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Abstract: With the development of high-precision and high-frame-rate scanning technology, we
can quickly obtain scan data of various large-scale scenes. As a manifestation of information fu-
sion, point cloud registration is of great significance in various fields, such as medical imaging,
autonomous driving, and 3D reconstruction. The Iterative Closest Point (ICP) algorithm, as the most
classic algorithm, leverages the closest point to search corresponding points, which is the pioneer
of correspondences-based approaches. Recently, some deep learning-based algorithms witnessed
extracting deep features to compress point cloud information, then calculate corresponding points,
and finally output the optimal rigid transformation like Deep Closest Point (DCP) and DeepVCP.
However, the partiality of point clouds hinders the acquisition of enough corresponding points
when dealing with the partial-to-partial registration problem. To this end, we propose Virtual Points
Registration Network (VPRNet) for this intractable problem. We first design a self-supervised virtual
point generation network (VPGnet), which utilizes the attention mechanism of Transformer and
Self-Attention to fuse the geometric information of two partial point clouds, combined with the Gen-
erative Adversarial Network (GAN) structure to produce missing points. Subsequently, the following
registration network structure is spliced to the end of VPGnet, thus estimating rich corresponding
points. Unlike the existing methods, our network tries to eliminate the side effects of incompleteness
on registration. Thus, our method expresses resilience to the initial rotation and sparsity. Various
experiments indicate that our proposed algorithm shows advanced performance compared to recent
deep learning-based and classical methods.

Keywords: virtual points; partial-to-partial; transformer; GAN

1. Introduction

Point cloud registration is a fundamental task that has been widely used in many
computational fields, such as object pose estimation [1], SLAM [2], and 3D reconstruction [3].
In its most common incarnation, point correspondence estimation and rigid transformation
computation, including rotation and translation, trivializes the problem, which is possibly
misled by noise and partiality.

Iterative Closest Point (ICP) [4], as the most representative method, is the gold standard
for solving registration problems. It iteratively obtains the point correspondences by nearest
neighbor search and estimates the rigid transformation by Singular Value Decomposition
(SVD). The ICP algorithm does not require any prior information about the original point
clouds. However, the convergence to global minimum puts forward strict requirements
for the initial poses because the accuracy and locality of convergence depend heavily on
the proportion of the overlapping area [5,6]. Besides, the cover of noise and outliers also
prevent the estimation of rigid transformation. Therefore, many works are proposed to
overcome the blemish of ICP [7–10]. The Point-to-Plane ICP algorithm [9] modifies the
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cost function from the point-to-point distance to the point-to-plane distance. After finding
the closest point, the distance of the closest point is narrowed along the normal direction
of the fitted plane. GO-ICP algorithm [11] combines the ICP with the branch-and-bound
algorithm to avoid local minima when ICP hovers around the local minimum. Despite the
improved performance, the above methods are also sensitive to the initial poses [12].

Recently, advances in deep feature extraction such as PointNet [13] and PointNet++ [14]
have been proposed to make it possible for neural networks to directly process disordered
points without prior projection [15]. Seminal PointnetLK [16] and DeepLocalization [17] use
PointNet to extract global features for registration. Although PCRnet [18] follows a similar
policy as PointnetLK, which is a catenation of extracting global embeddings and calculating
transformation parameters, it completely relies on neural networks to output regression value
rather than an iterative process. Despite the simplicity of global feature-based methods, the
global feature vector cannot retain sufficient information for accurate registration when faced
with the registration problem of large-scale point clouds [19]. Besides, non-overlapping regions
obscure the effectiveness of collected information [12]. Consequently, another class of deep
learning-based methods is proposed. Correspondence-based approaches extracting keypoints
and correspondence weights firstly, then SVD or MLP (Multilayer Perceptron) is employed to
return rigid transformation, such as 3DFeat-Net [20] or DeepVCP [21]. More recently, Deep
Closest Point (DCP) [22] incorporates the attention mechanism of the Transformer into the
network structure. Essentially, the final hybrid feature is a fusion of two original point clouds.
Furthermore, PRnet [23] employs the Gumbel–Softmax Sampler to sample a matching matrix
and Actor-Critic Closest Point (ACP) to adjust the “temperatures” of the mapping function of
DCP. However, these methods pay more attention to the overlapping regions. The collected
corresponding points are still limited due to partiality, which blocks a correspondences-based
algorithm for the partial-to-partial point cloud registration problem. OMNet [12] proposes to
use deep learning to predict the mask of overlapping regions to erase the matching difficulties
caused by shape differences.

