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Abstract: PM2.5 participates in light scattering, leading to degraded outdoor views, which forms the
basis for estimating PM2.5 from photographs. This paper devises an algorithm to estimate PM2.5

concentrations by extracting visual cues and atmospheric indices from a single photograph. While
air quality measurements in the context of complex urban scenes are particularly challenging, when
only a single atmospheric index or cue is given, each one can reinforce others to yield a more robust
estimator. Therefore, we selected an appropriate atmospheric index in various outdoor scenes to
identify reasonable cue combinations for measuring PM2.5. A PM2.5 dataset (PhotoPM-daytime) was
built and used to evaluate performance and validate efficacy of cue combinations. Furthermore, a
city-wide experiment was conducted using photographs crawled from the Internet to demonstrate
the applicability of the algorithm in large-area PM2.5 monitoring. Results show that smartphones
equipped with the developed method could potentially be used as PM2.5 sensors.

Keywords: PM2.5 monitoring; smartphone photograph; photographic measurements; low-cost
sensors; participatory sensing

1. Introduction

Air pollution has been affecting every inhabited region across the globe, becoming the
greatest environmental risk to public health. Globally, approximately 4.2 million premature
deaths per year occur due to ambient air pollution [1], and premature mortality arises from
exposure to fine particulate matter (PM2.5) [2,3]. Therefore, it is very essential to rapidly
and accurately determine ambient PM2.5 concentrations.

Typically, concentrations of PM2.5 measured at fixed air quality monitoring sites [4]
are the ideal source of data. However, the extremely sparsely distributed monitoring sites,
in addition to the occasional missing values, pose great challenges to applications that
require fine-grained PM2.5 data over space and time. Accordingly, many studies have been
working on designing new paradigms for air quality measurements [5], such as low-cost
devices [6], satellite imageries [7,8], or photographs [9,10]. Among them, photographs have
gained particularly great attention because of the ubiquitous use of smartphones and the
strong potential for environmental monitoring in near-real time.

Some studies have been conducted to explore the use of photographs as one type of
low-cost sensor for air quality monitoring [11,12]. These studies typically rely on the obser-
vation that impaired outdoor scenery is the result of the scattering of light by particulates,
which forms the basis of measurements. The methods employed by these studies can be
broadly classified into two major categories: landscape variation-based and atmospheric
optics-based. Landscape variation-based methods directly model the relationship between
air quality level changes and variations in landscape characteristics with the requirements
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of reference information (e.g., registered 3D information [12], obtained substrate pho-
tographs [13]). Therefore, they can handle only fixed scenarios. The approaches based
on atmospheric optics, as reference-free methods, have become particularly prominent in
environmental monitoring in many practical applications [11,14,15]. Atmospheric optics-
based approaches generally extract the physical properties of atmospheric scattering from
an image-understanding perspective. These physical properties of the atmosphere (i.e., en-
vironmental illumination [air-light], the degrading process of luminance flux [transmission],
and the attenuation rate of light [extinction]) are estimated on the basis of a standard haze
model [16]. Works to date have been developed that move beyond reliance on reference
information [9,11], by exploiting fundamental optical models. More recently, the dark
channel prior (DCP) method [17] has received a great deal of attention in numerous studies.
These methods include the hybrid method based on image processing techniques [18], deep
learning-based methods [10,19], or distribution-based methods [11].

As a number of authors have noted, the environmental sensing issued by image
understanding frameworks that rely on the extraction of higher-stage features (transmis-
sion, extinction) expresses uncertainty over varying scene structures, illuminance levels,
and/or albedo of the object’s surface [12,20]. In light of the aforementioned influential
factors, most studies treat these as being invariant, rather than as a source of cues to under-
stand environmental change. As suggested in studies of human perception [21] and other
photographic-based sensing tasks (e.g., depth estimation, 3D shape determination) [22] a
combination of cues can reliably provide strong indicators. Therefore, this cue combination
method should be considered in environmental perception. Furthermore, the focus in exist-
ing studies on site-specific estimations, limits their operational utility to provide consistent
estimations across multiple locations. Therefore, an efficient approach to photograph-based
PM2.5 estimation is required for the environmental monitoring of multiple outdoor scenes.

In this paper, we propose an image understanding-based approach for estimating
PM2.5 concentrations from smartphone photographs by implementing a combination of
atmospheric indices (i.e., local transmission index [LTI] and local extinction index [LEI])
retrieved from photographs and weak cues (i.e., sky discoloration, luminance gradients,
and structural information loss) that are extracted from different portions of photographs.
Three weak cues are first extracted from the input photograph. Two atmospheric indices are
also derived from a series of low-level features and in combination with the DCP method.
As weak cues and atmospheric indices are sensitive to the scene structure, we also propose
a scene structure-based selection criterion for selecting the appropriate combinations of
cues to accurately estimate PM2.5 concentrations.

