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Abstract: To meet the ever-growing global population necessities, integrating climate-change-relevant
plant traits into breeding programs is required. Developing new tools for fast and accurate estimation
of chlorophyll parameters, chlorophyll a (Chl-a) content, chlorophyll b (Chl-b) content, and their ratio
(Chl-a/b), can promote breeding programs of wheat with enhanced climate adaptability. Spectral
reflectance of leaves is affected by changes in pigment concentration and can be used to estimate
chlorophyll parameters. The current study identified and validated the top known spectral indices
and developed new vegetation indices (VIs) for Chl-a and Chl-b content estimation and used them to
non-destructively estimate Chl-a/b values and compare them to hyperspectral estimations. Three
wild emmer introgression lines, with contrasting drought stress responsiveness dynamics, were
selected. Well-watered and water-limited irrigation regimes were applied. The wheat leaves were
spectrally measured with a handheld spectrometer to acquire their reflectance in the 330 to 790 nm
range. Regression models based on calculated VIs as well as all hyperspectral curves were calibrated
and validated against chlorophyll extracted values. The developed normalized difference spectral
indices (NDSIs) resulted in high accuracy of Chl-a (NDSI415,614) and Chl-b (NDSI406,525) estimation,
allowing for indirect non-destructive estimation of Chl-a/b with root mean square error (RMSE)
values that could fit 6 to 10 times in the range of the measured values. They also performed similarly
to the hyperspectral models. Altogether, we present here a new tool for a non-destructive estimation
of Chl-a/b, which can serve as a basis for future breeding efforts of climate-resilient wheat as well as
other crops.

Keywords: hyperspectral; high throughput phenotyping; pigment; wild emmer; drought

1. Introduction

Current and projected climate change, as expressed in the increasing intensity of erratic
climate events across extensive regions of the planet, threatens to increase food insecurity
worldwide [1]. To meet the ever-growing global population demands for food, feed, fibers,
and bioenergy plant-based products, a significant increase in crop-plant production is
required [2]. Thus, there is an urgent need to develop climate-resilient crop-plants with
enhancing yield and nutritional quality for the changing agro-systems. A fundamental
aspect of such an effort is the identification of key functional traits that can be integrated
into research and breeding programs.

Chlorophyll is an important light-absorbing photosynthetic pigment largely determin-
ing the plant’s photosynthetic capacity and as consequence its growth and development [3].
It includes the chlorophyll a (Chl-a), which is the primary electron donor within the re-
action center, and chlorophyll-b (Chl-b), a light-harvesting accessory pigment found in
the antenna complexes of the light-harvesting complexes of photosystem II [4,5]. The
ratio between chlorophyll a and b (Chl-a/b) is affected by the plant’s natural senescence
processes and various environmental cues [6]. Under water stress, the Chl-b is degrading
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into Chl-a, leading to a higher Chl-a/b [7]. Thus, developing new tools for fast and accurate
estimation of chlorophyll parameters can promote breeding efforts of new cultivars better
adapted to the changing climate.

Quantification of leaf chlorophyll content was established by integrating empirical
models of spectrophotometry measurement of light transmission wavelengths based on
the Beer–Lambert law [8,9]. While resulting in accurate chlorophyll content, they are de-
structive, labor-intensive, time-consuming, and do not allow one to study the longitudinal
and spatio-temporal dynamics thorough the plant’s life cycle [10–12]. Alternatively, an
in vivo non-destructive optical hand-held absorbance-based total chlorophyll (TChl) meter
(such as SPAD-502; Minolta corporation Ltd., Osaka, Japan) can be used. It can obtain a
quick prediction of TChl content, but in many cases, the SPAD values are not calibrated to
actual TChl content [13,14], and cannot estimate Chl-a, Chl-b and their ratio. Hyperspectral
data are an alternative non-destructive approach, based on extracting reflectance values for
hundreds of narrow spectral bands [15–17]. These data can be used for building models
to determine TChl, Chl-a and Chl-b content as well as Chl-a/b. Spectral reflectance of
leaves in the visible range and pigment concentration are negatively correlated [18–21].
A vegetation index (VI) is a mathematical manipulation based on reflectance values from
two or more spectral bands [22] used to estimate plant traits and monitor their health
and condition [23]. Spectral data and VIs are analyzed to estimate chlorophyll content in
vegetation [5,24–29].

