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Abstract: There is consistent evidence of vegetation greening in Central Asia over the past four dec-

ades. However, in the early 1990s, the greening temporarily stagnated and even for a time reversed. 

In this study, we evaluate changes in the normalized difference vegetation index (NDVI) based on 

the long-term satellite-derived remote sensing data systems of the Global Inventory Modelling and 

Mapping Studies (GIMMS) NDVI from 1981 to 2013 and MODIS NDVI from 2000 to 2020 to deter-

mine whether the vegetation in Central Asia has browned. Our findings indicate that the seasonal 

sequence of NDVI is summer > spring > autumn > winter, and the spatial distribution pattern is a 

semicircular distribution, with the Aral Sea Basin as its core and an upward tendency from inside 

to outside. Around the mid-1990s, the region’s vegetation experienced two climatic environments 

with opposing trends (cold and wet; dry and hot). Prior to 1994, NDVI increased substantially 

throughout the growth phase (April–October), but this trend reversed after 1994, when vegetation 

began to brown. Our findings suggest that changes in vegetation NDVI are linked to climate change 

induced by increased CO2. The state of water deficit caused by temperature changes is a major cause 

of the browning turning point across the study area. At the same time, changes in vegetation NDVI 

were consistent with changes in drought degree (PDSI). This research is relevant for monitoring 

vegetation NDVI and carbon neutralization in Central Asian ecosystems. 
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1. Introduction 

Vegetation is an important part of ecosystems, so exploring changes in vegetation 

health is vital to monitoring vegetation growth within a region [1]. Central Asia is home 

to an arid and highly seasonal steppe-desert biome [2] whose ecosystem makes up a rel-

atively large part of the land cover area. Due to the limitations of ground-based observa-

tion techniques, most studies have been conducted in conjunction with remote sensing 

techniques [3]. Of the various spectral indicators extracted from the satellite data, a com-

monly used and well-understood vegetation index is the normalized difference vegeta-

tion index (NDVI) [4–6]. The index is a parameter for describing the quantity and quality 

of vegetation growth and biomass [7]. The results of related studies show that NDVI com-

bined with remote sensing data can effectively reflect the growth status of vegetation, the 

degree of cover, and its change pattern [8,9]. Previous studies have shown that areas with 

a multiyear (1982–2020) average NDVI < 0.1 are not included and are generally considered 

barren [10,11]. 

Several studies have recently been conducted using remote sensing monitoring of 

vegetation in some typical regions, such as the arid zones of Central Asia, the Tibetan 
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Plateau, and the East African Plateau, and even on a global scale. The three main ones are: 

(1) a comparative study on the differences and science of the products themselves [4,12]; 

(2) analysis of vegetation dynamics and evolution studies [13,14]; and (3) simulation and 

mechanistic analysis of climate change, water resource change, and ecosystem assessment 

using vegetation indices as parameters [5,14,15]. Even though some of these studies focus 

on the arid zones of Central Asia, they do not fully exploit remote sensing data to examine 

the long-term evolution of the area’s vegetation and the factors that influence it. Therefore, 

the current research is more thorough in the context of NDVI across the Central Asian 

landscape.  

Temperature, precipitation, humidity, air pressure, CO2, and light all influence veg-

etation growth, with temperature and precipitation playing the most critical roles [16]. 

From 1982 to 2012, Liu Y. [17] found that global vegetation NDVI was gradually reduced 

by warmth and steadily raised by precipitation. In a study on increased greening of veg-

etation in the Hay River Basin, CO2 was found to be the most significant contributor to the 

NDVI trend (45%), followed by human activities (mean contribution of 27%) [6]. Studies 

on factors influencing vegetation change in the Central Asian Tien Shan show that vege-

tation in this region is extremely sensitive to moisture deficit, and that soil moisture deficit 

has a greater impact on vegetation change than does high water vapor pressure deficit [1].  

The effects of drought can be expressed in vegetation as a range of physiological re-

sponses and time scales, with drought’s impact on vegetation being a more integrated 

indicator [18,19]. When compared with surface temperature and water layer thickness, 

NDVI has the strongest correlation with drought for most vegetation types [19,20]. Three 

satellite series’ NDVI (MODIS, Landsat, and Sentinel-2) were calculated and found to be 

closely connected to drought [21]. Using sensors in tandem offers the greatest possible 

representation of canopy health during acute drought occurrences [21]. 

In a research study conducted by Myneni et al. (1997) [22], who used NDVI data from 

1981 to 1991, a large-scale growth trend in vegetation greenness was revealed throughout 

the Northern Hemisphere. In the same study area, in studies investigating the seasonal 

response of Northern Hemisphere vegetation to climate change (1982–2013), the authors 

found that the increasing tendency of greenness was stalled and even shifted to vegetation 

browning after 1994–1997, particularly in Central Europe, Northern North America, and 

Central Siberia [23]. In Pan’s research, the results unanimously show the expansion and 

acceleration of a browning trend since 1994 [24]. After the late 1990s, the browning trend 

increased across all latitudes of the Northern Hemisphere. This growth is particularly ev-

ident in the northern middle and low latitudes, where the greening trend stagnated or 

even reversed [24]. In the Belt and Road area, the temporal trend of vegetation in 1981–

2016 indicated an obvious trend change that mainly occurred in 2000. After the turning 

point (i.e., 1994), the browning trend was extended and enhanced to a large extent in East-

ern Europe and Central Asia, occurring primarily around the turn of the millennium [25].  