2. Materials and Methods

Inferring PM2.5 concentrations from a single smartphone photograph is challenging;
some photographs may have enough information for reasonable estimates, while other
photographs are partially informative or even uninformative. Nevertheless, humans can
easily distinguish the ambient environment by looking at different portions of outdoor
scenarios for cues, deriving higher levels of visual perception, and manipulating the
combination of cues at different levels (e.g., color, contrast at low levels; texture at medium
levels; the perception of haze intensity, which is the analog of transmission at high levels)
under distinct scenarios (i.e., open and obscured views) [22–24]. Inspired by the hierarchical
organization and integration mechanism of cues in the human visual system, we propose a
hierarchical structural algorithm, whereby the integration of low-level cues and higher-level
optical features is considered in the face of various scenarios. Each cue signals different
aspects of information, and an appropriate combination of various cues can reinforce the
capability of inferring PM2.5 concentrations.
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2.1. Weak Cues from a Single Smartphone Photograph
2.1.1. Sky Discoloration

Sky discoloration, which is the difference between the color of the sky region in
the given smartphone photograph and an empirical standard color value (i.e., average
color intensities of the sky region of photographs captured under good weather). The sky
discoloration can be measured using the magnitude of the color gradient in the HSI color
space as follows:

HSIsky =
√

∆H2 + ∆S2 + ∆I2, (1)

where ∆H, ∆S, and ∆I are the hue, saturation, and intensity differences between the sky
patch and the empirical standard color. The empirical standard color values of the sky are
3.7207, 0.4675, and 0.5374 (see Supplementary Information Section S1 for details of sky
separation and Figure S1).

2.1.2. Luminance Gradients

The luminance of objects results from not only the reflection of sunlight but also the
light scattered through the atmosphere onto their surfaces. When haze or smog is dense,
the luminance of objects in visual scenes tends to be homogeneous. This phenomenon is
described as a “darkness enhancement”, that is, brightness reduction and the enhancement
of the darkness of an object [25]. Therefore, the luminance I of each pixel and the variations
in the luminance of the photographs are rich information, and this information is the
indicator of change in environmental conditions. However, it can be unstable when the
surfaces of objects have significant impacts on reflections and when there are obvious
variations in lighting conditions [14,26]. Among these influencing factors, the effects of
the material properties of object surfaces determine the way in which light is reflected by
objects, which strongly interacts with the perception of color and lightness. For objects
with a smooth surface (e.g., mirrored architecture, building facades), hereinafter named
non-Lambertian regions, specular reflection is dominant and leads to high-frequency
spatial distributions and color variations [27]. The significant outliers fused into the
luminance information of outdoor scenery might lead to critical problems in estimating
luminance information.

Considering the obstacles associated with the presence of non-Lambertian regions in
photographs, information on luminance should be solely derived from the separated Lam-
bertian regions, i.e., regions that are insensitive to variations in lighting conditions, of the
input photograph. Separating Lambertian regions from photographs is typically performed
by constructing the pixelwise confidence to be a Lambertian surface from time-series pho-
tographs at a fixed location [14]. The confidence of the Lambertian regions of a fixed
scenario is estimated by seeking the best linear correlation between the intensity changes in
each pixel over time and the variations in sky luminance Lsky. Traditionally, the luminance
map can be calculated from the RGB color space using Equation (2), and the probability
that pixel ij is Lambertian PL

ij can be calculated using the temporal Pearson correlation:

Lij = 0.299Rij + 0.587Gij + 0.114Bij, (2)

PL
ij = Pearsoncorr

(
Lij, Lsky

)
(3)

As discussed above, separating Lambertian regions by reasoning the confidence level
from photographs relies on multiple photographs at a fixed location, and, therefore, it is
very challenging when only one photograph is given. However, we have experimentally
found that within a given image, the proportion of the Lambertian surface is strongly
correlated with the scene structure. For instance, for photographs with an obscured view,
the proportion of non-Lambertian surfaces dominates the scenes, and reflection causes the
luminance gradient map to be fused by outliers (Figure S2i); for photographs with an open
view (Figure S2ii), the proportion largely decreases. Therefore, we circumvent the problem
of Lambertian region separation by making a simple assumption: the luminance informa-
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tion is calculated only from photographs of open views as a cue to describe variations in
the ambient environment. We argue that while this assumption does not eliminate the
outliers and biases caused by the strong reflections of non-Lambertian regions, the number
of errors can be greatly reduced.

Given a smartphone photograph of open and faraway views, the luminance
discontinuities are detected by the gradient magnitude on the luminance component
with Equations (4)–(6):

G =
√

G2
x + G2

y , (4)

Gx = Ox ∗ I, Gy = OT
x ∗ I, (5)

Ox =

+1
+2
+1

0
0
0

−1
−2
−1

, (6)

where Gx and Gy are gradients in the horizontal (x) and vertical (y) directions, respec-
tively. Furthermore, “∗” is the linear convolution operator, and Ox is the Sobel opera-
tor applied along the horizontal (x) direction. The superscript T in Equation (5) is the
transpose operation.

