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Abstract: With the increasing frequency of natural disasters becoming, it is very important to classify
and identify disasters. We propose a lightweight disaster classification model, which has lower
computation and parameter quantities and a higher accuracy than other classification models. For
this purpose, this paper specially proposes the SDS-Network algorithm, which is optimized on
ResNet, to deal with the above problems of remote sensing images. First, it implements the spatial
attention mechanism to improve the accuracy of the algorithm; then, the depth separable convolution
is introduced to reduce the number of model calculations and parameters while ensuring the accuracy
of the algorithm; finally, the effect of the model is increased by adjusting some hyperparameters. The
experimental results show that, compared with the classic AlexNet, ResNet18, VGG16, VGG19, and
Densenet121 classification models, the SDS-Network algorithm in this paper has a higher accuracy,
and when compared with the lightweight models mobilenet series, shufflenet series, squeezenet
series, and mnasnet series, it has lower model complexity and a higher accuracy rate. According
to a comprehensive performance comparison of the charts made in this article, it is found that the
SDS-Network algorithm is still better than the regnet series algorithm. Furthermore, after verification
with a public data set, the SDS-Network algorithm in this paper is found to have a good generalization
ability. Thus, we can conclude that the SDS-Network classification model of the algorithm in this
paper has a good classification effect, and it is suitable for disaster classification tasks. Finally,
it is verified on public data sets that the proposed SDS-Network has good generalization ability
and portability.

Keywords: disaster classification; attention mechanism; depth separable; calculation amount; parameter
amount; Grad-CAM

1. Introduction

In recent years, due to the continuous increase in global greenhouse gas emissions,
there have been increasingly more problems, such as melting glaciers and climate warming,
and natural disasters have also continued to increase. Natural disasters are mainly classified
into four categories: meteorological disasters, geological disasters, biological disasters, and
astronomical disasters [1]. This article classifies disasters into car accidents, floods, fires,
hurricanes, and earthquakes. Traditionally, these disasters cannot be classified or identified
automatically, and they can only be prevented and processed in specific disaster areas [2,3].

In view of the continuous development of remote sensing images, deep learning
methods have become increasingly more important in the classification of disasters. For
example, Ahmed Ahmouda [4] et al. mapped short- and long-term changes in behavior
and tweeting activity in areas affected by natural disasters by analyzing earthquakes in
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Nepal and central Italy. Scientists have used deep learning technology to study information
data, land coverage, floods, etc., in disaster areas, and they found that disasters still have a
high research value [5–8].

Many researchers have proposed their own disaster classification methods. For ex-
ample, Cheng Ximeng of the China University of Geosciences (Beijing) [9] automatically
classified disasters based on high-resolution remote sensing images in combination with
earthquake disasters and proposed a rapid earthquake disaster assessment model. To
verify the effectiveness of the model, Liu Hongyan [10] et al. classified sudden geological
disasters into four categories in their study, and they proposed an improved monitor-
ing and early warning and prediction method of movement distance after instability for
emergency prevention. Xu Anxin of Shandong University [11] used SVM to propose a
power grid meteorological disaster early warning method based on scene classification
and recognition. This method can better extract the meteorological disaster category, and
identify and predict power grid faults more accurately to improve the outcome of power
grid meteorological disasters, which lays the foundation for improving the warning ability
for power grid meteorological disasters. The above methods are all used to classify and
recognize a specific disaster, and they have higher requirements for specific scenarios.
In view of this, this paper proposes a lightweight disaster classification model (Spatial
Depthwise Separable Convolution, SDS-Network) using high-resolution remote sensing
images, which may further improve the accuracy rate of disaster classification and reduce
the calculations and parameters of the algorithm.

1.1. Remote Sensing Images

Deep learning technology has developed rapidly in recent years, and it is increasingly
being combined with remote sensing images. Below is an introduction to remote sensing
images and deep-learning-related knowledge.

Remote sensing images are generally obtained from top-to-bottom image information
captured by airborne or spaceborne equipment, satellites, and other tools. In traditional re-
mote sensing image classification tasks, the minimum distance method [12], parallelepiped
method [13], maximum likelihood method [14], and other methods are more commonly
used due to their foreign matters being in the same spectrum, as well as other characteristics.
Therefore, the accuracy of classification needs to be further improved. With the develop-
ment of remote sensing technology, Liu Jiajia [15] et al. elaborated on the classification of
urban buildings based on remote sensing images; Li Anqi et al. [16] designed a typical crop
classification method based on the U-Net algorithm; and Wang Ziqi [17] et al. adopted
a knowledge map to supplement the classification of remote sensing positioning, which
reduced the image retrieval time by half. Better ideas for the classification and positioning
of remote sensing images have been put forward in the above methods, but they all have
specific application scenarios, which are limited in the classification of high-resolution
remote sensing images in the disaster classification scenario in this paper. In view of this,
this paper proposes the SDS-Network, which can be used in disaster classification tasks.