In this paper, we propose a novel network called VPRNet, a deep learning network
for partial-to-partial point cloud registration. We first generate virtual points to remove the
barriers of different partiality ratios of original point clouds. A self-supervised strategy is
proposed to extract hybrid features without extra labeled data. Then attention mechanism of
the Transformer and Self-Attention (SA) is included in the structure to highlight overlapping
regions during feature extraction. Combining virtual points generation with preferred
hybrid feature compression profits conjugate points, which desensitizes initial rotation
and strengthens the capacity to match partial point clouds. Categorically, we utilize the
Generative Adversarial Network (GAN) in VPGnet to generate optimal missing parts and
merge them with the original partial point cloud to ensure that the shape information
is enriched without destroying the original point cloud geometry. Various experiments
indicate that our methods achieve advanced performance compared to advanced deep
learning-based and traditional methods. Our main contributions are:

• A self-supervised virtual point generation network (VPGnet) based on GAN is pro-
posed. The VPGnet focuses on the shape information of point clouds and can effec-
tively complete the partial point cloud.

• A combination strategy of virtual point generation and corresponding point estimation
is proposed, which can reduce the negative effect of partiality during registration.

• Various experiments demonstrate the advanced performance compared to other ad-
vanced approaches.

The rest of this paper is organized as follows: Section 2 reviews previous literature.
Section 3 describes the architecture of our proposed network. Experiments are performed
in Section 4. The discussion of the experimental results is shown in Section 5. Finally,
Section 6 makes a precise summary of our work.
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2. Related Work

Point cloud registration aims to find a rigid transformation matrix, including rotation
matrix and translation vector, then apply this transformation to align the source point cloud
to the target point cloud. In the past few decades, many pieces of literature proposed solu-
tions to this fundamental task. Taking time as the border, we divide the method of solving
point cloud registration into traditional and deep learning-based methods. Before 2017,
most scholars focused more on conventional methods because of the sparsity and disorder
of point cloud. After 2017, benefiting from the landmark PointNet [13] and PointNet++ [14],
a large number of researchers tend to the deep learning-based methods [24]. The following
text summarizes methods for point cloud registration from the above two aspects.

2.1. Traditional Methods

The most seminal method for solving registration problems is ICP [4]. This algorithm
switches from finding correspondences and updating a rigid transformation matrix in a
coarse-to-fine manner. Specifically, After obtaining the corresponding point sets, the ICP
algorithm employs the least-square method to solve the transformation parameters. ICP can
obtain accurate registration results as a fine registration algorithm, but some shortcomings
deserve attention. The ICP algorithm needs a good initial value as input, or it is easy to
converge to the local optimum [25]. Consequently, the registration accuracy of the ICP
algorithm depends heavily on the overlap rate of point clouds [5,26]. Besides, the ICP
algorithm requires many iterations to find the optimal corresponding point pair, which is
time-consuming [27,28].

The above two drawbacks prohibit the application of the ICP algorithm in real-time
and large-scale scenarios. Thus, some scholars proposed solutions. On the one hand,
benefiting from the fact that the coarse registration has no hypothesis on the initial poses
of point clouds, employing the result of coarse registration as the initial value of the ICP
algorithm has become the consensus of the registration task [29]. A popular program
utilizes the RANSAC method to find the corresponding triples [30]. The complexity of the
RANSAC algorithm regularly degrades to its worst-case O(n3) complexity in the number n
of data samples [29,31]. As improvements to RANSAC, the 4 Points Congruent Sets(4PCS)
algorithm [32] and Super 4PCS algorithm [31] intelligently ameliorate the registration pro-
cess with four selected point pairs instead of three, making the computational complexity
reach O(n2) and O(n), respectively. Moreover, Super Edge 4PCS utilizes the edge of point
clouds to finish the registration, thus greatly reducing the running time [33]. On the other
hand, some ICP-variant algorithms were proposed, including distances defined as the
point to plane [9,34], point to triples [35], and plane to plane [36]. In addition to changing
the objective function, improving the search strategy is also a meaningful improvement.
Eggert [37] and Vlaminck [38] employed two search strategies, kd-tree and Octree, to
speed up the corresponding acquisition. These classical methods are still either easy to fall
into local optimal values or time-consuming, which limits the application in large-scale
scenarios that require real-time registration [18].