2.1.3. Structural Information Loss

Structural information is independent of luminance and is a good descriptor that
reflects how air pollution impairs outdoor scenery [28]. Under heavy haze conditions, the
contours of objects (e.g., buildings and roads) in photographs are corrupted; therefore,
structural information loss is a cue for the presence of particulate matter.

To quantify structural information loss, we have taken inspiration from the work of
Yue et al. [9], who proposed that building contours are preserved in the brightness (gray)
color channel but are corrupted in the saturation color channel under heavy haze conditions.
The differences between the saturation and brightness of buildings in the given photograph
serve as a measure of structural information loss. Then, the information loss is calculated
from the gradient similarity between the gray map (brightness) and the saturation color
channel in a general form of a structural contrast comparison function [9,28].

QS =
2× Gg × Gs + C

G2
g + G2

s + C
, (7)

where QS denotes the gradient similarity. Gg and Gs are the gradient magnitudes of the
grayscale image and saturation component of the image in the HSV color space. C � 1
is a non-negative constant and is set as 0.001 in this study. The gradient magnitudes are
calculated using Equations (4)–(6). The operators in x and y directions of the gradients are
given as follows:

Ox =

+1/3
+1/3
+1/3

0
0
0

−1/3
−1/3
−1/3

 and Oy = OT
x , (8)

For QS, a larger value obtained from the given image indicates that more structural
information is retained, which suggests lower haze conditions.

2.2. Local Transmission Index

Particulate matter obscures the clarity of the air, making a photograph blurred. This
impaired view is a result of the light scattering of environmental illumination by particles
during the transmission process. Therefore, a photograph’s level of degradation is often
used as a basis for calculating the haze level via the standard haze model [16,29] as follows:

I(x) = t(x)J(x) + (1− t(x))A, (9)
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where I(x) and J(x) are the observed intensity of the haze image and the scene radiance
of a clear scene, and t(x) is the scene transmittance in the light of sight. A, environmental
illuminance, is assumed to be globally constant.

The local transmission index (LTI) is derived by recovering transmission map t from
the observed photograph. To do so, we estimate the transmission map using the DCP based
on the work by He et al. [17] and as follows:

t(x) = 1−min
c

(
min

y∈Ω(x)

(
Ic(y)
A∗

))
, (10)

where t(x) is the transmission map, to be estimated, Ω(x) is a patch centered at x with
a fixed window size (5× 5), and c indicates color channel cth. A∗, the ambient light, is
calculated from the top 0.1% of pixel intensities in the region just above the horizon. Given
t(x), LTI can be estimated as follows:

LTI = ∑(− ln(t(x)))
∑ number o f pixels

, where t̃(x) > 0, (11)

2.3. Local Extinction Coefficient

Extinction (hereinafter named the extinction index in this study), a measure of the
amount of light scattered and absorbed in the atmosphere, is a global constant parameter
when the atmosphere is homogeneous. On the basis of the Beer-Lambert law [30], the
relationship between transmission map t(x) and extinction coefficient β is given as follows:

t(x) = e−βd(x), (12)

where d(x) is the estimated depth of scene. Following Equation (12), LEI is derived
as follows:

LEI = − ln(t(x))
d(x)

, (13)

Equation (13) reveals that the LEI can be calculated once the depth map d(x) is able to
be provided.

2.3.1. Depth Map

The depth map of the photograph can be estimated via the color attenuation prior [31]
and is given as follows:

d(x) = θ0 + θ1V(x) + θ2S(x) + ε(x), (14)

Here, V(x) and S(x) are the intensity of the patch in the value and saturation channels
in the HSV color space, respectively. θ0 = 0.121779, θ1 = 0.959710, and θ2 = −0.780245.
Following a Gaussian distribution, ε is the random variable.

2.3.2. Scene Segmentation

As discussed above, the extinction index can be estimated from Equation (13) once
the depth map is able to be provided. However, deriving the extinction index directly
from the estimated depth map will inevitably lead to more noise (i.e., incorrectly estimated
depth). To eliminate apparent noise, calculating these features from a series of large blocks
of photographs (i.e., segmented buildings) would be useful [12,32].

The scene in our study is segmented into several parts using three task features
(2D segmentation, 2.5D segmentation, and surface norm) from Taskonomy [33]. These
three task features from Taskonomy are rescaled to 256× 256. Then, a standard upscale
operation (bilinear interpolation) is followed to ensure that the resolution of these features
is compatible with the other visual cues in this study.
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2.3.3. Refined Local Extinction Index

As discussed above, it is suggested that the extinction index be calculated from each
segmented object, in combination with Equation (13). This estimation scheme implicitly
assumes that the observed illuminance of buildings is not unaffected by surface reflectance;
however, this assumption is easily violated in dense urban scenes. For example, a brightly
lit surface might not result from higher air-light but may also be associated with building
surface reflectance. This phenomenon is referred to as air-light-albedo ambiguity, although
it can be reduced by assuming that scene transmission and surface shading are locally
uncorrelated [34]. Nevertheless, the disparity illuminance existing within one segmented
object and the significant surface reflection of buildings (Figure S3) made by the sun-glint
in the photograph make this solution inadequate when large objects (buildings) account
for a great proportion of scenes.