1.2. Deep Learning

The deep learning method was developed around 2000, and it can better ascertain use-
ful information in original images and process correlations. To date, it has been effectively
used in target detection [18], natural language processing [19], speech processing, [20],
and semantic analysis [21], and it has greatly promoted the development of artificial in-
telligence. Moreover, it is mainly integrated into the multi-layer perceptron model [22],
deep neural network model [23], and recurrent neural network model [24], including many
representatives, such as the deep belief network (DBN), convolution neural network (CNN),
and recurrent neural network (RNN). CNN models, including LeNet5 [25], AlexNet [26],
VGG [27], GoogleNet [28], ResNet [29], Wide ResNet [30], Xception [31], DenseNet [32],
SEnet [33], squeeze [34], MobileNet [35], and Shuffle [36], are mainly used in image classifi-
cation. Among them, the jump connection of ResNet makes a great contribution, and it
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solves gradient disappearance and explosion with the deepening of the model [29]; squeeze,
Shuffle, and MobileNet are lightweight models, and they solve the problem of operation
models on embedded devices such as mobile phones. With the continuous development of
CNN, increasingly more classification models are being proposed by research scholars to
further meet the needs of life and industrial production. The algorithm proposed in this
article makes its own contribution to the scientific community.

2. Related Work

This article studied various classification models and, at the same time, optimized the
models used in the classification of high-resolution remote sensing images. The classifi-
cation model selected in this article was optimized on ResNet50. Finally, ResNet50 was
optimized using the spatial attention mechanism, depthwise separable convolution, and
hyperparameter tuning.

2.1. Spatial Attention Mechanism

The spatial attention mechanism weighs the spatial information in the spatial dimen-
sion. Its working principle is as follows: Firstly, create a feature map F′ of H * H * C size
(H represents the length or width of the feature map, and C represents the number of
channels of the feature map), and then use the maximum pooling and average pooling
to reorganize the feature maps and obtain two Conv-x feature information descriptions
with a size of H * H * 1. Next, concatenate these Conv-x feature information descriptions
according to channel correlation. After splicing is completed, use a 7 * 7 convolutional layer
Conv-y and the activation function (Sigmoid) [37] to obtain the weight coefficient M on
the spatial dimension of the feature map, and the feature map is Conv. The convolution
operation part of the spatial attention mechanism proposed in the algorithm in this paper
is shown in Figure 1. Finally, multiply the weight coefficient M and the input feature map
information F′ into the output feature map of the spatial attention mechanism, as shown in
Formula (1).

M = σ
(

f 7∗7([AvgPool(F), MaxPool(F)])
)

= σ( f 7∗7([FS
avg; FS

max
M′ = M ∗ F′

(1)

where AvgPool represents the average pooling; MaxPool represents the maximum pooling;
σ represents the Sigmoid activation function; and M′ represents the result of multiplying
the weight coefficient M and the input feature map F′. In Figure 1, U is the input feature
map; V is the output feature map; and the remainder represent the conversion modules of
the spatial attention mechanism.
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2.2. Depthwise Separable Convolution

In order to reduce the calculations and parameters of the algorithm, this paper con-
tinues to optimize the algorithm model, and it proposes depthwise separable convolution
(DSC) [38], which introduces the 3 * 3 convolution of ResNet50 into depthwise convolution.
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The depth separable convolution is composed of depthwise convolution (DC) [39] and
pointwise convolution (PC) [40]. The calculation methods of standard convolution (SC)
and DC are shown in Formulas (2)–(5). It can be seen in Formula (6) that the calculations of
standard convolution (SC) are much greater than those of DSC.

Assuming that the size of the input feature map is Dk * Dk * M, that the size of the
convolution kernel is Df * Df * M (the number of which is N), and that each point in the
corresponding space position of the feature map will perform a convolution operation,
then it can be seen that a single convolution requires Dk * Dk * Df * Df * M calculations.
Therefore, for a single convolution, the calculations are as follows:

SC FLOPs SC = Dk * Dk * Df * Df * M * N (2)

DC = Dk * Dk * Df * Df * M (3)

PC = M * N * Dk * Dk (4)

DSC FLOPs DSC = DC + PC = Dk * Dk * Df * Df * M + M * N * Dk * Dk (5)

The ratio of calculations of DSC to ordinary convolution is FLOPs:

FLOPs =
DSC
SC

=
Dk ∗Dk ∗Df ∗Df ∗M + M ∗N ∗Dk ∗Dk

Dk ∗Dk ∗Df ∗Df ∗M ∗N
=

1
N

+
1

D2
f

(6)