The existing research results show that there are differences in the influencing factors 

of vegetation NDVI change across different regions, and that the main influencing factors 

also differ across time periods. Furthermore, NDVI data sources are relatively singular, 

and there is no comparison of possible temporal and spatial differences of multiple data 

sources. This study, on the other hand, uses multiple data sources to analyze and couple 

the synergistic impact of multiple factors on NDVI changes. Investigating the change pat-

tern of vegetation NDVI and its influencing factors based on long time series and high-

resolution remote sensing data is critically important in light of the accelerated climate 

change. 

Central Asia lies at the junction of Asia and Europe [26]. It is also located in a world-

class arid zone with sparse surface vegetation and severe water scarcity [27]. It comprises 

a typical temperate desert and steppe arid zone, with a relatively fragile ecological envi-

ronment [28–30]. In the context of global warming, climate change is dramatic and eco-

systems are fragile [31]. In the post-Soviet era, ecological degradation, such as grassland 

degradation and lake shrinkage, such as the Aral Sea crisis, occurred in parts of Central 
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Asia, mainly due to the chaotic ecological management systems of the five Central Asian 

countries [32,33]. In particular, in the context of climate change, the increase in tempera-

ture and drought will directly change the growth state of mountain–oasis–desert vegeta-

tion in Central Asia, which in turn will affect the spatial and temporal distribution of veg-

etation NDVI [34,35]. The ecological and environmental problems in Central Asia have 

increased significantly in the course of the ongoing disturbance of global climate change 

and the intensification of human activities. In addition, due to its special geographic con-

ditions, the area has become an important channel for the construction of China’s “One 

Belt, One Road” [36]. 

The significance of Central Asia’s political and economic standing, as well as the re-

ality of its environmental challenges, necessitates that we pay attention to its ecological 

features, the quality of which is mostly reflected in changes in vegetation NDVI [37]. Be-

cause of this, the present study uses remote sensing image data to analyze vegetation 

changes in Central Asia from the 1980s onwards and discusses the influencing factors in 

terms of environmental factors to understand the impact of drought and climate change 

on vegetation dynamics. The study is important for providing a reference for ecological 

conservation and future development planning in Central Asia. 

2. Study Area 

The study area covers Central Asia, which is positioned deep in the hinterland of the 

Eurasian continent. It spans 46°29′–87°18′E from east to west and 35°07′–55°26′N from 

north to south, covering a total area of about 4 × 106 km2. The administrative regions within 

this boundary include Kazakhstan (Kaz), Turkmenistan (TKM), Uzbekistan (UZB), Kyr-

gyzstan (KGZ), and Tajikistan (TJK) (Figure 1). 

Across Central Asia, there is a gradual rise in altitude from the plains in the west to 

the mountains in the east, with the highest altitude being the Communist Peak at 7495 m. 

The high mountainous areas of the Pamir region of Tajikistan and the Tien Shan region in 

western Kyrgyzstan have on average an elevation of 4000–5000 m. Central Asia is domi-

nated by plains, hills, rolling hills, and extensive desert areas. The climatic types include 

temperate desert climate, temperate steppe climate, and highland mountain climate, with 

a transition from semiarid to arid zones from north to south. Annual precipitation is about 

200 mm in northern Central Asia and up to 1000 mm in the southern mountain ranges, 

with the highest precipitation in June and July in the high-altitude mountains. In general, 

the average annual precipitation is sparse in Central Asia, but there is a high temporal and 

spatial variability in precipitation. In terms of temperature, it is lower in the north than in 

the south and lower in the east than in the west, with the average temperature in July 

ranging from 32 °C in the south to 25 °C in the north, with a large daily difference in 

temperature and cold air moving south in winter, with the average temperature in Janu-

ary being 3 °C in the south and −15 °C in the north. Most of the region is grassland, which 

accounts for up to 85.73% of the study area. 
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Figure 1. Study area. No. GS (2016) 2966. 

3. Data 

3.1. Satellite Data 

3.1.1. GIMMS NDVI 

We selected NDVI product data from Global Inventory Modelling and Mapping 

Studies (GIMMS) remote sensing products [38]. The GIMMS NDVI dataset was generated 

by several AVHRR sensors from NOAA for a global 1/12th degree (~8 km) latitude/grid. 