To eliminate the uncertainties arising from this problem, we assume that building sur-
face reflectance and albedos are piecewise constant and locally constant in each segmented
object [35]. The albedos of surfaces are either known or equal, neither of which is true
in real-world applications. However, we have experimentally found that the albedos of
vertical objects are often relatively similar within a given photograph, which coincides with
a previous study [35]. The albedo differences between direct sun glint and non-direct sun
glint regions are also similar. Then, we experimentally found that the highest 1% intensity
of each segmented object can be safely considered the result of direct sun glint (for further
details, see the Supplementary Information Section S2), and should therefore be removed.
Finally, the refined local extinction index can be calculated by rewriting Equation (13).

LEI = − ln(t∗(O(x)))
d(O(x))

, (15)

where O(x) indicates the region of a segmented object, t∗(O(x)) is the transmission of the
segmented object after removing the top 1% intensities and d(O(x)) is the estimated depth
for the segmented object.

2.4. PM2.5 Estimation Framework

Figure 1 represents the framework of the proposed PM2.5 estimation framework
based on the cue combination scheme. Given a smartphone photograph, the general
scene categories (open or obscured view) and the appropriate atmospheric index are first
determined on the basis of the proposed scene structure-based selection criterion. Then,
weak cues reflecting different information of the ambient environment are selected and
combined with the selected atmospheric index to give reasonable PM2.5 estimates using
support vector regression (SVR).
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2.4.1. Scene Structure-Based Selection Criterion

The scene geometric structure of outdoor scenery affects the selection of the appropri-
ate atmospheric index, shapes the combination of cues, and further influences the PM2.5
estimation. The usual explanation is that the LTI derived from the transmission map always
assumes that the view is of continuous transition from the scene point to the observer. We
take this assumption as indicating that the LTI should be adopted in an open-view scenario
because doing so will increase the accuracy of the light attenuation represented in the
transmission map, and reduce the uncertainty caused by the presence of large building
blocks (such as building surfaces and other objects that compose the scenes). Instead, the
LEI, calculated from each building block, is necessary to complement the limits of the
transmission map, which provides another explanation for the need for a selection criterion
for the scene structure.

The scene structure of an image can be described by low-level features, such as a
vanishing point (VP). VPs provide strong information for inferring the spatial arrangement
of the main scene structures of an image. In this case, VPs are estimated by RANSAC-based
VP detection algorithms [36]. Based on the detected VPs (Figure S4), the criteria for selecting
the appropriate atmospheric index can be summarized as follows:

• For an obscured view, where the VPs are located outside the photograph or are located
on objects, and objects (i.e., buildings) dominate the photograph, the local extinction
index [LEI] should be selected.

• For an open view, where the VPs are located far away, typically near the horizon, the
local transmission index [LTI] should be selected.

2.4.2. Cue Combination

Previous studies have suggested that cue combinations go beyond the optimization
of a single cue because different visual cues indicate information about diverse aspects of
the same scene [22,35]. The considerations of cue combinations can help promote effective
estimation. Therefore, we propose a cue combination framework that allows each cue to
signal different aspects of information in a scene, and the interactions between various cues
should enhance their representative performance for PM2.5 estimations.

We summarize the cue combination as follows. In faraway and open scenes, the
transmission index is combined with two weak cues (sky distortion and luminance gradient)
to jointly infer the environment, namely, LTI-combination. The transmission index from the
transmission map is a strong cue for estimating PM2.5, as it is amalgamation information
that describes how light is scattered along the light path and is associated with several
basic pieces of atmospheric information (e.g., air-light). However, on an overcast day, the
air-light can be high because the sky and near horizon will be white, making the estimated
transmission map brighter or denser than on sunny days. Therefore, rather than considering
the transmission index alone, sky distortion should be considered a complementary cue.
Meanwhile, the luminance gradient of the scene is a good descriptor of the variations
in views. In contrast, in the case of near and unobscured scenes, the extinction index
cooperates with sky distortion and structural information loss to estimate the environmental
conditions, namely, the LEI-combination. For example, when a photograph is taken on a
sunny day but is backlit, the task of PM2.5 estimation may encounter great problems when
solely considering the extinction calculated from objects, because the estimated extinction
from building regions will be higher than their vicinity, thus, misestimating the actual
level of air quality. This phenomenon proves that, similarly, we should consider ancillary
cues. Considering that the estimation of the extinction index is based on the areas of
objects, structural information is employed, since such depth-free cues describe only local
variations (gradients) in the objects.
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2.4.3. PM2.5 Estimation Model

SVR [37] is employed to model the nonlinear relationship between PM2.5 concentra-
tions and the atmospheric index combination:

min
ω, b

1
2

ω2 + c
m

∑
i=1

`ε

(
(ωTxi + b

)
− yi), (16)

where xi is a feature vector and yi is the ground-truth PM2.5 concentration of the ith
photograph, ω is the normal vector that determines the direction of the hyperplane, and
b is the displacement that determines the distance from the hyperplane to the origin. `ε

represents the ε-insensitive loss function, ε = 0.1. In this study, SVR is employed with a
radial basis function kernel, e−|x−y|2 .