Standard convolution means that the convolution is performed on each feature channel,
but it can be seen in Figure 2 that the depth separable convolution performs convolution
on each channel, so the calculations and parameters of the model greatly reduce, which
increases the efficiency of the algorithm. This paper adds depth separable convolution
to ResNet’s Bottleneck’s 3 * 3 convolution blocks, thereby reducing the calculations and
parameters of the disaster classification model and improving the operating efficiency of
the model.
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To illustrate this, Figures 2 and 3 use three nodes for input and two nodes for output.
Figure 2 presents an operation diagram of the standard convolution. When the input values
X[1], X[2], and X[3] are connected to the neuron, the neuron performs the calculation with
each neuron in the next layer, and finally, the number of output categories is obtained.
Figure 3 shows the mechanism of deep separable convolution, where the calculation is
only performed with neurons in the same layer and not in the convolution of other layers.
The calculations and parameters of the algorithm should reduce, and the operation speed
will improve.
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2.3. Hyperparameter Adjustment

In order to obtain better experimental results, the hyperparameters adjusted this time
are mainly in the model structure and training links. This paper first reduced the residual
blocks of ResNet and reduced the original 16-layer residual block of [3,4,6,3] into a 4-layer
residual block; after that, the parameters in the training process were adjusted, and the
optimizer SGD [40] before training was replaced with AdamW [41]. In addition, the initial
learning rate was set to 0.01–0.03, and the weight decay was set to 0.0004; finally, this
article replaced the activation function ReLU [42] with the GELU activation function [43].
The structure of each spatial depthwise separable block (SDS-Block) in this article after
optimization is shown in Table 1. From the table, it can be concluded that the number of
convolutional layers for each SDS-Block is 5.

Table 1. SDS-Block model structure.

Model Convolution Kernel and Parameters

ConV1 1 * 1, Stride = 1

BN1
ConV2 3 * 3, Stride = 1, padding = 1, Group

BN2
ConV3 1 * 1, Stride = 1, padding = 1

BN3
GELU

Spatial attention

ConV1 7 * 7, Stride = 1, padding = 3
Sigmoid
ConV2d 1 * 1, Stride = 1

BN2d

2.4. Algorithm Structure

In summary, in the design of the disaster classification model in this paper, the spatial
attention mechanism, depthwise separable convolution, and hyperparameter adjustment
are used to improve the accuracy of the algorithm and reduce calculations and parameters.
As shown in Table 2, the Spatial Depthwise Separable Network (SDS-Network) algorithm
model is designed for this article. As can be seen in Table 2, the algorithm in this paper is
composed of convolution, an activation function, a pooling layer, an SDS-Block module,
and a full-face hierarchy, and finally, it constitutes a new convolutional neural network
model for disaster classification. Since each SDS-Block is communicated through 4 layers
of convolutional layers, the SDS-Network in this article only has 16 layers, which is in line
with the structure of lightweight models.
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Table 2. Structure of algorithm model.

Model Output Size Kernel/Parameters FLOPs Parameters

Conv1 112 * 112 7 * 7, Stride = 2,
Padding = 3 118,013,952 9408

BN1 112 * 112 1,605,632 128
GELU 112 * 112 0 0

Max pool 56 * 56 3 * 3, Stride = 2,
Padding = 1 802,816 0

SDS-Block 56 * 56 SDS-Block-1 121,733,248 38,818
SDS-Block 28 * 28 SDS-Block-2 260,490,272 233,186
SDS-Block 14 * 28 SDS-Block-3 258,676,488 925,026
SDS-Block 7 * 7 SDS-Block-4 412,180,307 3,694,962

adaptAvgPool 1 * 1 0 0
Linear 5 10,240 10,245
Total 1,019,116,650 4,901,773

3. Experimental Link
3.1. Experimental Setup

This experiment was carried out on an Ubuntu 20.04 system with RTX 3090 (24 G
of video memory), adopted a Pytorch 1.8 operation framework, and selected SGD as the
pre-optimizer. The initial learning rate was 0.01, and the learning rate for each epoch was
95% of the original. Random seeds were used to input pictures to ensure the stability
of the experimental data. The training set and test set in this article are from the Kaggle
Disaster Classification Competition and the internal data set of the State Key Laboratory of
Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University.
There are 11,243 data sets in this experiment, comprising 8997 training sets and 2246 test
sets, each of which is a color image. However, in order to increase the robustness of model
training, the length, width, and size of the images are not limited. When the models were
input, the images were randomly cropped to a size of 224*224, and data enhancement was
used to further improve the data.

3.2. Experimental Procedure

This paper first used the spatial attention mechanism module to improve the accu-
racy of the algorithm, and then it introduced deep separable convolution to reduce the
calculations and parameters of the algorithm while ensuring accuracy; finally, the hyperpa-
rameters were fine-tuned to optimize the model and obtain the SDS-Network algorithm
model in this paper. The evaluation indicators used in this article include floating point
operations (FLOPs), parameters, accuracy (Acc top1), and memory.

In Table 3, ResNet50 + Spatial represents the use of the spatial attention mechanism
on ResNet50; ResNet50 + Spatial + DepthWise represents the further use of the depthwise
separable convolution; and SDS-Network is the algorithm model proposed in this paper.
It can be seen in Table 3 that the Acc of the original model ResNet50 was 0.8998 and that
the optimized Acc was 0.9248, which increased by 2.5%; the parameters were reduced by
about 6 times compared with those of ResNet50, FLOPs were reduced by about 4 times,
and memory was reduced 2 times. Therefore, the SDS-Network algorithm proposed in this
paper has achieved good results and is suitable for disaster classification.