The latest version of the dataset is NDVI3g (third-generation GIMMS NDVI from AVHRR 

sensors). It covers half-month intervals from July 1981 to December 2013. The GIMMS 

NDVI3g dataset has been corrected for calibration, volcanic aerosols, orbital drift effects, 

and view geometry. Its data processing objectives are aimed at improving data quality at 

high latitudes to facilitate studies of vegetation activity changes in Northern Hemisphere 

ecosystems (Table 1). 

Table 1. GIMMS and MODIS data products. 

Product Type Time Series (Yearly) Temporal Resolution Spatial Resolution 

GIMMS Normalized difference vegetation 

index (NDVI) 

1981–2013 15 day ~8 km 

MOD13A2 2000–2020 16 day 1 km 

3.1.2. MODIS NDVI 

The global MODIS vegetation index is designed to provide consistent spatial and 

temporal comparisons of vegetation status. The MODIS MOD13A2 V6.1 product [39] 

complements NOAA’s Advanced Very High Resolution Radiometer (AVHRR) NDVI 

product by providing time series continuity for the application of vegetation index prod-

ucts. As a grid level 3 product used in sinusoidal projections to show land cover and its 

changes, in addition to being used for global vegetation condition monitoring, these data 

can be employed as input to global biogeochemical and hydrological processes as well as 

global and regional climate modelling. They can also be used as a simulation of global 

biogeochemical, meteorological, and hydrological processes, including land surface bio-

physical properties, primary production, and land cover conversion. 

MODIS NDVI (MOD13A2) provides global-scale data every 16 days at a spatial reso-

lution of 1 km, with accuracy assessed over a wide range of locations and periods. Currently 
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updated from February 2000 to December 2021, the data are already available for use in 

scientific publications, although improved versions may be available later (Table 1). 

3.2. Climate Data 

The actual water vapor pressure (VAP), water vapor pressure difference (VPD), po-

tential evapotranspiration (PET), precipitation (PRE), soil moisture (SM), and Palmer 

Drought Severity Index (PDSI) are from the TerraClimate reanalysis data from 1981 to 

2020. The VAP and VPD were further calculated to obtain saturated water vapor pressure 

(VSP) and selected air temperature (TEM) data from the fifth-generation European Centre 

for Medium-Range Weather Forecasts reanalysis of the global climate (ERA5) [40]. ERA5 

TEM data are derived from a combination of models and observations as they overcome 

the limitations of existing station records in terms of length and spatial coverage [41]. 

Since the spatial resolution of the TerraClimate reanalysis data is 4638.3 m, the ERA5 TEM 

data with a spatial resolution of 0.1° were kriged to a raster of 4638.3 m, thus unifying the 

spatial resolution (Table 2). 

Table 2. TerraClimate and ERA5 data products. 

Product Type 
Time Series 

(Yearly) 

Temporal  

Resolution 

Spatial  

Resolution 

Terra-Climate 

Precipitation (PRE) 

Vapor pressure difference (VPD) 

Actual vapor pressure (VAP) 

Soil moisture (SM) 

Potential evapotranspiration (PET) 

Palmer Drought Severity Index (PDSI) 

1981–2020 Monthly ~4 km 

ERA5 Temperature (TEM) 1981–2020 Monthly ~11 km 

4. Methodology 

4.1. VSP Calculation 

Saturated water vapor pressure (VSP) [42] is calculated based on VAP and VPD rea-

nalysis data products of TerraClimate [43], as follows: 

VSP = VAP + VPD (1)

4.2. Piecewise Regression Analysis 

The abnormal turning point of NDVI in the growth period based on GIMMS in Cen-

tral Asia is identified by the piecewise regression model, which has been widely used in 

NDVI and climate analysis [1,24,44]. 

4.3. Trend Algorithm 

In this paper, variables from the past several years are simulated and analyzed year 

by year and month by month based on the unary linear regression method. The dynamic 

changes over the years are then analyzed. For example, to study the spatiotemporal vari-

ation trend of the variables grid by grid, the linear regression coefficient trend of the var-

iable was calculated as: 

����� =
� ∑ � · �� − ∑ � · ∑ ��

�
���

�
���

�
���

� · ∑ �� − �∑ ��
��� �

��
���

 (2)

where n and j are the lengths of the time series and the j year of the time series, respec-

tively, and Pj is the mean value of the variable in the j year. Trend > 0 indicates that the 

variable is increasing over time, and Trend < 0 indicates that the variable is decreasing over 

time. The present study classifies the variable trend to indicate the degree of trend on the 
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variable time scale. For all analyses, a significance level of 0.05 was used (i.e., if one of the 

analyses yields a p-value < 0.05, the null hypothesis is rejected). Here, the calculation of p-

value is obtained by F-test using this formula: 

� =
��

1
� − 2

(1 − ��)
 (3)

where r is the correlation coefficient and n are the number of samples. 