Wheat (Triticum sp.) is one of the world’s most consumed crops, with produc-
tion estimated at ~770 million tons per annum http://www.fao.org/faostat (accessed on
20 February 2022). To meet the rising demand of the projected 9.7 billion people by 2050, an
increase of at least 60% in wheat production is required [30]. Wheat domestication and sub-
sequent evolution under domestication involved a suite of complex genetic, morphological,
anatomical, and physiological modifications [31,32]. Wild emmer wheat (T. turgidum ssp.
dicoccoides (Körn.) Thell.), the direct allotetraploid (2n = 4x = 28; genome BBAA) progenitor
of domesticated wheats, thrives across wide eco-geographic amplitude across the Fertile
Crescent and offers ample allelic repertoire for agronomically important traits, including
drought tolerance [33–35]. Recently, we evaluated a large set of wild emmer wheat intro-
gression lines (ILs) under contrasting water availabilities and identified promising drought
tolerance strategies [33,34].

In the current study, we applied a field-based evaluation of selected ILs with divergent
water-stress responsiveness and tested their Chl-a/b ratio alteration in response to water
stress. Our working hypothesis was that Chl-a/b can be assessed non-destructively in
in vivo wheat leaves based on Chl-a and Chl-b contents. The specific objectives of the
current study were to: (i) identify and validate the best VIs for Chl-a and Chl-b, (ii) use
the best VIs to assess Chl-a/b under contrasting water availabilities, and (iii) compare VIs-
and hyperspectral- based Chl-a/b estimation models. Altogether, we showed here for the
first time, to the best of our knowledge, a new tool, based on a spectral assessment of Chl-a
and Chl-b for non-destructive estimation of Chl-a/b that can serve as a basis for future
breeding efforts of climate-resilient wheat, as well as other crops.

2. Materials and Methods
2.1. Plant Material and Experimental Design

Previously, we characterized a set of adaptive wild emmer wheat ILs (BC3F5) for
their drought responsiveness strategies [33]. For the current study, we selected three lines
(IL46, IL82, IL105) with contrasting drought stress responsiveness dynamics [33]. Each line
consists of a few introgressions from the wild emmer line Zavitan, with IL46 consisting of
six introgressions that cover 5.2% of the genome, IL82 consisting of fifteen introgressions
that cover 13.37% of the genome, and IL105 consisting of six introgressions that cover 6.07%
of the genome (Supplementary Table S1). IL46 was characterized as highly productive
and stable and exhibited high growth and gas exchange under water stress. IL82 was
characterized as highly productive and exhibited high growth under water stress with

http://www.fao.org/faostat
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phenotypic plasticity (i.e., its physiological and morphological parameters were changing
due to the water stress). IL105 was characterized to have lower biomass productivity under
water stress and define as high phenotypic plasticity.

The plants were grown during the winter of 2019–2020 at the experimental farm of
The Hebrew University of Jerusalem in Rehovot, Israel (34◦47′N, 31◦54′E: 54 m above sea
level) in a plastic-covered net house (Figure 1). The soil is brown-red degrading sandy
soil (Rhodoxeralf) composed of 76% sand, 8% silt, and 16% clay. A split-plot factorial
(genotype x irrigation regime) design was employed with two irrigation regimes split
into 12 sub-plots, with four replicates (total 24 plots). Each plot of 150 cm long consisted
of four planted rows. Plants were spaced 10 cm, within and between rows, resulting
in 60 plants per plot. Two irrigation regimes were applied via a drip irrigation system:
well-watered control (WW) and water-limited (WL). The WW treatment was irrigated
weekly with a total amount of ~750 mm, whereas the WL treatment was irrigated every
other week with a total amount of ~250 mm (Supplementary Figure S1). Water was applied
during the winter months (January–March) to mimic the natural pattern of rainfall in the
eastern Mediterranean region. The experiment was treated with fungicides and pesticides
to control fungal pathogens or insect pests and was weeded manually once a week.
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Figure 1. The experimental site, the plastic-covered net house (a). Before planting (b). Wheat plants
grown in the net house, the relevant plants are on the 3rd row from the left (c).