2.2. Learning-Based Methods

Learning-based methods have been gradually been accepted since 3Dmatch [39] was
proposed in 2017. After PointNet [13] and PointNet++ [14], scholars can directly employ
convolutional neural network to deal with disordered points directly. Therefore, the deep
learning methods achieve considerable development. Correspondence-based methods and
correspondence-free methods construct two main branches of learning-based methods [24].

2.2.1. Correspondence-Free Methods

The critical step of correspondence-free methods is regressing the global high-dimensional
features generated by the deep neural network and outputting the rigid transformation pa-
rameters. The PoinetnetLK [16] modifies the traditional Lucas and Kanade (LK) algorithm
and unrolls with PointNet into a trainable deep network framework. However, this method
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affords many derivation theories instead of simply concatenating the global features to solve
R and t, which inevitably causes low computational efficiency [18,19]. As an intelligent im-
provement to PoitnetLK, PCRnet [18] replaces the approximation of Jacobian as a data-driven
technique that is a deep feature alignment layer to output transformation parameters directly.
Although PCRnet has improved efficiency and robustness compared to PointnetLK, the latter
shows better generalization capabilities across various object categories [18]. Feature-Metric
Registration (FMR) believes that the extracted features of point clouds with different poses
are different. The transformation is iteratively solved by calculating the differences of global
features [40]. Although the above correspondence-free methods straightforwardly follow an
end-to-end network architecture, the performances depend heavily on the feature extraction
block [24]. Likewise, we follow the analogous end-to-end network architecture but mix the
extracted embeddings and other geometric information of opposite point clouds together.

2.2.2. Correspondence-Based Methods

Compared with the straightforward structure of the correspondence-free method,
the correspondence-based method often possesses a more complex network architecture.
Although employing voxels to represent point clouds and network training is not as popular
as the PointNet-based methods due to the vast memory requirement and lost quality [41],
some relative voxel-representation methods are still worth discussing [24]. 3DMatch [39]
maps the local area that wraps the interest points to a 512-dimensional feature vector
as a pioneering approach. Besides, the Perfect Match [42] employs Smoothed Density
Value (SDV) voxelization to extract features computed with the Gaussian smoothing kernel.
Recently, Huang et al. [43] designed an overlapping attention module in the feature coding
stage for early information exchange, which improves the accuracy of registration and is
suitable for low overlap scenes.

Inspired by the PointNet framework, PPFnet [44] defines point pair features, including
point pairs’ coordinates and normals to describe the local regions oriented 3D points. The
feature processing leads to a rotation invariance while depending on the estimation of
normal excessively [24]. Another representative method of employing the PointNet++ is
DeepVCP [21], which utilizes the mini-PointNet++ [44,45] composed of three consecutively
stacked fully connected layers and max-pooling layers to extract features and avoid the
interference of dynamic targets. The generated corresponding point boosts registration
accuracy [21]. In addition to feature extraction, outliers rejection also leverages PointNet’s
advantage. 3DRegnet [46] affords classification block and registration block, which extend
the deep ResNet [47] to extract meaningful features and eliminate incorrect correspon-
dences. However, none of the above methods pays attention to the corresponding points in
the non-overlapping area, which influences the accuracy of corresponding points [12].