4.4. Correlation Analysis 

At the same time, the Pearson correlation coefficient [45,46] was used to further ana-

lyze the correlation between x and y. The formula is: 

� =
∑ (�� − ��)(�� − ��)�

���

�∑ (�� − ��)��
��� �∑ (�� − ��)��

���

 
(4)

where n is the length of time series, Xi and Yi represent variable value, and �� and �� rep-

resent the multiyear mean of variable value. When R ∈ [0, 1], a positive correlation is in-

dicated, but when R ∈ [–1, 0], a negative correlation is represented. Further, when R = 1, X 

and Y are completely positively correlated; when R = −1, X and Y are completely nega-

tively correlated; and when R = 0, X and Y are unrelated. For correlation, we employed 

the p-value to test using a threshold of p < 0.05. Here, the calculation of the p-value is 

obtained by t-test using this formula: 

� =
�√� − 2

�1 − ��
 (5)

where r is the correlation coefficient and n denotes the number of samples. 

5. Results 

5.1. Spatial and Temporal Variation Trends of NDVI in Central Asia 

In this study, the high-value areas of NDVI spatial distribution are concentrated in 

the northern hilly areas and the eastern and southern mountain areas, while the low-value 

areas (NDVI < 0.1) are concentrated in the southwest, which has the Karakum and Ky-

zylkum Deserts. The overall spatial law is a semicircular distribution pattern, with the 

Aral Sea Basin at the center and an upward trend from inside to outside. Meanwhile, the 

spatial distribution pattern of NDVI and its mean value of GIMMS and MODIS is calcu-

lated for different seasons. As well, the spatial changes of different NDVI products in dif-

ferent seasons are compared. We found that the spatial range of NDVI for various prod-

ucts shows the temporal change of summer > spring > autumn > winter. Overall, MODIS 

NDVI is lower than GIMMS NDVI, but the spatial variation law of NDVI for various prod-

ucts is essentially the same in seasons within the year, resulting in a semicircular distribu-

tion pattern, with the Aral Sea Basin at its core and an upward tendency from inside to 

outside (Figure 2). 
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Figure 2. Spatial distribution patterns of GIMMS NDVI (e–h), MODIS NDVI (i–l), and their mean 

values (a–d) in different seasons. 

The NDVI in the growing season was calculated by using the monthly average NDVI 

from April to October. From 1981 to 1994, GIMMS NDVI showed a greening trend, with 

an annual increase rate of 0.0026. However, from 1994 to 2013, the greening trend lagged, 

with an annual increase rate of only 0.0001. During intersection time period, the value of 

GIMMS/MODIS NDVI (2000–2013) showed a browning trend. Furthermore, our results 

indicate that MODIS NDVI and GIMMS3g NDVI showed a significant positive correlation 

from 2000 to 2013 (correlation coefficient of 0.75, p < 0.01). The two sets of data have the 

same pattern of fluctuations and are found to have a slope of 0.983, R2 = 0.55 by the scatter 

plot. However, if we consider that the browning rate of MODIS NDVI is lower than that 

of the combined NDVI from 2000 to 2021, the reduction rate is only 0.00006 (Figure 3a). 

From the early 1980s to the mid-1990s, vegetation NDVI generally showed a greening 

trend. A relatively stable browning trend then emerged in the mid-1990s, with the decline 

from a high greening trend to a browning trend being relatively large. Meanwhile, when 

the annual changes of GIMMS NDVI and MODIS NDVI are examined further, both ap-

pear to be essentially the same, with a single peak change (from March), high values ap-

pearing in summer (June, July, and August), low values appearing in winter (December, 

January, and February), and a transition period appearing in spring and autumn (Figure 3b). 

 

Figure 3. Annual trends in GIMMS NDVI and MODIS NDVI, including their mean values and dis-

tribution of monthly (seasonal) NDVI within the year. (a) Annual NDVI trends, (b) annual and sea-

sonal NDVI variations, (c) scatterplot of GIMMS NDVI and MODIS NDVI from 2000 to 2013. Note 

that ** indicates extreme significance (p < 0.01). 
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Additionally, GIMMS NDVI was higher in spring (0.225) than in autumn (0.206), and 

MODIS was higher in autumn than spring (0.215). Due to the inconsistency of the prod-

ucts, GIMMS NDVI is higher than MODIS NDVI in spring and summer (March–Septem-

ber) but lower in autumn and winter (October–February). In other words, the annual var-

iation range of GIMMS NDVI is higher than that of MODIS NDVI, as shown in Figure 4b. 

The figure also shows that GIMMS NDVI is more sensitive to monthly (seasonal) changes 

in the year than MODIS NDVI, which may be reflected in the difference in the sensor’s 

band calculation (Figure 3b). 

The results presented in Figure 4 show a spatially significant greening trend in 

GIMMS NDVI for the period 1981–1994, with an area share of 82.28%. The spatially highly 

significant (p < 0.01) greening trend of 0–0.022 was mainly pronounced in the northwest, 

northeast, and east–central mountain regions of Central Asia, with an area share of 

10.35%. The spatially significant (0.01 < p < 0.05) greening trend of 0–0.009 was mostly 

concentrated around the highly significant rising area, with an area share of 14.98%. The 

spatially insignificant (p > 0.05) greening trend NDVI variation of 0–0.0012 was concen-

trated across the entire study region with an area share of 56.95%. 

