) 53.91 (7.44) 60.52 (3.50) 469.0
SLP

Random subset 327/2180

58.41 39.46 98.88 56.41 10.0
MLP 86.54 74.19 77.53 75.82 12.6
CNN 87.77 75.26 82.02 78.49 24.0
SVM 88.69 84.21 71.91 77.58 136.0

Support vector machines model showed highest accuracy, but according to the high
precision and lowest recall, it was the most conservative model, yielding a low number of
false positives. High accuracy and generalization ability of this model is in accordance with
results of PCA (Figure 3) and ability of simple dimension reduction (L2 norm in SVC linear
kernel) to facilitate efficient feature extraction.

Contrarily, MLP and CNN showed fewer conservative values of precision with sec-
ond highest accuracy (CNN) and 9.04% lower precision compared to SVM. Multilayer
perceptron and CNN showed good generalization ability due to the added layers that
mitigated the overfitting found for SLP. The best overall performance was captured by
SVM and CNN, with higher accuracy and precision in SVM and higher recall in CNN. This
was also confirmed by the highest values of harmonic mean accuracy of the model (F1)
which was the highest for CNN, followed by SVM. Overall, compute times for the random
subset training and predictions were significantly shorter (10 s to 136 s) compared to the
cross-validation procedure.

The performance from validation procedures was mostly in alignment with the test
using an external validation dataset. Due to the abundant rain between measurements of
calibration and external datasets (Figure 1), there were only seven plots with detectable leaf
rolling in the external dataset (Table 2), four of which were detected in SDTrf with sandy
loam (not shown). However, this represented an appropriate test of the model robustness,
due to the changes in many aspects of plant vitality. Single-layer perceptron maintained
poor generalization ability, although with all seven LR+ plots properly classified (Figure 5a).
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Figure 5. Performance of single and multilayer perceptron (a,b), convolutional neural network (c) and
support vector machine (d) calibrated models with external dataset. Quadrants from left to right, top
to bottom represent true negatives, false positives, false negatives and true positives.

As in the validation with the random subset, this validation was also followed by a
high number of false positives reducing the F1 value to only 14.1 percent (Figure 6) caused
by very low precision (7.6%). High number of good classifications (7/7) followed by a
relatively conservative number of false positives and no true negatives in MLP (Figure 5b)
rewarded the highest F1 score of 77.7% in the external set validation (Figure 6). Marginally
lower F1 scores were obtained for CNN and SVM (both 76.9%), which were caused by the
inability of the models to correctly classify all seven LR+ plots.
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4. Discussion

Phenotyping for drought responses in real time represents a new frontier for crop
breeding and precision agriculture [57]; however, the advancements in this field are limited
by the high costs of measurement equipment such as unmanned aerial vehicles and hy-
perspectral cameras. This implies the need for new low-cost proximal or remote sensing
solutions, efficiently assessing plant physiological status in real time. Hot and dry condi-
tions during the phenotyping procedure of our study (Figure 1a and Figure S2) in a large
number of maize hybrids allowed us to robustly assess a large number of experimental
plots with a prototype of multispectral proximal sensing node intended for use in the
Internet of Things (IoT) applications. The sensor was used to assess leaf rolling, a trait that
was shown to be involved in adaptation to drought and heat conditions [22]. There are
various methods for the assessment of leaf rolling [23,29,31,58] and it is well known that
different hybrids show different levels of leaf folding, especially given the varying water
availability and temperature changes. However, the aim of our work was to assess if the leaf
rolling occurrence, despite the varying levels of phenotypic expression, could be spotted or
predicted based only on basic reads of spectral responses in red and near-infrared parts of
electromagnetic spectra.

At the onset of leaf rolling, many physiological changes take place, such as reduction in
photosynthetic activity [59] and changes in metabolic genetic regulatory mechanisms [60].
The reduction in photosynthetic activity should be mostly visible at wavelengths between
710 and 740 nm capturing fluorescence overlap of both photosystem I and II, and 685 nm
representing a peak of fluorescence of photosystem II [61] which is within the spectral
peaks captured by 680 and 730 nm diodes (according to 20 nm full width at half-maximum)
in our study. This was corroborated by the reduction in VIs assessing 680 and 730 nm
wavelengths (Table 2, Figure 4).

Stress adaptation, such as the reduction in photochemical activity, also involves translo-
cation of the biochemicals [32]. Additionally, in responses such as leaf rolling, the previously
unexposed plant parts become intercepted by sunlight, such as abaxial parts of leaves,
having the different pigment mixtures compared to adaxial parts [62]. The reflectance
between 700 nm and 980 nm, where the spectral responses of the brown pigments are
located, along with chlorophyll fluorescence signals might provide the insight in plant
biochemistry, and consequently, physiological status [63]. The exposure of plant abaxial
surfaces to sunlight reveals red-brown pigments due to the water deficit [64], thus changing
the leaf optical properties [65]. According to the results presented in Weber et al. [66],
combined water stress and heat stress, as in our study (Figure 1 and Figure S2), are ex-
pected to produce the most visible response in leaf reflectance at wavelengths near the
reflectance of brown pigments. This was also confirmed in our results, where the difference
between LR− and LR+ increased in indices combining wavelengths > 700 nm and <700 nm
(Figure 4). Among these indices is also the commonly used NDVI combining reflectance
at approximately 680 and 770 nm [67]. Normalized vegetation indices are traditionally
used to assess the vegetation cover from satellite imagery [34], but the advancement of
analytic solutions allows their deployment for analysis of a wide range of quantitative and
qualitative traits. However, one must note that the usage of multispectral sensor reads also
bears the risk of reduced repeatability of the results due to the deviations of atmospheric
and sensor effects [68], so the use of VIs is advised, such as Vis in this study.