2.3. Under Partial Overlap

Among point cloud registration tasks, partially overlapping assignments pose a con-
siderable challenge to deep learning methods due to the drastic differences in the global
information [24]. Consequently, some algorithms mainly focus on partial-to-partial registra-
tion. As a successful case of applying the attention mechanism to registration, Deep Closest
Point (DCP) [22] employs the Transformer [48] to absorb information from two point clouds
and generates corresponding point pairs via soft pointers. However, the mappingM pro-
duces blurred correspondences in exchange for this differentiability. PRnet [23] extends the
DCP algorithm to an iterative pipeline and utilizes Gumbel–Softmax sampling to define a
sharp mapping function that accepts backpropagation. A corresponding point generation
method similar to DCP appears in [49]. RPMnet proposes a subnetwork to predict anneal-
ing parameters and utilizes these two parameters and sinkhorn normalization to generate
a match matrix [41]. The above methods contain no targeted measures to deal with partial
point clouds. Paying attention to the negative effect of non-overlapping points, OMNet [12]
learned the overlapping mask and achieved state-of-the-art performance. Song et al. pro-
pose a novel partial point cloud registration network that employs the graph attention
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module to predict key points [50]. Similarly, Eduardo et al. apply a RANSAC procedure
after correspondence matching [51]. These generation processes of corresponding point
pairs include only the information fusion of features mapped from original partial point
clouds. Based on a brand-new idea, we propose an end-to-end network framework called
VPRNet, which includes virtual point generation (VPGnet) and registration (Regnet). VPR-
Net utilizes the GAN architecture to continuously generate missing points and applies an
attention mechanism to weighted correspondences, ensuring the corresponding quality.

3. Method
3.1. Overview

Our VPRNet is divided into two parts: VPGnet and Regnet. VPGnet is designed to gen-
erate virtual points, and the Regnet registers the completed point clouds. Figures 1 and 2
show the framework of VPGnet and registration network, respectively. Structurally speak-
ing, this algorithm contains the framework of GAN using a self-supervised training strategy
since the ground-truth missing part is separated from the original complete point cloud,
and no auxiliary labeled data is added to the training process. The generator and discrimi-
nator confront each other until the discriminator cannot judge whether the virtual point
generated by the generator is a ground-truth point or a fake one. The generator extracts the
features of the three groups of sampled point clouds with PointNet and DGCNN. Then,
the core Transformer and Self-Attention (SA) combine two hybrid features from original
point clouds preferentially. Finally, missing parts are generated by MLP and Reshape
operations. As for the Regnet, it first combines the virtual points generated by VPGnet with
the original point clouds to complete point clouds X and Y. We then convert X into X′, Y
into Y′ according to the rotation matrix Ri−1, and translation vector ti−1 from the previous
iteration. After extracting the hybrid features from X′ and Y′, the probability volume is
calculated according to the feature processed by softmax. Then, the corresponding matrix
Σ is obtained as the weighted sum of probability and point coordinates. Finally, the SVD
module is applied to generate the new rotation matrix Ri and translation vector ti.

Figure 1. Architecture of our VPGnet. The self-supervised network is mainly composed of two
parts, the generator and the discriminator. The generator sub-network extracts features through
Self-Attention and Transformer, then MLP and Reshape operations are used to generate virtual points.
Next, the features of the generated points and ground-truth are extracted through the DGCNN of the
Discriminator and compared with each other. Finally the probability that the input point cloud is the
ground-truth is output.
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Figure 2. Architecture of our registration network. The iterative network first applies the rotation and
translation calculated in the previous iteration to the input cloud. Through two main components of
feature extraction, including Transformer and corresponding matrix acquisition, the network obtains
the rigid transformation of the current iteration through SVD.

3.2. VPGnet Architecture
3.2.1. Multi-Resolution Feature Extraction

The first step is to represent the point cloud as embedded features. Deng et al. [52–54]
perform convolution operations on the entire point cloud and then duplicate the global
features n times, where n is the number of points. Finally, the mixed point feature is
formed by concatenating the global features and local features. There is no transition
between point coordinates and global information despite the simplicity. Correspondingly,
Qi et al. [13,55] pointed out that the local and global features extracted from different scales
can describe the point cloud more efficiently. Consequently, we employ the multi-resolution
feature extraction architecture proposed in PointNet++. As shown in Figure 1, we first
perform the Farthest Point Sampling (FPS) on the source point cloud and target point cloud.
Enlightened by the LRANet [56] and PF-Net [57], we performed FPS three times on the
original point clouds. Then, the shared DGCNN encodes the points and their neighbor
into latent vector Fi

l where i ∈ [1, 3] is the scale number, and l ∈ [1, 5] is the index of
convolution. DGCNN integrates the local neighbor information of the point cloud, which is
not available in PointNet [22]. After four convolution layers, the dimensions of the feature
vector are [64, 64, 128, 256]. Before the fifth convolution layer, the four feature vectors are
concatenated together to obtain a 512-dimensional latent vector. Subsequently, we pass this
latent vector into the fifth convolution layer to get a 1024-dimensional feature vector F5.
Putting all Fi

l together, we get a 3 × 1024 latent map.
In addition to the local embeddings, we expect that the embeddings can focus on

the entire information of point clouds, not limited to the neighborhood of a certain point.
Therefore, we choose the PointNet [13] architecture to obtain the global information of input
point clouds. The points are encoded into multiple dimensions [64, 128, 256, 512, 1024].
After the Max-pooling operation, we can obtain 1024-dimensional global features Fg. The
combination of Fg and Fi

l can juggle the details and overall information. The feature
encoding process can be summarized as:

Fg = pointnet(x) (1)

Fl = {D[FPSi(x)]} ⊕ 3 (2)

where D is DGCNN, x ∈ Rn×3 is the original point cloud, and n is the point number in
x; FPSi is the i-th farthest point sampling with a different sampling size; Fg and Fi

l ∈ R
d
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represent the global and local features, here d is 1024; ⊕m means to repeat the DGCNN
and FPS operations m times, and stitch the obtained vectors together.

3.2.2. Attention

Both input point clouds suffered from a deficiency of geometric attributes. Thus,
we design to employ the shape information of one point cloud to complete the other.
Thus, the particular embeddings from two point clouds need to be merged instead of
separately decoding the two independent latent maps. Inspired by a recent article [58], we
attached two attention mechanisms to change the encoder’s attention: Transformer and
Self-Attention (SA) modules.

The Transformer is the first composition model that relies on SA to calculate input and
output representation [48]. It is first used in natural language processing (NLP) to solve
the sequence-to-sequence problem, such as the machine translation task. The Transformer
consists of an encoder module and decoder module. Each encoder module and decoder
module are stacked with separate sub-encoders and sub-decoders. The encoders are all
the same in structure, including two parts: SA and feed-forward neural network. The SA
module can help the current element combine the context semantics. Compared with the
encoder, the decoder contains a masked self-attention to cover up later elements, which
helps the decoder focus on the relevant part of the input sequence. Reviewing the complete
encoding and decoding process: input the embedding E1 obtained after position encoding
of the sequence S1 into the encoder, then output a new embedding E′1 after SA. There is
a residual connection in the sublayers of each encoder, so the output of the encoder is
E1 = E1 + E′1. In the decoding process, the new E1 is first decoded to obtain the sequence
S2, which is then encoded by the decoder and merged with E1 to output a new sequence S3.

We draw inspiration from applying Transformer to solve sequence2sequence problems:
Transformer combines two sequences so that the encoder and decoder module can learn
co-context information. Consequently, we utilize the Transformer as the first attention
method to supplement semantic information of one point cloud to the other. The calculation
of the Transformer can be summarized as the following equations:

Θx = Mx + Ω(Mx, My)
Θy = My + Ω(My, Mx)

(3)

Assuming that the latent maps obtained from the input point clouds are Mx and
My, where Mx = {Fx

g , Fx
l1, Fx

l2, Fx
l3} ∈ Rr×d, r is the number of latent vectors obtained by

DGCNN and PointNet (here is 4), and d is the dimension of latent vectors. Θx and Θy are
the high-dimensional result feature output by Transformer Ω ∈ Rr×d. It is worth noting
that Ω is not a symmetric function: Ω(x, y) 6= Ω(y, x). The decoder realizes meaningful
fusion of the contained information from two sequences.

However, this scheme has a premise that we need to know the missing parts of the
current point cloud before completing the current point cloud. Therefore, we leverage
a separate Self-Attention as a sibling attention mechanism with Transformer, aiming at
making the point cloud aware of its distinctive shape. The structure of SA can be described
by the equation shown below:

Φx = Mx + C(Mx − Cv(x)· φ(Cq(x)· Ck(x))) (4)

where φ represents the softmax function, Cq and Ck are the convolutions needed to generate
query and key vectors. These two vectors are employed to score the high-dimensional
feature vectors generated from the coordinates of other points in the point cloud. The scores
determine the amount of feature expressions. These scores are multiplied by the value
vector generated by Cv to distract attention from the points with less correlation. The entire
SA process also follows the structure of residual connections. The latent map obtained by
the Transformer is subjected to a Max-pooling layer of [1024–512] and then concatenated
with the embedding vectors obtained by SA. Thus, we finally obtain a latent map with
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dimensions of 1536. The following continuous MLP layers encode the embedding vectors
obtained by the attention mechanism into dimensions of 192, so that the final reshape layer
can output 256 virtual points.