2.5. Experimental Data
2.5.1. PhotoPM-Daytime Dataset

There is no publicly available multi-scenario photograph dataset for local photograph-
based PM2.5 concentration estimation; therefore, we first established a specific multi-
scenario dataset, namely, PhotoPM-daytime, for estimating PM2.5 concentrations based
on smartphone photographs. This dataset involves a total of 2945 photographs that were
collected from different locations under different weather conditions, and the photographs
contain different scenarios, such as dense urban scenes, lakes, and mountains. Notably,
photographs containing rain and snow were excluded. Since these photographs were
taken from different smartphones, they have a wide range of photograph resolutions, from
800× 1200 to 3024× 4032. For each photograph, the corresponding PM2.5 concentration
value was measured by low-cost portable micro-air quality sensors called “Nature Clean”
(Nature Clean AM-300; http://www.aiqiworld.com/topic_1049.html (accessed on 13 May
2022)). This low-cost monitor measures the concentrations of local ambient air quality
through an embedded light scattering laser sensor and Table S2 lists the specifications
of this portable sensor. The number of photographs taken at different levels of PM2.5
concentration for the PhotoPM-daytime dataset is presented in Figure 2.
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2.5.2. Crowdsourced Photographs from the Internet

Photographs were crowdsourced from the “Moji Weather” application, a weather-
centered social media platform on which users post pictures tagged with geolocations. We
used the crawling technique to collect photographs posted by users in Beijing. A total
of 11,059 photographs, from 1 March 2021 to 31 March 2021, were collected (Figure 3).

http://www.aiqiworld.com/topic_1049.html


Remote Sens. 2022, 14, 2572 9 of 18

The profile of each record includes username, the timestamp of the photograph, and the
associated location (toponym, GPS coordinates) where the photograph was taken.
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3. Results
3.1. Evaluation of the Cue Combinations for PM2.5 Estimation

To evaluate the reliability and benefits of cue combinations for single cues, cues and
their combinations in the proposed algorithm were applied to the photoPM-daytime dataset
independently. They thus formed seven scenarios: using only weak cues, using optical
features only (LTI and LEI), and using combined measures, LTI-combination and LEI-
combination. In each scenario, the single cue, or cue combination, was fitted to the PM2.5
concentrations using the SVR model, and the estimated concentrations were compared
against the ground truth.

Figure 4 illustrates the mean absolute errors (MAEs) of PM2.5 estimation for different
scenarios. The errors in estimates from each scenario varied independently. In general, the
results showed that two cue combinations (the last two curves: the red and royal blue curve
for LEI-combination and LTI-combination, respectively) that combined weak cues and
optical features apparently had stronger informative power and promoted more effective
PM2.5 estimations. This superiority of the cue combinations, compared to single cues (either
weak cues or atmospheric indices), was consistent across the whole range of air pollution.
Two atmospheric indices, LTI and LEI (as shown in the green and pink dashed curves,
respectively), appeared to obtain fairly reliable estimates when compared to weak cues,
indicating their power in interpreting the ambient environment; however, they may be
prone to extreme outlier estimates under complex conditions.

Moreover, the disparities in compensatory improvements (performance improvements
resulting from the combination of cues) were significant, indicating that cues differently
contribute to the end result at different levels of air pollution. For instance, structural
information loss promotes LEI performance by disambiguating the sign of different build-
ing regions in regions having relatively slight air pollution (lower than approximately
120 µg/m3); in contrast, sky discoloration partially promotes LEI performance under heavy
haze conditions (see the difference between the LEI and the sky discoloration). The lumi-
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nance gradient greatly affects the estimation power of LTI-combination under heavy haze
conditions (greater than approximately 480 µg/m3).
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concentrations based on the PhotoPM-daytime dataset.

To summarize, the quantitative comparisons in Figure 4 show strong support for the
improved performance in air quality estimation in light of the cue combination. However,
there were also cases in which a less effective approach resulted in larger errors, e.g.,
when LEI-combination was applied to photographs that were taken under heavy haze.
Ambiguity in interpreting the scene structure under heavy haze is the major problem
leading to extreme outliers, which could be reduced by the proposed selection criterion
and will be discussed shortly.

3.2. Validation of the PM2.5 Estimation Model
3.2.1. Performance of the Estimation Model

To verify the effectiveness of the proposed algorithm in general and dynamic outdoor
scenarios, a 5-fold cross-validation (CV) was conducted. A Python tool was coded for this
purpose. Figure 5 shows the scatterplots of the CV results. Figure S5 shows examples of
photographs with their estimated PM2.5 concentrations.