2.2. Data Collection

Spectral data were acquired by PolyPen RP410 UVIS (PSI Ltd., Drasov, Czech Republic)
in contact with the adaxial leaf side. The PolyPen is a leaf contact active spectrometer
covering the range of 330 to 790 nm in 1 nm intervals (8 nm band width at full width half
max). Before spectral data collection and in between measurements, a white reference mea-
surement was acquired using a spectralon panel (PSI Ltd., Drasov, Czech Republic). Each
selected leaf was in vivo spectrally measured five times to result in an average spectrum.
The youngest fully developed leaf was selected for spectral data collection and sampling,
while the flag-leaf was measured starting from the third until the ninth measuring date.
In each plot, three leaves from different plants were marked and spectrally measured to
represent the plot. The spectral data acquisition was followed by leaf sample collection.
The leaves were cut from the plant into an air-tight polyethylene sealed bag and then placed
into an ice-filled container for up to 2 h before further laboratory measurements.

Five leaf discs (0.8 cm diameter) were taken from each leaf and placed in a glass con-
tainer with 10 mL of organic solvent (N.N Dimethylformamide) and transported into a dark
4 ◦C incubator for 48 h. Then, the samples were pipetted into 3 mL quartz cuvettes in the
UV/VIS Spectrophotometer (ST-VS-723; Lab-Fac instrument Ltd., Kowloon, Hong Kong) to
acquire transmittance in two wavelengths: 647 and 664 nm. The transmittance values were
used to calculate the Chl-a, Chl-b, and TChl content (mg cm−2), as described previously [8].
Three plants per plot were sampled, the spectral and chlorophyll contents were averaged
per plot.

2.3. Data Preprocessing and Analyses

Analysis of variance (ANOVA) was used to assess the possible effects of genotype,
irrigation regimes, data collection dates, and the different levels of interactions on the
chlorophyll responses.
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Thirty-three well-known VIs were pre-programmed to be calculated by the PolyPen
sensor (Supplementary Table S2). The quality of the correlation between each of the VIs
and Chl-a, Chl-b, and TChl content was evaluated by the correlation coefficient (R). VIs
resulting in R absolute values equal to or higher than 0.5 were selected for linear regression
to produce a coefficient of determination (R2) and root mean square error of prediction
(RMSEP). Data sets were randomly selected with an even distribution on genotype by
irrigation regime by date for all parameters based on the number (n) of samples involved;
Chl-a (n = 168), Chl-b (n = 167) and TChl (n = 166), at a 70% and 30%, calibration and
validation, respectively. The calibration data sets were used to perform a linear regression
analysis between Chl-a, Chl-b, and TChl content (dependent) and each of the selected
VI (independent) variables and to determine the slope and intercept to be tested by the
validation data sets. The predicted Chl-a, Chl-b, and TChl content values were compared to
the observed values to obtain the calibration and validation R2 (Cal and Val R2, respectively)
as well as RMSEP of calibration and validation (RMSEPC and RMSEPV, respectively) as
calculated by Herrmann et al. [36]. The % RMSEPC and % RMSEPV were calculated based
on the RMSEPC and RMSEPV values out of the range of Cal and Val samples, respectively.
The statistical analyses were applied in JMP 15 pro version statistical package (SAS Institute,
Cary, NC, USA).

To find the best two-band combination for Chl-a, Chl-b, and TChl content spectral
estimation, the normalized difference spectral index (NDSI; [37]) was calculated, analyzed
and ranked based on R2 values of a linear regression between Chl-a, Chl-b, and TChl
content (Supplementary Table S2). The highly ranked NDSI for each of the three chlorophyll
parameters (i.e., Chl-a, Chl-b, and TChl content) was used for the calibration and validation
process as done with all selected VIs. The models’ quality was assessed by R2, RMSE and
% RMSE. NDSI analysis was performed in R (version 3.4.1.) environment and statistical
analyses were applied in JMP 14 pro version statistical package (SAS Institute, Cary,
NC, USA).