 

Figure 4. Spatial variation trends for NDVI: (a,b) the GIMMS NDVI trends before and after 1994, 

respectively; (c) the MODIS NDVI trends from 2000 to 2020. 

During 1981–1994, the spatial browning trend of NDVI was not obvious. It had an 

area share of only 17.72% and was mainly concentrated in the desert-steppe zone in the 

west–central region and the dry hot valley-basin zone in the southeastern mountains, such 

as the Ferghana Basin. The spatially significant (p < 0.01) browning trend NDVI variation 

was 0–0.026, accounting for only 0.31% of the area; the spatially significant (0.01 < p < 0.05) 
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browning trend NDVI variation was 0–0.011, accounting for only 0.47% of the area; and 

the spatially significant (p < 0.05) browning area in total accounted for less than the spa-

tially significant (p < 0.01) browning area (less than 0.8% of the total area) and was mainly 

concentrated around the Aral Sea Basin. The nonsignificant browning trend NDVI varia-

tion was 0–0.006, with 16.93% of the area covered (Figure 4a). 

From 1994 to 2013, the GIMMS NDVI spatial browning trend was obvious, with an 

area share of 66.35%. Specifically, the spatially highly significant (p < 0.01) browning trend 

NDVI variation was 0–0.0002 and was mainly concentrated around the Aral Sea Basin, 

Lake Balkhash Basin, desert areas, and northern Kazakhstan, with an area share of 18.09%. 

Meanwhile, the spatially insignificant (p > 0.05) browning trend NDVI variation of 0–0.006 

was mostly concentrated around the Central Asia, with an area of 34.48%. During this 

period, NDVI showed an insignificant spatial greening trend, with an area share of only 

27.11%. The greening primarily occurred in the southwestern desert-steppe zone, Aral Sea 

Basin, Lake Balkhash Basin, and northeastern mountains. In this region, the spatially 

highly significant (p < 0.01) greening trend of NDVI varied from 0 to 0.047, with an area 

share of 2.79%, and the spatially significant (0.01 < p < 0.05) greening trend of NDVI varied 

from 0 to 0.007, with an area share of only 3.75%. Of note, spatially significant (p < 0.05) 

total area greening accounted for 6.54%, and the nonsignificant greening trend NDVI 

change was 0–0.007, covering 27.11% of the area (Figure 4b). 

From 2000 to 2020, the MODIS NDVI spatial browning trend was obvious, with an 

area share of 47.84%. Specifically, the spatially highly significant (p < 0.01) browning trend 

NDVI variation was 0–0.020 and was mainly concentrated in Northwest Central Asia, 

with an area share of 4.50%. Meanwhile, the spatially insignificant (p > 0.05) browning 

trend NDVI variation of 0–0.015 was mostly concentrated around the northern region of 

45° N in Central Asia, with an area of 37.85%. During this period, NDVI showed an insig-

nificant spatial greening trend, with an area share of only 40.35%. The greening primarily 

occurred in the southwestern desert-steppe zone, Aral Sea Basin, Lake Balkhash Basin, 

and northeastern mountains. In this region, the spatially highly significant (p < 0.01) green-

ing trend of NDVI varied from 0 to 0.027, with an area share of 6.05%, and the spatially 

significant (0.01 < p < 0.05) greening trend of NDVI varied from 0 to 0.016, with an area 

share of only 5.76%. Of note, spatially significant (p < 0.05) total area greening accounted 

for 11.81%, and the nonsignificant greening trend NDVI change was 0–0.016, covering 

40.35% of the area (Figure 4c). 

5.2. Factors Influencing NDVI Changes in Central Asia 

To explore the influencing factors of NDVI changes in the study area, we first ob-

tained the temporal and spatial distribution trends for VSP, VPD, and VAP. We found 

that the temporal and spatial variation trends for VSP and VPD were consistent from 1981 

to 1994, and that both were negative. Furthermore, the spatial trend variation range for 

VSP was −0.12–0.08 hPa/year, the grid mean value was −0.05 hPa/year, and the average 

annual trend variation rate was −0.048 hPa/year. The spatial trend variation range for VPD 

was −0.29–0 hPa/year, the grid mean value was −0.06 hPa/year, and the average annual 

trend variation rate was −0.0060 hPa/year. Even though VAP displayed a positive trend, 

the spatial trend range was −0.05–0.24 hPa/year, the grid mean value was 0.01, and the 

average annual trend change rate was 0.012 hPa/year. 