Table 3. Comparison of data performance between SDS-Network and ResNet50.

Model Acc (Top1) Parameters FLOPs (G) Memory (M)

ResNet50 [24] 0.8998 25,557,032 4.12 109.69
ResNet50 + Spatial 0.9110 25,558,600 4.12 109.79

ResNet50 + Spatial +
DepthWise 0.9118 14,275,336 2.28 109.79

SDS-Network 0.9248 4,901,773 1.02 48.47
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As can be seen in Figure 4, the SDS-Network classification algorithm has an Acc of 97%
for Accident, 86% for Cyclone, 92% for Earthquake, 95% for Flood, and 87% for Wildfire,
which are all greater than 85%. It can also be seen that the Acc of Accident is 0.11 higher
than that of Cyclone, with a smaller difference. Because the SDS-Network is applicable to
each category of disaster classification, there is no notable difference.
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It can be seen in Figures 5 and 6 that, as the iterations of the SDS-Network algorithm
increased, the Acc also increased, and Loss decreased. In the graph, it can be seen that
the trained Acc was slightly higher than that in the testing phase, and the trained Loss
was slightly lower than that in the testing phase. In order to ensure practicability and
applicability, the Acc values selected in this article were all from the test phase. When the
epoch was iterated 100 times, both Acc and Loss tended to be stable, indicating that setting
the epoch to 100 in this article was consistent with the experimental environment.
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This article first compared the SDS-Network with some classic classification algorithms.
It can be seen in Table 4 that the Acc of Densenet121 was higher than that of AlexNet and
ResNet18, but the Acc of the SDS-Network was higher than that of Densenet121, and the Acc
of the SDS-Network algorithm was lower than that of AlexNet, ResNet18, and Densenet121.
Although AlexNet was better than the SDS-Network algorithm in FLOPs and memory,
its Acc was lower, and Vgg16 and Vgg19 performed poorly in Acc testing. Therefore, the
SDS-Network algorithm proposed in this paper performed best in disaster classification.

Table 4. Comparison of SDS-Network model and classic algorithms.

Model Acc (Top1) Parameters FLOPs Memory (M)

AlexNet [26] 0.8740 61,100,840 715.54 M 4.19 MB
ResNet18 [29] 0.9092 11,689,512 1.82 G 25.65 MB

Vgg16 [27] 0.0824 138,357,544 15.5 G 109 MB
Vgg19 [27] 0.0334 143,667,240 19.67 G 119.34 MB

Densenet121 [32] 0.9132 6,958,981 2.88 GFlops 147.10 MB
SDS-Network 0.9248 4,901,773 1.02 G 48.47 MB

In order to further verify the lightweight performance of the SDS-Network algorithm,
this paper conducted further experimental research and compared the SDS-Network algo-
rithm with the lightweight algorithms mobilenet series, shufflenet series, squeezenet series,
and mnasnet series [44].

First of all, in the mobilenet series, mobilenet_v3_large had the best overall perfor-
mance. However, the FLOPs in mobilenet_v3_large were slightly higher than those of the
SDS-Network algorithm, and mobilenet_v3_large performed slightly lower than the SDS-
Network algorithm in Acc, parameters, and memory. After a comprehensive evaluation,
the SDS-Network algorithm was found to be slightly better than the mobilenet_V3_large
algorithm in lightweight performance. Secondly, among the shufflenet series of algorithms,
shufflenet_v2_x1_0 had the best overall performance. Its performance was better than
the SDS-Network algorithm in parameters, FLOPs, and memory, but its Acc was slightly
lower than that of the SDS-Network algorithm. We can see in Figure 7 that the SDS-
Network algorithm was more stable than the shufflenet_V2_X1_0 algorithm in each Acc
value when comparing the effects of each category. Therefore, it is concluded that both the
SDS-Network and shufflenet_v2_x1_0 algorithms are more suitable for lightweight disaster
classifications. Finally, Table 5 proves that the squeezenet and mnasnet series are very low
in Acc and that the algorithm model has an overfitting problem, so it is not suitable for
disaster classifications.
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Table 5. Comparison of SDS-Network model and lightweight algorithm.