In spectral data sets, as in the current study, there is high collinearity among variables
(i.e., adjacent wavelengths), and partial least squares regression (PLSR) is a commonly ap-
plied method [38–40] that used the information at all wavelengths to provide a quantitative
determination of plant traits. To calculate the estimated trait by the regression equation,
each wavelength receives a coefficient; the absolute value of these coefficients indicates the
importance of each wavelength to the model. The Cal and Val sample distributions were
the same for the VIs analysis, and the models’ quality was assessed by R2, RMSE and %
RMSE. The statistical analysis was performed in python 3.8 with pandas [41], version 1.3,
SciPy [42], version 1.6, and scikit-learn [43], version 0.24, PLSR with NIPALS algorithm.

3. Results and Discussion

To test the effect of water availability on the accuracy of various non-destructive
spectral models to estimate the Chl-a/b ratio, we used three selected wild emmer wheat
introgression lines (ILs) that represent contrasting stress responsiveness strategies (L46,
IL82 and IL105; see [33]). Characterization of these ILs under two contrasting water
availabilities showed a clear effect of the irrigation regime on plant height and productivity
(Supplementary Table S3 and Supplementary Figure S2). In general, under water-limited
conditions, all genotypes exhibited a significant reduction in height, vegetative dry weight
and the final grain yield. These results indicate that the applied water stress had a significant
impact on crop production and thus can serve as a good experimental platform for studying
the potential of various VIs (Supplementary Table S2) to estimate chlorophyll content.

The genotypes had a significant effect on leaf Chl-a, Chl-b, TChl, and Chl-a/b (p < 0.0001),
and the irrigation regimes significantly affected only the Chl-b and Chl-a/b (p = 0.024
and p = 0.021, respectively), but not on Chl-a and TChl (p = 0.229 and p = 0.610, re-
spectively) (Supplementary Table S4). In wheat, Ashraf and Harris [44] showed that
Chl-a increased in response to drought, and tolerant cultivars exhibited a slight increase
in the Chl-a/b. In the current study, Chl-a/b values decline along with the develop-
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ment of the experiment and showed non-significant differences between irrigation treat-
ments (Supplementary Figure S3a). The spectral reflectance curves of the fully devel-
oped leaf were similar to those of the flag-leaf, but upon closer examination, the ear-
lier is not following the chronological trend of the latter in the visible spectral region
(Supplementary Figure S3b). The chronological trend is visible around 730 nm. This mis-
match in chronology led to a model based on the flag-leaf data alone. Leaf structure and
pigment content affect leaf spectral reflectance [21]. The relatively high mesophyll cell num-
ber per leaf area of flag-leaf in comparison to the fully developed leaf [45] and variability
in leaf thickness [46] may explain the lower reflectance of the fully developed leaves in the
range of 740–780 nm. Thus, it was expected to observe a reduction in the ability of spectral
data to explain the variability in Chl-a and Chl-b content while analyzing the two leaf types
together. Chl-b had the biggest advantage, in R values, for analyzing only the flag-leaf
spectral data rather than the two leaf types together (Supplementary Figure S4). To im-
prove the quality of chlorophyll spectral estimation in in vivo wheat leaves and develop a
standardized data collection methodology, the flag-leaf data alone was further analyzed.
As expected, there is a negative relation between chlorophyll concentration and the flag leaf
reflectance spectrum in the visible region (Figure 2), and the bigger effect of small changes
in chlorophyll concentration on the spectral reflectance is in the range of 540 to 630 nm [47].
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Figure 2. Chlorophyll concentrations and flag leaf reflectance spectra of randomly selected leaf
samples in five dates throughout the season (one leaf per date). Barplot of varying concentrations
of total chlorophyll (TChl), chlorophyll a (Chl-a) and chlorophyll b (Chl-b) (a). Corresponding
reflectance spectra of each sample chlorophyll concentration (b). Colors represents chlorophyll
concentrations and their respective reflectance spectrum.