3.2.3. Discriminator

As another important component of GAN, Discriminator is used to judge the virtual
points generated by Generator. Its working mode can be described as:

p = L3(ϕ(L2(ϕ(L1(ξ(D(x))))))) (5)

where x represents input point cloud generated virtual points or rendered ground truth, D
is the DGCNN operation, ξ is the Maxpooling layer, ϕ is the Leaky_Relu activation function,
and Li represents the Linear layer. Discriminator takes virtual points generated by the
Generator and ground-truth missing point clouds as inputs, and outputs the predicted
probability that the received point cloud is ground-truth. It calculates the adversarial
loss between the predicted and the actual label and then feeds it back to the generator.
Repeating the above game process until the probability that the predicted label is the virtual
point is close to 0.5, means that the discriminator cannot tell the difference between the
input point cloud and ground-truth.

3.3. Regnet Architecture
3.3.1. Correspondences Calculation

After obtaining the virtual points, it is first combined with the original points to
form complete point clouds PCg. Then, applying the rotation matrix R and translation
vector t generated from the previous iteration to PCg, we get a new input of the current
iteration. Next, DGCNN and Transformer are used to extract and fuse features similar
to VPGnet. The Transformer in Regnet enforces the encoder to pay more attention to the
spatial information of another point cloud, that is, the orientation and position of the point
cloud. The dimension of the embedding vectors obtained after the Transformer is n × 1024,
where n is the number of points in the point cloud. In order to obtain the corresponding
points in the target complete point cloud, we calculated the correlation between each point
in two combined point clouds PCx

g and PCy
g , which is expressed as:

Σ = φ(Θx·Θ−1
y ) (6)

where Θx and Θy ∈ Rn×1024 denote the high-dimensional feature maps after Transformer.
The dimension of Σ is n × m, where n and m are the scales of source and target point
clouds, respectively. Each element Σij represents the correlation between the i-th point in
the source complete point cloud PCx

g and the j-th point in the target complete point cloud
PCy

g . Then, the corresponding points in the target point cloud are calculated as Σ· PCy
g .

3.3.2. SVD Module

Now, for each point xi in the source complete point cloud, there are m corresponding
points yj weighted in the target complete point cloud. Therefore, in order to reduce the
burden of network training, we employ the SVD module to calculate the final rotation
matrix Rxy and translation vector txy. We define the centroids of PCx

g and PCy
g as:

x =
1
N

N

∑
i=1

xi and y =
1
M

M

∑
j=1

yj (7)

The covariance matrix can be expressed as:

H =
N

∑
i=1

(xi − x)(yi − y) (8)
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Then, singular value decomposition is performed on H ∈ R3×3:

H = USV−1 (9)

where U and V ∈ SO(3) are the matrices formed by the eigenvectors of HHT and HTH,
respectively. S is a diagonal matrix whose diagonal elements are eigenvalues of H. Fi-
nally, the rotation matrix Rxy and the translation vector txy can be calculated according to
Equation (10):

Rxy = VU−1 and txy = −Rxy· x + y (10)

3.4. Loss Functions

The first loss function is the adversarial loss of Discriminator Ld in VPGnet. We
consider four groups of adversarial losses, which are the ground-truth x point clouds, the
generated x virtual points, the ground-truth y point cloud, and the generated y virtual
points, so Ld is:

Ld = Lgx
d + Lvx

d + Lgy
d + Lvy

d (11)

Each Lj
d is defined as:

Lj
d = − 1

N

N

∑
i=1

[D(GTi) ∗ log(D(GTi)) + (1− D(GTi)) ∗ log(1− D(G(xi)))] (12)

where xi is the i-th point cloud, GTi is the i-th ground-truth missing point cloud, and N is
the number of input point clouds. D() and G() represent the Descriminator and Generator.