Model Acc (Top1) Parameters FLOPs Memory (M)

mobilenet_v2 [30] 0.9038 3,504,872 0.31 74.25
mobilenet_v3_small [30] 0.8967 2,542,856 0.06 16.20
mobilenet_v3_large [30] 0.9061 5,483,032 0.22 50.40
shufflenet_v2_x0_5 [31] 0.9025 1,366,792 0.04 11.24
shufflenet_v2_x1_0 [31] 0.9127 2,278,604 0.15 20.85
shufflenet_v2_x1_5 [31] 0.9096 3,503,624 0.30 29.32
shufflenet_v2_x2_0 [31] 0.9127 7,393,996 0.58 39.51

squeezenet1_0 [29] 0.5913 1,248,424 0.81 35.60
squeezenet1_1 [29] 0.5690 1,235,496 0.35 21.35

mnasnet0_5 [29] 0.3664 2,218,512 0.11 33.65
mnasnet0_75 [29] 0.3339 1,235,496 0.22 52.22
mnasnet1_0 [39] 0.3339 4,383,312 0.32 59.94
mnasnet1_3 [39] 0.3339 6,282,256 0.53 80.66
SDS-Network 0.9248 4,901,773 1.02 48.47

Next, the algorithm proposed in this paper was further compared with the algorithms
in the efficient series [45], which are relatively new image classification models. In Table 6, it
can be seen that the SDS-Network still maintains the highest Acc while also maintaining the
best effect on memory, FLOPs, and parameters (state of the art). Although the parameters
of efficientnet_b0 were slightly lower than those of the SDS-Network algorithm, its com-
prehensive performance was significantly worse than that of the SDS-Network algorithm.
Therefore, the SDS-Network algorithm is better than the efficient series of algorithms.

Table 6. Comparison of SDS-Network model and efficient series of algorithms.

Model Parameters FLOPs (G) Memory (M) Acc (Top1)

efficientnet_b0 [40] 4,015,234 0.39 79.40 0.9176
efficientnet_b1 [40] 6,520,870 0.57 110.64 0.9167
efficientnet_b2 [40] 7,709,448 0.66 115.96 0.9172
efficientnet_b3 [40] 10,703,917 0.96 153.93 0.9185
efficientnet_b4 [40] 17,559,374 1.54 201.26 0.9092
efficientnet_b5 [40] 28,353,078 2.4 277.07 0.9114
efficientnet_b6 [40] 40,749,534 3.42 354.58 0.9038
efficientnet_b7 [40] 63,802,326 5.25 474.66 0.8972

SDS-Network 4,901,773 1.02 48.47 0.9248
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In order to ensure the effectiveness of the algorithm, this paper continued to compare
the data with those of the regnet series [46] algorithm, and it conducted experiments in the
same experimental environment. In order to obtain a more intuitive comparison, this paper
drew a bar chart according to the algorithm data in Table 7, as shown in Figures 8–11. In
order to facilitate understanding, in the figures, regnetx_200mf is abbreviated as x_200mf
and the SDS-Network is abbreviated as SDS.

Table 7. Comparison of SDS-Network model and regnet series of algorithms.

Model Acc (Top1) Parameters FLOPs (G) Memory (M)

regnetx_200mf [41] 0.9007 2,318,006 0.20 23.53
regnetx_400mf [41] 0.8989 4,774,822 0.39 36.37
regnetx_600mf [41] 0.9007 5,670,214 0.59 45.54
regnetx_800mf [41] 0.9007 6,590,694 0.79 59.65
regnetx_1.6gf [41] 0.8998 8,282,614 1.62 96.32
regnetx_3.2gf [41] 0.8998 14,293,606 3.2 141.74
regnetx_4.0gf [41] 0.9065 20,765,414 3.99 152.71
regnetx_6.4gf [41] 0.9065 24,594,006 6.5 199.57
regnetx_8.0gf [41] 0.9029 37,663,174 8.03 177.32
regnetx_12gf [41] 0.9025 43,878,502 12.13 262.67
regnetx_16gf [41] 0.9025 52,241,830 16.0 317.08
regnetx_32gf [41] 0.8994 105,305,686 31.82 455.66

regnety_200mf [41] 0.8967 2,796,210 0.20 22.17
regnety_400mf [41] 0.9003 3,905,790 0.40 41.51
regnety_600mf [41] 0.9065 5,449,814 0.60 46.67
regnety_800mf [41] 0.9034 5,498,782 0.79 56.66
regnety_1.6gf [41] 0.9069 10,318,764 1.63 93.16
regnety_3.2gf [41] 0.9034 17,932,416 3.2 129.56
regnety_4.0gf [41] 0.9025 19,564,190 4.0 139.98
regnety_6.4gf [41] 0.9087 29,294,034 6.39 189.38
regnety_8.0gf [41] 0.9092 37,175,170 8.0 203.30
regnety_12gf [41] 0.8976 49,594,990 12.14 242.96
regnety_16gf [41] 0.9078 80,583,290 15.96 262.04
regnety_32gf [41] 0.9074 141,356,048 32.34 348.16
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It can be seen in Figure 8 that the data of the regnetx_y series of algorithms are slightly
higher quality than those of the regnetx_x series of algorithms, but they are all lower quality
than those of the SDS-Network algorithm. Therefore, the SDS-Network algorithm performs
better in disaster classifications.