With regard to water vapor pressure, the climate environment from 1981 to 1994 ex-

hibited a trend of wet and cold (Figure 5a,d,g). From 1994 to 2020, the temporal and spatial 

variation trends for VSP and VPD were consistent and positive. The spatial trend variation 

range of VSP was −0.07–0.11 hPa/year, the grid mean value was 0.03 hPa/year, and the 

average annual trend variation rate was 0.0030 hPa/year. Moreover, the spatial trend var-

iation range for VPD was −0.01–0.12 hPa/year, the grid mean value was 0.03 hPa/year, and 

the average annual trend variation rate was 0.0034 hPa/year. VAP displayed a negative 

change trend, with the spatial trend range at −0.08–0.02 hPa/year, the grid mean value at 
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0, and the average annual trend change rate at −0.004 hPa/year. With regard to water va-

por pressure, the climate environment from 1994 to 2020 indicated a trend of dry and hot. 

In general, the climate and environment of 1981–1994 (wet and cold) and 1994–2020 (dry 

and hot) showed an obvious opposite trend (Figure 5c,f,i). 

Second, the temporal and spatial variation trends for PET, PRE, and SM were ob-

tained. As can be seen, the temporal and spatial variation trends for PRE and SM were 

consistent and positive from 1981 to 1994. The spatial trend variation range for PRE was 

−10.85–23.31 mm/year, the grid mean value was 1.67 mm/year, and the average annual 

trend variation rate was −0.6667 mm/year. Meanwhile, the spatial trend variation range 

for SM was −24.47–38.89 mm/year, the grid mean value was 0.27 mm/year, and the aver-

age annual trend variation rate was 0.0224 mm/year. However, PET showed a negative 

change trend, with a spatial trend range of −12.45–2.96 mm/year, a grid mean value of 

−2.77, and an average annual trend change rate of −2.7663 mm/year. 

 

Figure 5. Temporal and spatial variation trends for VSP, VPD, and VAP. For 1981–1994: (a) VSP, (d) 

VPD, and (g) VAP; for 1994–2020: (c) VSP, (f) VPD, and (i) VAP; for 1981–2020: Segmentation time 

trends in (b) VSP, (e) VPD, and (h) VAP before and after 1994, respectively. 

Regarding water content, the climate environment from 1981 to 1994 indicated a clear 

trend of wet and cold (Figure 6a,d,g). From 1994 to 2020, the temporal and spatial varia-

tion trends of PRE and SM were consistent. Although they were positive (relatively neg-

ative), the degree trend was significantly lower than that of the previous stage. The spatial 

trend variation range of PRE was −3.44–4.94 mm/year, the grid mean value was 0.33 

mm/year, and the average annual trend variation rate was 0.3256 mm/year, which is more 

than half lower than that in the previous stage. The spatial trend variation range of SM 

was −22.18–5.60 mm/year, the grid mean value was 0.08 mm/year, and the average annual 

trend variation rate was 0.0070 HPA/year. PET exhibited a positive trend, with a spatial 

trend range of −2.43–6.34 mm/year, a grid mean value of 2.09, and an average annual trend 

rate of 2.0855 mm/yr. In terms of water content, the climate environment from 1994 to 

2020 charted a trend of dry and hot conditions. Overall, the climate environment showed 
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a clear contradiction between 1981–1994 (wet and chilly) and 1994–2020 (dry and hot) 

(Figure 6c,f,i). 

 

Figure 6. Temporal and spatial trends of PET, PRE, and SM: 1981–1994: (a) PET, (d) PRE, and (g) 

SM; 1994–2020: (c) PET, (f) PRE, and (i) SM; for 1981–2020: Segmentation time trends in (b) PET, (e) 

PRE, and (h) SM before and after 1994, respectively. 

By further exploring the correlation coefficient between environmental factors and 

NDVI, we found that NDVI was positively correlated with SM, PRE, and VAP, and neg-

atively correlated with PET, VPD, and VSP. In terms of positive correlation, from 1981 to 

1994 (GIMMS NDVI), NDVI had the highest positive correlation with PRE and the lowest 

positive correlation with SM (Figure 7a). However, from 1994 to 2013 (GIMMS NDVI) and 

2000 to 2020 (MODIS NDVI), the positive correlation between NDVI and VAP was the 

highest, whereas the positive correlation with SM remained the lowest (Figure 7b,c). In 

terms of negative correlation, from 1981 to 1994, from 1994 to 2013, and from 2000 to 2020, 

NDVI had the highest negative correlation with VPD and the lowest negative correlation 

with VSP. To sum up, VPD with the highest negative correlation with NDVI and SM with 

the lowest positive correlation were selected for further investigations (Figure 7a–c). 

Calculations of temperatures for the periods 1981–1994 and 1994–2020 show a de-

creasing trend with temperatures falling by approximately 0.05 °C per year in the former 

period and increasing by approximately 0.03 °C per year in the latter period (Figure 8a,b). 