Fan et al. proposed two position-invariant metrics to calculate the distance between
two point clouds: Chamfer Distance (CD) and Earth Mover’s Distance (EMD). CD calculates
the average closest point distance between two input point clouds, which is shown as
Equation (13). The first term represents the sum of the minimum distance from any point x
in S1 to S2. The second term serves the symmetric role. The two sets S1 and S2 do not need
to be the same size. EMD was first proposed in [59] as a histogram similarity measure based
on transportation efficiency. It calculates the minimum distance from one distribution to
another. Unlike CD, the calculation of EMD requires that the two sets S1 and S2 have the
same size. The calculation method is shown in Equation (14):

dCD(S1, S2) =
1

S1
∑x∈S1

miny∈S2 ‖x− y‖2
2+

1
S2

∑y∈S2
minx∈S1 ‖y− x‖2

2
(13)

dEMD(S1, S2) = min
ϕ:S1→S2

1
|S1| ∑

x∈S1

‖ x− ϕ(x) ‖ (14)

We calculate the CD and EMD between the missing parts of the virtual point clouds
and the ground truth. Apart from that, the CD between the combined point clouds and the
ground-truth complete point cloud are employed to ensure that the former has a similar
shape and structure to the latter. Therefore, the loss function of the Generator can be
summarized as follows:

Lg = LX
g + LY

g (15)

LX
g = dCD(Vx, GTx) + dEMD(Vx, GTx)

+ dCD(PCx, PCgt
x )

(16)

where Vx, Vy are the virtual point clouds generated from the source partial cloud X and
target partial cloud Y; GVx and GVy are the ground-truth missing regions of input two
point clouds; PCx and PCy are the complete point clouds consisting of the original partial
cloud and generated virtual points; PCx

gt and PCy
gt are the ground-truth complete point

clouds. Ly
g is calculated with the same method and symmetrical parameters.
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The last loss function is the registration loss. We directly measure the deviation of
predicted R and t from ground-truth Rg and tg that are recorded during the original point
clouds preprocessing. Equation (17) shows the last loss term:

Lreg =
k

∑
i=1
‖RT

i Rg − I‖2 + ‖ti − tg‖2 (17)

Here, g denotes ground-truth. k represents the total iteration numbers. Therefore, the
total loss can be summarized as follows:

Ltotal = αLd + (1− α)Lg + Lreg (18)

3.5. Implementation Details

First, we set the training batch size to 64 and epochs to 250. Adam is the selected
optimizer with a learning rate of 0.0002 and weight decay of 0.001 to perform gradient
descent stably and efficiently. In order to speed up the training of the GAN network, we
first train 50 epochs for the G network so that the G network can generate relatively accurate
virtual points after a short training. The total number of iterations in Regnet is three. The α
in Equation (18) is set to 0.05.

4. Experiments and Results
4.1. Data and Metrics
4.1.1. Dataset

We trained and evaluated VPRNet on the Modelnet40 dataset. The dataset comprises
12,311 meshed CAD models grouped into 40 artificial categories. We follow the original
division of training and testing set in the original Modelnet40 dataset, that is, 9843 for
training and 2468 for testing. In the test of unseen category models, we leverage the first
32 categories of shape names file in Modelnet40 for training and the last 8 categories for
testing. Coincidentally, the ratio of the training to testing set is close to 8:2, which is 9907
train models and 2404 test models, respectively. We did not use the half-and-half data
segmentation strategy provided by Modelnet40, because we added new processing to the
original dataset, that is, the separation of the point cloud patch. We arbitrarily select a
point inside a point cloud and exclude the nearest k points to construct original partial
point clouds. Here, k is set to 256. Such data augmentation makes the training of baseline
algorithms more difficult than under clean data. Besides, our algorithm employs the
structure of GAN, and the final generation effect can be improved with more samples [60,61].
Consequently, we adjust the ratio of the training to the testing set to 8:2; 1024 points were
uniformly sampled from Modelnet40 samples for training and testing of VPGnet. We
employed the augmentation strategy for all sampled point clouds, and a rotation and
translation was performed along each coordinate axis with a randomly selected angle
within [0, 45°] and a distance generated from [−0.5, 0.5].