It can be seen in Figure 9 that the regnetx_32gf and regnety_32gf algorithms have
the highest FLOPs, and the regnetx_200mf and regnety_200mf algorithms have the lowest
FLOPs. As the strength of the algorithms continued to increase, the FLOPs also continued
to increase. The FLOPs of the SDS-Network algorithm in the regnet algorithm series
were still very low. This further proves that the SDS-Network algorithm achieves a better
lightweight effect.
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It can be seen in Figure 10 that, as the strength of the algorithm increased, the memory
of the regnet series of algorithms also increased. Among them, the memory of the reg-
netx_32gf and regnety_32gf algorithms was still the highest, while that of the SDS-Network
algorithm was the lowest at about 48.47 M.

It can be seen in Figure 11 that the change curve of parameters is similar to that of
FLOPs and memory occupancy. The parameters of the SDS-Network algorithm in this paper
are lower than those of the regnet series, and they are suitable for disaster classifications.

3.3. Class Activation Diagram

A Class Activation Map (CAM) [47] visualizes the process of algorithm recognition
and presents it with an intuitive visual effect. In detail, red represents the recognized part,
and blue represents the unattended part. This paper introduced Gradient-weighted Class
Activation Mapping (Grad-CAM) [48], took the gradient of the feature map as the average,
and obtained the N average gradient values corresponding to the N feature maps as the
weight values. The information in the feature map can be used for discrimination when
there is no observable difference. Compared with CAM, Grad-CAM can visualize the CNN
of any structure without modifying the network structure or retraining, which further
enhances the effect of algorithm recognition and visualization.

It can be seen in Table 8 that, in this paper, the final convolutional layer of the SDS-
Network algorithm was classified and output by Grad-CAM to verify the quality of the
algorithm. When determining the image category, the algorithm mainly uses the relevant
part, which is displayed in red. Each category of the algorithm in this paper always
has a red part, which proves that the algorithm in this paper recognizes an image by its
characteristics rather than by accidental prediction. The darker the color of the picture, the
stronger the attention of the model. It can be observed that there are about three attention
points in each category in the no-background picture in Table 8. However, the blue is
neglected, and the algorithm recognition effect is better; thus, it is suitable for disaster
classifications.
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Table 8. Grad-CAM data visualization table.

SDS-Network

Background Category Forecast Result

Yes No

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

algorithm. When determining the image category, the algorithm mainly uses the relevant 
part, which is displayed in red. Each category of the algorithm in this paper always has a 
red part, which proves that the algorithm in this paper recognizes an image by its charac-
teristics rather than by accidental prediction. The darker the color of the picture, the 
stronger the attention of the model. It can be observed that there are about three attention 
points in each category in the no-background picture in Table 8. However, the blue is 
neglected, and the algorithm recognition effect is better; thus, it is suitable for disaster 
classifications. 

Table 8. Grad-CAM data visualization table. 

SDS-Network 
Background Category Forecast Result 

Yes No   

  

Cyclone True 

  

Earthquake True 

  

Accident False 

  

Flood True 

  

Wildfire True 

3.4. Open Data Set 
(1) Cifar-100 data set 

In order to further study the superiority of the algorithm, this paper classified the 
open data set Cifar-100 [49] into 100 categories, including 50,000 training sets and 10,000 

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

algorithm. When determining the image category, the algorithm mainly uses the relevant 
part, which is displayed in red. Each category of the algorithm in this paper always has a 
red part, which proves that the algorithm in this paper recognizes an image by its charac-
teristics rather than by accidental prediction. The darker the color of the picture, the 
stronger the attention of the model. It can be observed that there are about three attention 
points in each category in the no-background picture in Table 8. However, the blue is 
neglected, and the algorithm recognition effect is better; thus, it is suitable for disaster 
classifications. 

Table 8. Grad-CAM data visualization table. 

SDS-Network 
Background Category Forecast Result 

Yes No   

  

Cyclone True 

  

Earthquake True 

  

Accident False 

  

Flood True 

  

Wildfire True 

3.4. Open Data Set 
(1) Cifar-100 data set 

In order to further study the superiority of the algorithm, this paper classified the 
open data set Cifar-100 [49] into 100 categories, including 50,000 training sets and 10,000 

Cyclone True

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

algorithm. When determining the image category, the algorithm mainly uses the relevant 
part, which is displayed in red. Each category of the algorithm in this paper always has a 
red part, which proves that the algorithm in this paper recognizes an image by its charac-
teristics rather than by accidental prediction. The darker the color of the picture, the 
stronger the attention of the model. It can be observed that there are about three attention 
points in each category in the no-background picture in Table 8. However, the blue is 
neglected, and the algorithm recognition effect is better; thus, it is suitable for disaster 
classifications. 

Table 8. Grad-CAM data visualization table. 

SDS-Network 
Background Category Forecast Result 

Yes No   

  

Cyclone True 

  

Earthquake True 

  

Accident False 

  

Flood True 

  

Wildfire True 

3.4. Open Data Set 
(1) Cifar-100 data set 

In order to further study the superiority of the algorithm, this paper classified the 
open data set Cifar-100 [49] into 100 categories, including 50,000 training sets and 10,000 

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

algorithm. When determining the image category, the algorithm mainly uses the relevant 
part, which is displayed in red. Each category of the algorithm in this paper always has a 
red part, which proves that the algorithm in this paper recognizes an image by its charac-
teristics rather than by accidental prediction. The darker the color of the picture, the 
stronger the attention of the model. It can be observed that there are about three attention 
points in each category in the no-background picture in Table 8. However, the blue is 
neglected, and the algorithm recognition effect is better; thus, it is suitable for disaster 
classifications. 