The focus of the current study is at Chl-a/b based on Chl-a and Chl-b spectral esti-
mation; nevertheless, TChl, which is commonly assessed, was discussed as an additional
relevant output. Although leaf reflectance in the visible spectral region is negatively related
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to chlorophyll content [21], the calculated VIs can be either positively or negatively related
to chlorophyll content based on the bands used and the structure of the VI equation. It was
hypothesized that the combination of GM1 [47] positively related to chlorophyll content
and Carter 1 [48] negatively related to chlorophyll content will improve the chlorophyll
estimation quality. Two VIs were developed (#38 and #39 in Supplementary Table S2) and
proved to be at the top of TChl estimation and with higher R2 and smaller RMSE than each
of their components alone (Table 1).

Table 1. The top ten predictions for Chl-a, Chl-b, and TChl are presented based on all 33 VIs,
NDSI-generated VIs from the leaf reflectance spectra by the PolyPen sensor.

Ranking 1 VI Cal R2 RMSEPC
(µg cm−2)

%
RMSEPC Val R2 RMSEPV

(µg cm−2)
%

RMSEPV References

Chl-a (n = 118) (n = 50)

1 NDSI415,614 0.85 2.34 8.54 0.87 2.02 9.24 Current study
2 ZMI 0.82 2.52 9.30 0.80 2.47 11.31 [49]
3 CIred-edge 0.82 2.54 9.37 0.81 2.43 11.10 [19]
4 Carter 1 0.82 2.57 9.45 0.82 2.38 10.89 [48]
5 CIgreen 0.81 2.61 9.60 0.83 2.28 10.42 [19]
6 GM1 0.81 2.62 9.64 0.83 2.28 10.43 [47]
7 GM2 0.82 2.57 9.46 0.80 2.48 11.37 [47]
8 NDRE 0.81 2.62 9.66 0.80 2.47 11.31 [50]
9 REIP 0.80 2.71 9.97 0.81 2.44 11.15 [51]

10 TGI 0.78 2.81 10.35 0.80 2.51 11.49 [52]

Chl-b (n = 117) (n = 50)

1 NDSI406,525 0.78 0.73 8.47 0.82 0.56 9.59 Current study
2 Carter 1 0.67 0.88 10.86 0.56 0.79 13.49 [48]
3 TGI 0.64 0.90 11.15 0.63 0.76 12.90 [52]
4 GM1 0.64 0.90 11.10 0.63 0.77 13.16 [47]
5 CIgreen 0.63 0.91 11.25 0.62 0.78 13.22 [19]
6 TCARI 0.62 0.92 11.37 0.61 0.78 13.26 [53]
7 Datt1 0.60 0.95 11.71 0.56 0.85 14.42 [54]
8 REIP 0.59 0.96 11.84 0.54 0.84 14.30 [51]
9 MCARI 0.59 0.96 11.84 0.54 0.84 14.34 [53]

10 NDRE 0.58 0.97 11.84 0.55 0.85 14.45 [50]

TChl (n = 116) (n = 50)

1 NDSI406,614 0.86 2.82 8.03 0.87 2.51 9.08 Current study
2 GM1/Carter 1 0.85 2.91 8.30 0.85 2.61 9.42 Current study
3 GM1-Carter 1 0.83 3.05 8.70 0.84 2.68 9.69 Current study
4 Carter 1 0.80 3.30 9.42 0.79 3.07 11.09 [48]
5 GM1 0.79 3.38 9.63 0.81 2.94 10.63 [47]
6 CIgreen 0.79 3.39 9.66 0.81 2.95 10.65 [19]
7 ZMI 0.79 3.40 9.68 0.77 3.28 11.84 [49]
8 CIred-edge 0.79 3.42 9.76 0.77 3.22 11.65 [19]
9 GM2 0.79 3.44 9.81 0.76 3.31 11.95 [47]

10 TGI 0.77 3.55 10.12 0.78 3.14 11.34 [52]

All R2 values are significant to p < 0.0001. 1 Based on R2 of all samples (Supplementary Table S6).