Due to the rapidly changing climate [69], there is strong pressure on developing new
proximal and remote, data-rich high-throughput plant phenotyping solutions, rectified by
the lack of manpower and the increased demand for high-quality data [70]. The UAV and
phenopole (phenotyping pole) solutions yield similar insight and information density of
the reads, however, with more throughput in UAV solutions [71], but more temporal infor-
mation with phenopoles, facilitating the monitoring of the trait onset dynamics. The sensor
node used in our study aims to provide the low-cost solution to this problem, so that the
increased density of the sensing nodes, providing the better sampling, could compensate
for UAV’s higher throughput, at a lower cost. Furthermore, given the application of our
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sensor in the envisioned IoT framework, the simultaneous, real-time data collection could
provide higher information density compared to UAV, without the need for human inter-
vention [72]. Combining such developments with machine learning methodology should
converge to provide new layers of information in plant monitoring paradigm for transition
to Agriculture 4.0 [73]. Modelling complex data with unknown hidden features can be
efficiently carried out using ML methodology to explain considerable amounts of variance
in agricultural production deviations [74]; however, the interpretability of the models is
low and despite their high accuracy, they are unable to surrogate the science.

In our study, only marginal differences were observed between MLP, CNN showing
good generalization ability due to the added layers that mitigated the overfitting found for
SLP. In stratified cross-validation, SLP showed the highest F1 score, followed by the CNN.
However, the severe drop in accuracy of SLP in un-stratified datasets can be viewed from
the perspective of poor generalization abilities of the networks having a small number of
layers with an excessive number of neurons [75], which is apparently the case with SLP
presented in our study. Thus, the model was able to extract features linked to leaf rolling in
a stratified set, but when attempting to generalize an unrelated dataset, the performance
metrics dramatically decreased.

Study on plant Bromus inermis using hyperspectral indices and three ML algorithms,
CNN, SVM and random forest, showed feasibility of drought classification in ML frame-
work with the highest prediction accuracies observed for SVM [32]. In our study, SVM
also showed the highest overall prediction accuracy in random subset validation. This is
also corroborated by the results of PCA (Figure 3) and the ability of a simple dimension
reduction technique such as Tikhonov regularization [76] (L2 norm in SVC linear kernel) to
facilitate efficient feature extraction.

All models, except SLP, in our study performed well on the given dataset, and the
observed differences were not discriminatory. Studies assessing vegetation classifications
by the use of hyperspectral imagery with SVM, artificial neural networks and CNN by
Hassan et al. [77,78], demonstrating very high classification accuracies reported similar
conclusions. The added value in our research can be seen in the analysis of performance
in tabular data using additional, unrelated validation dataset (Figures 5 and 6). It was
shown that CNN and SVM yielded more conservative, similar performance metrics, while
MLP showed the best overall performance, but with only a 1% increase in F1 score. On
the other hand, the limitations of our study can be seen from two perspectives. As an
early report, our dataset was only created in a single stage of plant development over a
limited number of climatological scenarios [79], so further efforts with increased spatial
and temporal resolution are needed. Additionally, the deep learning models represent a
good way to cope with many types of data taking many conformations in multidimen-
sional hyperplanes, however, with limited interpretability. Further assessment should thus
include other ML models such as decision trees retaining more information on the effects
of predictor variables.

The usability of ML was also demonstrated at many levels of agricultural production,
by using multi/hyperspectral reads and imagery and climatological data, such as disease
detection [41,48,80–83], nutrient deficiency assessment [84,85], stress detection [86–88]
and in-season predictions of agronomic performance in maize [89,90], sorghum [91], soy-
bean [92], wheat [93–95] and cocoa [96]. Corroborating these new avenues in agricultural
sciences with the constant involvement of large companies in the development of new
learning ML algorithms, and the optimization of the existing ones, Python open-source
libraries Tensorflow [97] created and maintained by Google and Pytorch [98] created and
maintained by Facebook, makes the future uses of ML incomprehensible.

5. Conclusions

This study demonstrated the ability of machine learning algorithms to use simple
multispectral reads for efficient classification of maize leaf rolling. It was shown that
there is variability between ML algorithms in terms of performance metrics, but also,
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computing times. There is a growing need for increased spatiotemporal resolution of
plant monitoring with affordable remote sensing solutions, especially in the context of the
Internet of Things (IoT). It was demonstrated that ML algorithms can efficiently extract
information from multispectral reads and predict plant states such as leaf rolling. Since
the envisioned use of the demonstrated sensor is an IoT framework, the inclination is
towards less computationally intensive ML algorithms, without sacrificing performance.
Thus, the use of MLP might represent the best overall option. Increasing the information
density and using smart solutions for decision support in agriculture could facilitate the
transition to the Agriculture 4.0 empowered by the nexus between food production and
machine learning. Further research should test the framework in multiple topographies and
water/nutrient availability scenarios to tackle the abilities of simple and affordable sensing
solutions in the dissection of biological systems showing the highest order of complexity.
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(LR−) and a plot with leaf rolling (b); Figure S2. Precipitation during the months of June and July
2021 with 50-year average-based percentiles of dry and wet conditions for Osijek. Gray boxes show
measurement times, and the red box shows external validation set measurement time; Figure S3.
Learning rates of neural network algorithms from 85% random subset training procedure; Table S1:
loading weights of the first three principal components
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