Analysis of the temporal correlation with NDVI revealed a negative correlation between 

TEM and GIMMS NDVI in 1981–1994 (−0.148). From 1994–2013, the correlation between 

TEM and GIMMS NDVI was positive (0.218). In 2000–2020, the correlation between TEM 

and MODIS NDVI was positive (0.569). This further indicates that NDVI is browning with 

increasing temperature. The correlations between the above environmental factors and 

NDVI were all influenced by changes in temperature, and there is a pattern of consistency 

(correlations between TEM and the factors: SM: +; PRE: +; PET: −; VAP: −; VPD: +; VSP: +). 
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Figure 7. Average annual correlation between environmental factors (SM, PRE, PET, VAP, VPD, 

and VSP) and NDVI: (a,b) average annual correlations about GIMMS NDVI before and after 1994, 

respectively; (c) average annual correlations about MODIS NDVI from 2000 to 2020. Note that * 

indicates significance (p < 0.05) and ** indicates extreme significance (p < 0.01). 

 

Figure 8. (a,b) Temporal and spatial trends of temperature before and after 1994, respectively. 

5.3. Dynamic Response of NDVI Changes to Drought in Central Asia 

This paper further explores the impact of drought on NDVI and selects the Palmer 

Drought Severity Index (PDSI). The Palmer formula takes into account reference evapo-

transpiration, precipitation, surface moisture, and other indices, resulting in a more thor-

ough response to meteorological drought. The PDSI possible values are as follows: 4.0 or 

higher (extremely wet), 3.0 to 3.99 (very wet), 2.0 to 2.99 (moderately wet), 1.0 to 1.99 

(slightly wet), 0.5 to 0.99 (incipient wet spell), 0.49 to −0.49 (near normal), −0.5 to −0.99 

(incipient dry spell), −1.0 to −1.99 (mild drought), −2.0 to −2.99 (moderate drought), −3.0 to 

−3.99 (severe drought), or −4.0 or lower (extreme drought) (Figure 9a). 
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From 1981 to 1994, the monthly average rising trend of PDSI was 0.00725. The months 

above 0 (wet direction) accounted for 64.29%, and the months below 0 (dry direction) ac-

counted for 35.71%. On the whole, Central Asia was developing a humid trend, with a 

grid average of 0.09. The humid trend (trend < 0) was concentrated in the peripheral areas 

of the region, accounting for 76.24% (Figure 9b). 

From 1994 to 2020, the average monthly rising trend of PDSI was 0.0006, and the grid 

average was −0.01. The months above 0 (wet direction) accounted for 32.05%, and the 

months below 0 (dry direction) accounted for 67.95%, presenting the opposite time pattern 

to the previous stage. From these data, we can see that Central Asia was developing a 

drought trend. 

The regions with a drought trend are distributed in the west and east of the study 

area, accounting for 51.42%, which is in the opposite spatial pattern from the previous 

stage. In general, the distribution of the wetting and drying trends in Central Asia in 1981–

1994 and 1994–2020, respectively, indicates the objective law of the temporal and spatial 

consistency of humidity and drought, as well as the oppositional complementary trend in 

the order of magnitude of 1981–1994 (wet) and 1994–2020 (dry) (Figure 9c). 

 

Figure 9. Dynamic characteristics and temporal and spatial trends of PDSI in Central Asia: (a) 

monthly average dry and wet shade anomalies of PDSI from 1981 to 2020; (b,c) PDSI trends before 

and after 1994, respectively. 

The study further explored the positive temporal and spatial correlation between 

GIMMS NDVI and PDSI. From 1981 to 1994, GIMMS NDVI and PDSI were positively 

correlated, with a grid mean of 0.38, of which 90.94% was in the positive correlation area 

and 9.06% in the negative correlation area (Figure 10a). From 1994 to 2013, GIMMS NDVI 

was positively correlated with PDSI. The grid mean was 0.29, with positive correlation 

areas accounting for 86.87% and negative correlation areas accounting for 13.13% (Figure 

10b). During the period from 2000 to 2020, MODIS NDVI was positively correlated with 

PDSI. The grid mean was 0.33, with positive correlation areas accounting for 87.33% and 

negative correlation areas accounting for 12.67%. These results further explain the con-

sistent rise and fall of NDVI with changes in drought degree under different products; 

that is, the lower the PDSI value (drought), the lower the NDVI value (Figure 10c). 
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Figure 10. Correlation between NDVI and PDSI in Central Asia: (a,b) correlations between GIMMS 

NDVI (1981–2013) and PDSI before and after 1994, respectively; (c) correlation between MODIS 

NDVI and PDSI from 2000 to 2020. 

6. Discussion 

According to the mechanism analysis of NDVI spatiotemporal changes in Figure 11, 

VPD and SM play a key role in vegetation growth. The transformation of vegetation from 

greening to browning is affected by many factors, such as changes in regional CO2 con-

centration, climate change (TEM, PRE, VPD, SM, PET, etc.), nitrogen deposition, and land-

use change. If analyzed from a natural perspective, climate change is considered the main 

driving factor to explain vegetation greening [47–49]. The change in vegetation NDVI in 

Central Asia is greatly affected by climate factors. In this study, 1994 was the turning point 

of vegetation from greening to browning in Central Asia. We found, through the analysis 

of TEM, PRE, VPD, VAP, VSP, SM, and PDSI, that climate change before and after the 

turning point showed the opposite trend. Prior to the turning point, it was cold and wet, 

whereas after the turning point, it was hot and dry. Most studies show that low SM effec-

tiveness and high VPD are considered the two main drivers of vegetation drought stress, 

which may pose a major threat to agricultural production and lead to extensive vegetation 

browning [50,51]. 