3.1. Vegetation Indices (VIs)

The R2 distribution of the two-band combinations to assess Chl-a, Chl-b and TChl
content is presented in heat maps (Figure 3a,c,e). As expected, the heat maps were similar
for the three chlorophyll parameters but with smaller areas with relatively high R2 values
for Chl-b that is assumed to be the result of the smaller content of Chl-b in the leaves [54].
The selected bands for Chl-a and TChl are very similar, as can be expected since Chl-a
is the major parameter in TChl. It is important to mention that bands adjacent to the
selected ones will also show high R2 values (Table S5). The best two-band combination for
the Chl-b estimation was 406 and 525 nm, supported by [55] reporting Chl-b absorption
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peaks in the blue and green regions. Analyzing the averaged spectral and destructive
replicates per day (Figure 3b,d,f) resulted in bigger R2 values than the non-averaged ones
(Figure 3a,c,e). All VIs were correlated to Chl-a, Chl-b and TChl and ranked based on R2

values (Supplementary Table S6). The top 10 performing VIs (Supplementary Table S6)
used for Chl-a, Chl-b, and TChl estimation resulted in similar Cal and Val R2 as well as
RMSE values (Table 1). The RMSE values (Figure 3 and Table 1) of indices developed in
the current study are smaller than 10% of the active ranges of Chl-a, TChl and even of
Chl-b. Previous studies, as detailed by Hallik et al. [56], presented smaller R2 and bigger
RMSE values of Chl-a and Chl-b estimation based on spectral data and stated that studies
estimating Chl-b used VIs that were more strongly correlated to Chl-a. In the current
study, VIs were developed specifically for Chl-a as well as Chl-b estimation and are at
the top in their category (Table 1). Banerjee et al. [24] developed a VI highly correlating
with Chl-a, Chl-b and TChl concentrations based on wheat canopy side view imagery,
acquired in a semi-controlled indoor environment. This VI used spectral regions related to
nitrogen (1654 nm) and chlorophyll (727 nm). Sonobe et al. [29] applied spectral methods
to estimate leaf Chl-a and Chl-b in wasabi grown in a semi-controlled environment indoors
and resulted in RMSE values similar to the values achieved in the current study (Table 1).
The current study presented improvement (in terms of R2 and RMSE) in the ability to
estimate leaf Chl-a, Chl-b and TChl content values in wheat grown under field conditions
and used the spectrally estimated values to calculate Chl-a/b (Figure 4). Spectral estimation
of Chl-a/b was rarely published, Sonobe et al. [29] directly estimated Chl-a/b by spectral
means resulting in RMSE values ranging from 0.13 to 0.6. In the current study, the RMSE
can fit five to six times in the range of measured Chl-a/b values (Figure 4a). In the current
study, the best VI for Chl-a estimation and the best VI for Chl-b estimation were used, and
the ratio of the assessed values was calculated to obtain the Chl-a/b ratio. To the best of
our knowledge, this approach of spectrally estimating Chl-a and Chl-b values in in vivo
wheat leaves to calculate Chl-a/b has not yet been published. The VIs developed in the
current study were using two or a few spectral bands, while the PLSR applied hundreds of
spectral bands to estimate Chl-a and Chl-b values.
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on averaged NDSI values per genotype, irrigation regime and DAT (b,d,f). The black lines are the 
trend line. Chl-a (a,b), Chl-b (c,d), and TChl (e,f). Hollow and filled dots stand for water-limited
(WL) and well-watered (WW), respectively. RMSE stands for root mean square error; DAT stands 
for days after transplant. 
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Figure 3. All possible two-band combinations by normalized difference vegetation index (NDSI) heat
maps R2 values (p < 0.0001) for regression with Chl-a, Chl-b, and TChl content on all 168 samples
(a,c,e). Linear regression of Chl-a, Chl-b, and TCh content on all 168 samples (a,c,e). Linear regression
of Chl-a, Chl-b, and TChl (n = 42) with their corresponding highest-ranking NDSI based on averaged
NDSI values per genotype, irrigation regime and DAT (b,d,f). The black lines are the trend line.
Chl-a (a,b), Chl-b (c,d), and TChl (e,f). Hollow and filled dots stand for water-limited (WL) and
well-watered (WW), respectively. RMSE stands for root mean square error; DAT stands for days
after transplant.
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Figure 4. Quality of Chl-a/b spectral estimation by normalized difference spectral index (NDSI). The
Chl-a/b (observed) data were acquired by extraction of Chl-a and Chl-b. The Chl-a/b (best NDSI)
data were calculated by applying the top (NDSI estimating Chl-a and Chl-b (Table 1). The Val data set
is presented in Table 1 (a). Averaged values per genotype, irrigation regime and DAT as presented in
Figure 3b,d,f (b). DAT stands for days after transplant. Hollow and filled dots stand for water-limited
(WL) and well-watered (WW), respectively; the black lines are the trend lines and the gray lines are
the 1:1 lines.