Table 8. Grad-CAM data visualization table. 

SDS-Network 
Background Category Forecast Result 

Yes No   

  

Cyclone True 

  

Earthquake True 

  

Accident False 

  

Flood True 

  

Wildfire True 

3.4. Open Data Set 
(1) Cifar-100 data set 

In order to further study the superiority of the algorithm, this paper classified the 
open data set Cifar-100 [49] into 100 categories, including 50,000 training sets and 10,000 

Earthquake True

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

algorithm. When determining the image category, the algorithm mainly uses the relevant 
part, which is displayed in red. Each category of the algorithm in this paper always has a 
red part, which proves that the algorithm in this paper recognizes an image by its charac-
teristics rather than by accidental prediction. The darker the color of the picture, the 
stronger the attention of the model. It can be observed that there are about three attention 
points in each category in the no-background picture in Table 8. However, the blue is 
neglected, and the algorithm recognition effect is better; thus, it is suitable for disaster 
classifications. 

Table 8. Grad-CAM data visualization table. 

SDS-Network 
Background Category Forecast Result 

Yes No   

  

Cyclone True 

  

Earthquake True 

  

Accident False 

  

Flood True 

  

Wildfire True 

3.4. Open Data Set 
(1) Cifar-100 data set 

In order to further study the superiority of the algorithm, this paper classified the 
open data set Cifar-100 [49] into 100 categories, including 50,000 training sets and 10,000 

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

algorithm. When determining the image category, the algorithm mainly uses the relevant 
part, which is displayed in red. Each category of the algorithm in this paper always has a 
red part, which proves that the algorithm in this paper recognizes an image by its charac-
teristics rather than by accidental prediction. The darker the color of the picture, the 
stronger the attention of the model. It can be observed that there are about three attention 
points in each category in the no-background picture in Table 8. However, the blue is 
neglected, and the algorithm recognition effect is better; thus, it is suitable for disaster 
classifications. 

Table 8. Grad-CAM data visualization table. 

SDS-Network 
Background Category Forecast Result 

Yes No   

  

Cyclone True 

  

Earthquake True 

  

Accident False 

  

Flood True 

  

Wildfire True 

3.4. Open Data Set 
(1) Cifar-100 data set 

In order to further study the superiority of the algorithm, this paper classified the 
open data set Cifar-100 [49] into 100 categories, including 50,000 training sets and 10,000 

Accident False

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

algorithm. When determining the image category, the algorithm mainly uses the relevant 
part, which is displayed in red. Each category of the algorithm in this paper always has a 
red part, which proves that the algorithm in this paper recognizes an image by its charac-
teristics rather than by accidental prediction. The darker the color of the picture, the 
stronger the attention of the model. It can be observed that there are about three attention 
points in each category in the no-background picture in Table 8. However, the blue is 
neglected, and the algorithm recognition effect is better; thus, it is suitable for disaster 
classifications. 

Table 8. Grad-CAM data visualization table. 

SDS-Network 
Background Category Forecast Result 

Yes No   

  

Cyclone True 

  

Earthquake True 

  

Accident False 

  

Flood True 

  

Wildfire True 

3.4. Open Data Set 
(1) Cifar-100 data set 

In order to further study the superiority of the algorithm, this paper classified the 
open data set Cifar-100 [49] into 100 categories, including 50,000 training sets and 10,000 

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

algorithm. When determining the image category, the algorithm mainly uses the relevant 
part, which is displayed in red. Each category of the algorithm in this paper always has a 
red part, which proves that the algorithm in this paper recognizes an image by its charac-
teristics rather than by accidental prediction. The darker the color of the picture, the 
stronger the attention of the model. It can be observed that there are about three attention 
points in each category in the no-background picture in Table 8. However, the blue is 
neglected, and the algorithm recognition effect is better; thus, it is suitable for disaster 
classifications. 

Table 8. Grad-CAM data visualization table. 

SDS-Network 
Background Category Forecast Result 

Yes No   

  

Cyclone True 

  

Earthquake True 

  

Accident False 

  

Flood True 

  

Wildfire True 

3.4. Open Data Set 
(1) Cifar-100 data set 

In order to further study the superiority of the algorithm, this paper classified the 
open data set Cifar-100 [49] into 100 categories, including 50,000 training sets and 10,000 

Flood True

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

algorithm. When determining the image category, the algorithm mainly uses the relevant 
part, which is displayed in red. Each category of the algorithm in this paper always has a 
red part, which proves that the algorithm in this paper recognizes an image by its charac-
teristics rather than by accidental prediction. The darker the color of the picture, the 
stronger the attention of the model. It can be observed that there are about three attention 
points in each category in the no-background picture in Table 8. However, the blue is 
neglected, and the algorithm recognition effect is better; thus, it is suitable for disaster 
classifications. 