 

Figure 11. Analytical diagram of NDVI spatiotemporal variation mechanism. The graph showing 

CO2 emissions presents the monthly mean carbon dioxide measured at the Mauna Loa Observatory, 

Hawaii, USA, from the Scripps Institution of Oceanography NOAA Global Monitoring Laboratory 

(https://gml.noaa.gov/ccgg/trends/mlo.html, accessed on 20 April 2022). 

On the one hand, the change in vegetation NDVI is greatly affected by soil moisture 

conditions [51,52]. Studies have shown that the changes in NDVI from 1982 to 2015 are 

closely related to the changes in soil nutrient concentration and the availability of soil 

moisture [53,54] and that the temporal and spatial correlation between vegetation NDVI 

and soil moisture is significant. Moisture is the leading factor in vegetation change in East 
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Africa [55]. In most study areas, especially in Central Asia, vegetation experiencing non-

significant changes is limited by water [25]. 

On the other hand, the increase in CO2 concentration significantly promotes rises in 

temperature and leads to global warming [54]. Although climate warming will contribute 

to greening through photosynthesis, sustained warming will indirectly promote the fail-

ure of soil moisture use efficiency regulation by controlling the process of surface evapo-

transpiration and water consumption [56]. Finally, NDVI is reversed from greening to 

browning, which further indicates that the water shortage caused by drought will hinder 

the sustainable greening of vegetation, highlighting the negative ecological effect of cli-

mate warming [24,52,57].  

Research clearly shows that since the early 1990s, the average temperature in Central 

Asia has increased substantially, potential and actual evapotranspiration has risen, aver-

age precipitation has decreased, and the frequency and intensity of extreme precipitation 

events have surged [58]. Additionally, since the early 1990s, soil water in Central Asia has 

shown a decreasing trend, and the climate water deficit has charted a steady upward trend 

[48]. These developments further aggravate the degree of drought. However, during the 

same time period (1994–2015), the actual water vapor pressure has shown a downward 

trend due to the reduction in ocean evaporation [59]. These factors have led to an increase 

in VPD just after the turning point mentioned in this study. 

In a climate environment characterized by high VPD, vegetation stomata are closed, 

resulting in the deceleration or even failure of CO2 utilization efficiency. The outcome is 

vegetation carbon starvation [60]. At the same time, high VPD can lead to serious SM de-

ficiency, which further worsens the health status of vegetation towards browning. In our 

research, we discovered that the increase in browning led to a slowdown in global average 

NDVI growth. Moreover, as drought may be the main reason for the increase in the 

browning trend, global vegetation growth may reverse from long-term greening to long-

term browning if the future is warmer than average [31]. Overall, the combination of tem-

perature rise and drought may be the main reasons for the transformation from greening 

to browning in Central Asia [37]. Although the browning trend has slowed down due to 

the influence of rising temperature and westerly precipitation, the browning continues as 

of 2020. 

This paper conducted a comprehensive study on the independence and simultane-

ous establishment of two sets of NDVI products, which showed that the vegetation in 

Central Asia was greening before the turning point of 1994. After the turning point, the 

vegetation started to brown. The results of this study are notably important for the future 

health monitoring and management of vegetation ecosystems in Central Asia, which is of 

practical significance for regional ecological security assessment and sustainable develop-

ment. In the future, more sets of products and site-measured data will be adopted to study 

vegetation NDVI changes, and more environmental factors will be added to conduct an 

in-depth study on vegetation NDVI changes, with the aim of making the driving mecha-

nism of browning clearer. 

7. Conclusions 

From 1981 to 2020, the NDVI of different products in Central Asia showed a semicir-

cular distribution pattern, with the Aral Sea Basin at the center and an upward trend from 

inside to outside. In terms of seasons, temporal changes clearly indicated that summer > 

spring > autumn > winter, and that GIMMS was more sensitive to yearly temporal changes 

than MODIS. During the study period, vegetation greening and browning initially coex-

isted until reaching a turning point in 1994, after which browning dominated. Vegetation 

in arid areas was shown to be more sensitive to water deficit caused by temperature 

changes in high VPD and low SM climate environments. At the same time, changes in 

vegetation NDVI were consistent with changes in drought degree, with lower PDSI values 

(the aggravation of drought degree) corresponding to vegetation browning. This study is 

of immense scientific value in its contribution to understanding the response of vegetation 
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growth and carbon cycling to environmental changes and in its predictions of future de-

velopments in Central Asia.  
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