3.2. The Partial Least Squares Regression (PLSR)

The RMSE obtained for the estimated Chl-a, Chl-b and TChl concentrations by PLSR
models (Table 2) are small enough to fit 12, 14, and 11 times, respectively, in the observed
range of concentrations (Figure 5a,c,e). The estimation quality by PLSR and VIs (Table 1)
in terms of R2 and RMSE was similar [57] for each of the chlorophylls. The VIs based on
two to a few spectral bands and the PSLR based on 391 spectral bands resulted similarly,
showing no advantage to either of them. The PLSR coefficients of the models (Figure 5b,d,f)
are all showing the importance of the shortest wavelengths in agreement with the 406 and
415 nm wavelengths selected by the NDSIs (Figure 3a,c,e). The combined effect of the
Chl-a and Chl-b coefficients can be seen in the TChl coefficients in the enhancement in the
shortest wavelengths as well as the contradicting trends between 500 and 550 nm as well
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as around 700 nm. These insights support the stability of the models to be able to assess
Chl-a and Chl-b and their sum as well as the ability to obtain Chl-a/b estimation (Figure 6).
The Chl-a/b estimation based on the PLSR models (Figure 6) is showing improved R2 and
RMSE in comparison to the VIs for the Val data set (Figure 4a) as well as for the averaged
samples (Figure 4b), as was done for the VIs (Figure 3b,d,f). As expected, the averaged
sample data resulted in the smallest RMSE value. The NDSI results (Figure 3a,c,e) support
using the spectral range of 400 to 790 nm for the PLSR analysis. The observed vs. predicted
chlorophyll parameter values are showing the same trend (above or below the trend line)
for each of the two modeling methods: NDSIs and PLSR (Figure 7a–f). The distributions of
residuals for each of the chlorophylls compared between the NDSI and PLSR models are
not different (Figure 7g–i).

Table 2. The Chl-a, Chl-b, and TChl estimation based on PLSR model.

Chlorophyll Cal R2 RMSEPC
(µg cm−2)

%
RMSEPC Val R2 RMSEPV

(µg cm−2)
%

RMSEPV

Chl-a 0.88 2.11 7.76 0.86 2.08 9.52
Chl-b 0.80 0.66 8.10 0.81 0.57 9.63
TChl 0.87 2.68 7.63 0.86 2.51 9.05
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Figure 5. Chl-a, Chl-b, and TChl content estimation by partial least squares (PLSR) models. Observed
vs. predicted chlorophyll values (a,c,e). Solid black lines are calibration (Cal) best-fit lines and 1:1 lines
are gray. Circle and Plus markers represent Cal and Val samples, respectively. The PLSR coefficients
for each of the models (b,d,f), solid blue lines are coefficient values and dashed gray lines are the
zero-coefficient value. Chl-a (a,b), Chl-b (c,d), and TChl (e,f).