The CV R2 values of the two atmospheric index combinations were 0.779 and 0.572 for
the LTI and LEI coefficients, respectively, and the RMSE values were 61.998 and 87.136 µg/m3,
respectively. As expected, the CV results with a selected atmospheric index exhibited
overwhelming superiority compared to those obtained by the models using only one
atmospheric index; the R2 value increased by 0.073 and 0.280, and the RMSE values
decreased by 11.475 and 36.613 µg/m3. The validation results proved that considering the
scene structures in models can strongly increase prediction accuracy.
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3.2.2. Performance under Different Outdoor Sceneries

The scene structure (including the layout and geometry of photographs) impacted the
accuracy of the estimation results by affecting the performance of atmospheric index and
weak cue extraction. Therefore, exploring the model performance in different scenarios is
essential to understand the sensitivity associated with scene structures. To verify the effec-
tiveness of the PM2.5 estimation algorithm in different typical scenarios, we first classified
the PhotoPM-daytime dataset into two major categories: natural environments and man-
made environments, following the image classification standard of the SUN database [38].
The R2 and RMSE were used to evaluate the models in different outdoor scene categories.
Figure S6 shows the sample photographs of each scene category. A detailed description of
each subcategory is given in Supplemental Table S3.

Table 1 summarizes the estimation results of the model in different outdoor scenarios
in terms of the R2 and RMSE values for LTI-combination, LEI-combination, and a selected
atmospheric index combination. Generally, the results suggest that the selected atmospheric
index combination consistently achieved a good performance under outdoor man-made
and outdoor natural conditions over LTI-combination and LEI-combination, in terms of
the higher R2 values and lower RMSE values. Notably the estimation accuracy of the
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selected atmospheric index combination exhibited significant disparities under diverse
outdoor scenarios.

Table 1. The model performance under different scene categories.

Atmospheric Index
Combination

Outdoor Man-Made Outdoor Natural

C1
(Transportation)

C2
(Sports Fields)

C3
(Buildings)

C4
(Water)

C5
(Mountains)

C6
(Man-Made
Elements)

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LTI-combination 0.791 72.484 0.815 57.110 0.321 195.225 0.535 43.462 0.623 45.699 0.628 52.469
LEI-combination 0.529 111.053 0.527 91.582 0.857 63.792 0.261 58.540 0.383 54.595 0.558 56.355

Selected combination 0.830 64.420 0.871 47.761 0.872 58.112 0.669 36.129 0.678 44.048 0.789 39.239
Numbers of photos 314 915 849 502 107 258

Specifically, in an outdoor man-made environment, the selected atmospheric index
combination showed a consistently good performance for three categories (C1–C3), in
terms of the high R2 and low RMSE values (the R2 values were all above 0.830, and the
RMSE values were all below 64.420 µg/m3). Notably the selected combination displayed
the greatest performance in C3 (buildings), the most complex urban scenes, with an R2

value reaching 0.872 and an RMSE value of only 58.112 µg/m3. This good performance was
also remarkable in C2 (leisure spaces), for which the selected combination outperformed
LTI-combination and LEI-combination by 16.54% and 47.85%, in terms of the RMSE values
(from 57.110 and 91.582 to 47.761 µg/m3).

Unlike the aforementioned scenarios, the proposed algorithm did not show remarkably
precise estimates for outdoor natural scenes. From the results in Table 1, we note that the
best performance under the outdoor natural categories was obtained in the category of
man-made elements (C6: R2 = 0.789; RMSE = 39.239 µg/m3). The lowest performance
was found in C4 and C5, with goodness of fit values of only 0.669 and 0.678, respectively.
Although the estimation performance shows inferiority to the other categories, considering
the comparable goodness of fit (R2 value greater than 0.670) and the complex scenarios of
the photographs, the results still proved the validity of the model. One possible reason
for this inferiority in C1 (water) is that the water content and reflected light intensities
reflect scene illumination, generate higher atmospheric light values, and thus involve
air-light-luminance ambiguity. For C5, the reflection and absorption effects are different
from the majority of urban scenarios; independent considerations of a single-color channel
have been shown to improve certain types of performance, as discussed in [12,39]. In this
study, we did not consider them to be a special case, because the objective was to generate
algorithms that are capable of handling multiple views.

Therefore, these results indicate that the selected atmospheric index combination pro-
vides reasonable and accurate estimates by selecting an appropriate combination, highlight-
ing the applicability of the estimates to highly complex situations in dense urban scenarios.