Table 8. Grad-CAM data visualization table. 

SDS-Network 
Background Category Forecast Result 

Yes No   

  

Cyclone True 

  

Earthquake True 

  

Accident False 

  

Flood True 

  

Wildfire True 

3.4. Open Data Set 
(1) Cifar-100 data set 

In order to further study the superiority of the algorithm, this paper classified the 
open data set Cifar-100 [49] into 100 categories, including 50,000 training sets and 10,000 

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

algorithm. When determining the image category, the algorithm mainly uses the relevant 
part, which is displayed in red. Each category of the algorithm in this paper always has a 
red part, which proves that the algorithm in this paper recognizes an image by its charac-
teristics rather than by accidental prediction. The darker the color of the picture, the 
stronger the attention of the model. It can be observed that there are about three attention 
points in each category in the no-background picture in Table 8. However, the blue is 
neglected, and the algorithm recognition effect is better; thus, it is suitable for disaster 
classifications. 

Table 8. Grad-CAM data visualization table. 

SDS-Network 
Background Category Forecast Result 

Yes No   

  

Cyclone True 

  

Earthquake True 

  

Accident False 

  

Flood True 

  

Wildfire True 

3.4. Open Data Set 
(1) Cifar-100 data set 

In order to further study the superiority of the algorithm, this paper classified the 
open data set Cifar-100 [49] into 100 categories, including 50,000 training sets and 10,000 

Wildfire True

3.4. Open Data Set

(1) Cifar-100 data set
In order to further study the superiority of the algorithm, this paper classified the open

data set Cifar-100 [49] into 100 categories, including 50,000 training sets and 10,000 test
sets, which were iterated 50 times, 100 times, 150 times, and 200 times, and the Acc change
graphs for the iterations of 100 times and 200 times were obtained.

In Table 9 and Figure 12, it can be seen that the algorithm reached equilibrium after
100 iterations, and after 200 iterations, the Acc of the algorithm was lower than that
after 100 iterations. It can be stated that the algorithm has an overfitting problem after
200 iterations. Therefore, the algorithm can be iterated 150 times. After 50 iterations,
the Acc of Top-1 reached 66.98, and that of Top-3 and Top-5 reached 83.85% and 88.97%,
respectively, which indicates that the algorithm in this paper performed well and that it
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had a faster effect. After 150 iterations, the Acc of Top-1, Top-3, and Top-5 reached 68.78%,
84.70%, and 89.75%, respectively, which proves that this algorithm was better and had a
strong generalization ability.

Table 9. SDS-Network data sheet in Cifar-100.

Model FLOPs Top-1 Top-3 Top-5 Epoch

SDS-Network 1.02 G

0.6698 0.8385 0.8897 50
0.6790 0.8359 0.8891 100
0.6878 0.8470 0.8975 150
0.6928 0.8459 0.8954 200
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(2) Caltech data set
The Caltech pedestrian data set [50] used in this article has two categories: one

is Caltech-101, and the other is Caltech-256. This article used Caltech-256, and each
image had a size of 300 * 200, with 24, 581 images in the training set and 6026 images
in the test set. It can be seen in Figure 13 that, when the SDS-Network algorithm was
iterated 200 times, the model tended to be stable. It can be seen in Table 10 that, when
the algorithm was iterated 200 times, the Acc of Top-1, Top-3, and Top-5 reached 53.50%,
67.24%, and 72.93%, respectively. We can therefore see that the Acc of Top-1 exceeds 50%,
and after 50 iterations, it is close to 50%. In summary, the algorithm in this paper has a fast
convergence speed, a high accuracy, and only 1.02 G FLOPs, so it is suitable for application
in other classification tasks.
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Table 10. SDS-Network data sheet in Caltech.

Model FLOPs Top-1 Top-3 Top-5 Epoch

SDS-Network 1.02 G

0.4839 0.6266 0.6965 50
0.5126 0.6434 0.7041 100
0.5285 0.6565 0.7149 150
0.5350 0.6724 0.7293 200

4. Conclusions

In recent years, natural disasters have occurred more frequently. In view of this, a
disaster classification model was proposed in this paper to solve the low accuracy of current
classification models. This article first used the spatial attention mechanism on ResNet to
improve the accuracy of the algorithm, then used the Depthwise Separable Convolution
to reduce the calculations and parameters of the algorithm, and finally used the hyperpa-
rameter fine-tuning method to adjust the model. This paper achieved good results when
comparing the model proposed in this paper with classic classification models, and the
algorithm proposed in this paper with lightweight algorithms and other newer algorithms.
After that, the Grad-CAM visualization method was used to verify the correctness of the
model’s recognition, and then the data were published. It was found according to the
experiments on Cifar-100 and Caltech that the performance of the algorithm in this paper
is still good, which greatly verifies its generalization and portability.
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