Remote Sens. 2022, 14, 2585 10 of 14Remote Sens. 2022, 14, 2585 11 of 15 
 

 

 

Figure 6. Quality of Chl-a/b spectral estimation. The Chl-a/b (observed) data were acquired by ex-

traction of Chl-a and Chl-b. The Chl-a/b (best PLSR) data were calculated by applying the PLSR 

models estimating Chl-a and Chl-b (Table 2). The Val data set is presented in Table 2. Hollow and 

filled dots stand for water-limited (WL) and well-watered (WW), respectively (a). Averaged values 

per genotype, irrigation regime and DAT, as presented in Figure 5b,d,f (b). The black lines are the 

trend lines and the gray lines are the 1:1 lines. Hollow and filled dots stand for WL and WW, re-

spectively. 

 

Figure 7. Chlorophyll a (Chl-a), chlorophyll b (Chl-b), and total chlorophyll T(Chl) content estima-

tion by their respective best normalized difference spectral index (NDSI) model and partial least 

square regression (PLSR) model. Best NDSIs predicted chlorophyll values (a–c); PLSR predicted vs. 

observed chlorophyll values (d–f). Solid black lines are best-fit lines, and circle and plus markers 

Figure 6. Quality of Chl-a/b spectral estimation. The Chl-a/b (observed) data were acquired by
extraction of Chl-a and Chl-b. The Chl-a/b (best PLSR) data were calculated by applying the PLSR
models estimating Chl-a and Chl-b (Table 2). The Val data set is presented in Table 2. Hollow and
filled dots stand for water-limited (WL) and well-watered (WW), respectively (a). Averaged values per
genotype, irrigation regime and DAT, as presented in Figure 5b,d,f (b). The black lines are the trend
lines and the gray lines are the 1:1 lines. Hollow and filled dots stand for WL and WW, respectively.
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Figure 7. Chlorophyll a (Chl-a), chlorophyll b (Chl-b), and total chlorophyll T(Chl) content estimation
by their respective best normalized difference spectral index (NDSI) model and partial least square
regression (PLSR) model. Best NDSIs predicted chlorophyll values (a–c); PLSR predicted vs. observed
chlorophyll values (d–f). Solid black lines are best-fit lines, and circle and plus markers represent
calibration (Cal) and validation (Val) samples, respectively. DAT stands for days after transplant. Kernel
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density plot of residuals (g–i) comparing the best NDSI and PLSR models for predicting chlorophyll
content. Black lines represent mean value of residuals from NDSI model, while dashed grey lines
represent mean value of residual from PLSR model. Student t-test of the residuals shows no significant
differences between the two models across all chlorophyll content at 0.05 alpha level.

4. Conclusions

The current study aimed to spectrally assess Chl-a and Chl-b to identify the best VI or
VIs for indirectly estimating Chl-a/b in three wild emmer wheat ILs. While there were no
significant differences in Chl-a/b values between WW and WL treatments, the active range
of the measured or predicted Chl-a/b values were five to six times the RMSE values for the
non-averaged samples. Thus, it was concluded that:

(i) The new VIs that were developed in the current study resulted in highly accurate
Chl-a and Chl-b estimation.

(ii) The developed VIs were able to indirectly estimate Chl-a/b.
(iii) The VIs developed in the current study performed similarly to the PLSR.

The model quality achieved by VIs developed in the current study, in comparison to
PLSR, supports sensors with a few spectral bands for practical use, while hyperspectral
sensors are used for research to identify these spectral bands. The developed models
should be tested in additional crops for breeding projects. Under more severe water stress
scenarios, resulting in a wider range of Chl-a/b values, the models are expected to perform
even better than in the current study. This concept of Chl-a and Chl-b direct estimation to
indirectly assess Chl-a/b should be tested also for canopy-level spectral data collection.
The current study presented a new approach, based on the spectral assessment of Chl-a and
Chl-b for the non-destructive estimation of Chl-a/b, which can serve as a basis for future
wheat breeding efforts as a non-destructive quick analysis method of pigments as a step
towards canopy-level estimation. The ability to non-destructively assess Chl-a/b in vivo
by spectral sensing will improve breeding efficiency toward developing climate-resilient
wheat cultivars.
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