3.3. PM2.5 Estimation for Beijing

Figure 6 presents maps of the estimated PM2.5 concentrations using the proposed
algorithm at four time slots (7:00 am and 8:00 am on 15 March 2021 and 10:00 am and
11:00 am on 29 March 2021). It should be noted that the present distribution (Figure 6)
only involved the estimations in central Beijing for a better visual effect, as the majority of
collected photographs are concentrated there (Figure 3).
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Generally, the PM2.5 values of the crowdsourced photographs exhibited a remarkable
spatiotemporal heterogeneity. Specifically, on 15 March 2021, which was a day that a mega
sand and dust storm event occurred, and the average PM2.5 concentrations at 7:00 am and
8:00 am were 220.775 and 586.678 µg/m3, respectively. At 8:00 am (Figure 6b), the estimated
distribution pattern exhibited a strong heterogeneity over space. The PM2.5 concentrations
in northern and central Beijing were significantly higher than those in southern Beijing,
showing a significant decreasing trend from the city’s northwest to southeast regions.
However, this spatial heterogeneity was inconspicuous at 7:00 am. These disparities across
space and time revealed that the dust transport process was strongly associated with the
meteorological factor (mainly driven by north-westerly winds) and had a high magnitude,
which is in accordance with the results of previous studies [40]. Moreover, on 29 March
(average estimated PM2.5 was 23.673 µg/m3) (Figure 6c,d), a limited heterogeneity was
observed, suggesting relatively homogeneous air quality patterns. We can infer from these
results that, by employing the proposed algorithm, the smartphone photographs could
be turned into low-cost and mobile sensors which are spatially denser than monitoring
stations. Furthermore, the proposed photograph-based PM2.5 concentration measurement
holds great potential to be a reliable alternative for monitoring ambient air pollutants.

4. Discussion
4.1. Comparison with Other Methods Using the PhotoPM-Daytime Dataset

To make comparisons, we compared the performance of the proposed algorithm, based
on the PhotoPM-daytime dataset, with the specialized PM2.5 estimation techniques of
Rijal et al. [19], Jian et al. [18], and Gu et al. [11]. Among them, Rijal et al. [19] and Jian et al. [18]
used deep learning-based techniques. In contrast, the algorithm of Gu et al. [11] was distri-
bution based, where the distribution is built on entropy features extracted using image
analysis techniques. The results of Rijal et al. [19] and Jian et al. [18] were obtained from
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models that we implemented ourselves according to the reported procedures in the articles,
and the results of Gu et al. [11] were derived from the provided source code.

Table 2 summarizes the comparison results among the methods described above in
terms of the MAE, RMSE, and Pearson correlation (Pearson r). The results of our algorithm
are given in the last line of the table. Table 2 shows that the obtained results improved upon
those of the state-of-the-art methods. In particular, we observed that the proposed algo-
rithm outperformed the two deep learning-based algorithms in terms of decreased RMSE
and MAE values (15.303 and 40.364 µg/m3; 27.242 and 35.196 µg/m3 for Rijal et al. [19]
and Jian et al. [18], respectively). Considering the complexity of the PhotoPM-daytime
dataset and the high variability, due to the diverse outdoor scenarios, the reduction in the
RMSE value of 40.364 µg/m3 can be considered a remarkable improvement, indicating
that the proposed image analysis-based algorithm has an excellent capability over these
deep learning-based algorithms due to the appropriate combination of cues. Surprisingly,
we found that, compared to Gu et al. (2019), the proposed algorithm displayed a better
performance by decreasing the RMSE and MAE values by 68.529% and 56.613%, respec-
tively, and by increasing the Pearson r by 0.686. One possible reason for this result might be
that the algorithm of Gu et al. [11] estimated PM2.5 concentrations by measuring the likeli-
hood of deviation of the input photographs from “standard” photographs (photographs
taken under good weather), indicating that the transferability of the algorithm would be
greatly impeded by the selection of “standard” photographs. However, our proposed algo-
rithm can effectively reduce the reliance on preset standards, differing from Gu et al. [11],
by considering the joint effects of weak cues (partially relying on preset standards) and
atmospheric indices.

Table 2. Root-mean-squared error, mean absolute error, and Pearson correlation of PM2.5 estimates
based on the PhotoPM-daytime dataset.

Name Method RMSE MAE Pearson r

Rijal et al. [19] Deep learning based 45.199 77.765 0.817
Jian et al. [18] 70.260 85.719 0.559
Gu et al. [11] Image analysis and distribution based 94.996 116.448 0.237

Our proposed algorithm Image analysis based 29.896 50.523 0.923

4.2. Transferability of the PM2.5 Estimation Model Based on Other Datasets

Generalizability and transferability are important issues for algorithms when applied
to real-world applications. Therefore, we also evaluated the proposed algorithms based
on two public datasets: the Shanghai-1954 dataset [41,42] and the Beijing-1460 dataset [19].
The Shanghai-1954 dataset consists of 1954 daytime (8:00 am to 16:00 pm) photographs
(584 × 389 resolution) with a fixed viewpoint (Oriental Pearl Tower) and the corresponding
PM2.5 index (ranging from 0–206) obtained from published documents by the U.S. consulate.
The Beijing-1460 dataset has a total of 1460 images (resolution higher than 584 × 389) of
different outdoor scenes in Beijing. The corresponding PM2.5 levels for the Shanghai-
1954 and Beijing-1460 datasets were measured by the Met One BAM-1020 and collected
from the historical data provided by the U.S. Embassy.

Table 3 summarizes the transferability performance of the proposed algorithm in terms
of the RMSE, Pearson r, and goodness of fit R2 values based on the two public datasets. As
observed, for the Shanghai-1954 dataset, our algorithm showed slightly better performance
with respect to the estimation of the PM2.5 index than the others in terms of the increased
R2 values of 0.002 (from 0.872 to 0.874), although the increased performance was not as
significant as that shown in Section 4.1. Notably, the estimation of the PM index should be
regarded as a different task, while our proposed algorithm was specially designed for PM2.5
estimation. Therefore, these slight advantages still provide evidence that the proposed
algorithm has transferability that is comparable to that of other datasets and even shows
stronger robustness than other specially designed algorithms.
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Table 3. Root-mean-squared error, mean absolute error, and Pearson correlation of PM2.5 estimates
based on the PhotoPM-daytime dataset.

Dataset Method RMSE Pearson r R2

Shanghai-1954

SBFS [42] 13.65 0.836 0.700
Resnet [41] 10.11 0.934 0.871

Resnet & weather [40] 10.09 0.934 0.872
Our algorithm 10.003 0.935 0.874

Beijing-1460

VGG-16 [19] 60.44 0.733 0.537
Inception-V3 [19] 64.32 0.681 0.464

Resnet-50 [19] 53.63 0.792 0.627
Our algorithm 48.969 0.831 0.691

In addition, the superiority of the proposed algorithm was much more obvious com-
pared to the others based on the Beijing-1460 dataset, with the goodness of fit value
increasing by 0.064 (from 0.627 to 0.691) and the RMSE values decreasing by 4.611 µg/m3

(from 53.63 to 48.969 µg/m3). The results show that although the estimation accuracy
was more precise than other techniques, such superiority was not as significant as initially
expected. One possible reason for these results may be a “mismatching” problem because
each photo’s PM2.5 values were measured from a fixed location (the U.S. embassy) in Beijing,
while the photographs were taken from different locations. Considering that the spatial
distribution of PM2.5 values has great variability, a value measured at a fixed location may
not be representative of the situation at the place where the photograph was taken, thus
inevitably introducing biases. Nevertheless, the performance comparisons based on two
public datasets demonstrate that the proposed algorithm has strong transferability and
generalizability, and, thus, they further suggest that the proposed algorithm can potentially
be applied in various scenarios and achieve high accuracy which will be discussed shortly.

4.3. Limitations and Future Work

Despite these encouraging results, there are some aspects of our methods that could
be further improved. First, the proposed method can only be applied to estimate PM2.5
concentrations from smartphone photographs taken during the daytime. As a result,
nighttime PM2.5 concentration estimates have not been made available. Another possible
restriction of this study is that the PM2.5 distributions of the PhotoPM-daytime dataset are
unequally distributed, and, thus, we will continue to collect more smartphone photographs
in future studies, especially at high PM2.5 concentrations, to balance the distribution of
PM2.5 concentrations and increase the dataset size.

5. Conclusions

This paper presents algorithms for measuring PM2.5 concentrations by extracting
atmospheric indices and weak cues from a single photograph. The algorithms were first
tested on a PM2.5 image dataset with 2945 photographs taken at different locations under
various haze levels. Our approach exploits the “collective wisdom” of cue combinations
from these cues to promote more effective estimates. In this way, the presented estimation
method can still provide reasonable estimates, even when photographs are partially in-
formative. By considering a photograph’s scene structures, the proposed algorithms can
automatically select appropriate atmospheric index combinations. This ability overcomes
the weakness of traditional photograph-based methods that are capable for fixed scenes;
thus, the proposed algorithms can treat complex and dense urban scenes. In addition, the
algorithms show the ability to generalize to other data sources (e.g., photographs from
networks) and to transfer to different environmental sensing tasks (e.g., estimation of the
PM index from a single photo). Furthermore, an experiment in Beijing was performed,
demonstrating the applicability of the proposed algorithm in a real-world scenario and
highlighting the potential of smartphones as real-time environmental sensors. Thus, this
study demonstrated an efficient and convenient method of measuring PM2.5 concentra-
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tions at a significantly low cost. The developed algorithm has the potential to transform
ubiquitous smartphones into mobile sensors, which can complement ground monitoring
stations and provide citizens with a powerful tool to monitor their ambient air quality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14112572/s1, Figure S1: Haze cues from the sky only. Starting
from the input photograph (a), we extract the sky regions (b) with the sky probability model. The
extracted sky regions in the HSI color space are presented in (c) under two distinct environmental
conditions; Figure S2: Examples of photographs (a) transformed luminance maps (b), and luminance
gradient maps (c) under two weather conditions, clear and heavy haze conditions, for photographs
in which non-Lambertian regions dominate (i) and Lambertian regions dominate (ii); Figure S3:
Examples of the direct sun-glint; Figure S4: Detected vanishing points (red dots) in (a) open view
photographs and (b) obscured view photographs; Figure S5: Successful (a) and Failed (b) example
photographs with their observed and estimated PM2.5 concentrations; Figure S6: Example pho-
tographs in each outdoor scene category; Table S1: The measured albedo in two general types of
buildings; Table S2: Specifications of the Nature Clean sensor; Table S3: Detailed descriptions of
each sub-category [43–47].
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