4.1.2. Metrics

We evaluate the network framework according to five registration metrics: MAE,
MSE, RMSE, R_loss, and T_loss. Equations (19)–(21) shows the calculation method of the
first three metrics, which evaluate the distance between two vectors. M is the length of two
vectors, and xi,yi are the corresponding elements of two vectors. The smaller the value is,
the better the registration effect is. We adopt the L2 norm between the ground-truth rigid
transformation parameters and the predicted results to evaluate the accuracy of the rotation
and translation. The calculation methods of R_loss and T_loss are shown in Formulas (22)
and (23), where Rpre and tpre are the predicted rotation results, Rgt and tgt are the ground
truth, respectively. Finally, Reg_loss is defined as the sum of R_loss and T_loss. All angular
measurements in our results are in units of radians.
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MAE =
1
M

M

∑
i=1
|xi − yi| (19)

MSE =
1
M

M

∑
i=1

(xi − yi)
2 (20)

RMSE =

√√√√ 1
M

M

∑
i=1

(xi − yi)2 (21)

R_loss = ||Rpre ∗ R−1
gt − I||2 (22)

T_loss = ||tpre − tgt||2 (23)

4.2. Baseline Algorithms

In order to evaluate the proposed network framework more comprehensively, this
section divides the baseline algorithms into two categories. One is the most representative
traditional algorithm, including ICP [4], Generalized ICP [36], Point-to-Plane ICP [9], and
Fast Global Registration (FGR) [62], the other is the state-of-the-art deep learning-based
algorithm proposed in recent years, including OMNet [12], PointnetLK [16], DCP [22], and
RPMnet [41]. All networks are trained in NVIDIA Tesla v100 GPU and tested in AMD
Ryzen 7 at 4800H CPU.

4.2.1. Traditional Algorithms

We choose the feature-based registration algorithm for the traditional method, namely
Fast Global Registration (FGR) [62]. The algorithm uses the Fast Point Feature Histograms
(FPFH) of point cloud to return corresponding point pairs with similar geometric structures.
The other is ICP [4] and its variant version GO-ICP [10] and Point-to-Plane ICP [9]. As a
classical point cloud registration algorithm, ICP can accurately complete the registration
task under the insurance of a good initial value. The GO-ICP tries to avoid the disadvantage
of the ICP algorithm falling into local optimization by employing the branch-and-bound
method to search for the optimal value in the global range. The ICP-plane changes the
definition of distance from point-to-point to point-to-plane. The implementation of ICP,
ICP-plane, and FGR is available in Open3D. The GO-ICP is called from the library pygoicp
whose parameters of DT size and Factor are set to 300 and 2.0. ICP and its variant ICP-plane
are initialized with a rigid identity matrix, and the distance threshold is set to 1.

4.2.2. Deep Learning Algorithms

The deep learning algorithms we choose are PointnetLK [16], DCP [22], RPMnet [41],
and OMNet [12]. As the first deep learning-based registration algorithm, the strategy
that uses MLP to extract point cloud features for pose estimation in PointnetLK became
attractive after being proposed. This algorithm is compared by many papers [12,22,40], so
we chose it as the first baseline algorithm belonging to deep learning. Besides, DCP removes
the relevant calculation of Lie algebra in PointnetLK and applies the Transformer to extract
hybrid features. Then, the rotation matrix and translation vector are estimated by SVD for
corresponding point pairs. As an advanced algorithm for applying the attention mechanism
to the registration task, the DCP algorithm expresses competitive performance on the
Modelnet40 dataset, so we treat it as the second baseline algorithm based on corresponding
point pairs. Moreover, RPMnet utilizes a subnetwork to predict the annealing parameters
according to the PPF feature. Then, a sinkhorn normalization is concatenated to the match
matrix module, thus outputting a matching matrix. Finally, OMNet is proposed to specially
deal with partially overlapping registration tasks with the critical mask prediction module.
Although pre-trained models of the above networks are delivered by the original authors,
the division of training and testing set of those models is not consistent with the design in
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this paper. Therefore, we retrained other all deep learning methods with the same dataset
as ours. For a fair comparison, we use the parameter values recommended in the official
introduction of baseline algorithms to ensure baseline algorithms achieve the best effect.
Some important parameters of all deep learning methods used in training and testing are
introduced in Table 1. Note that DCP does not employ an iterative strategy. Thus, it does
not contain the Iter_num parameter.

Table 1. Important training and testing parameters used in deep learning methods. \ means that
there is no such parameter in the algorithm. Iter_num represents the number of iterations, Train_bsz
and Val_bsz represent the batch size during training and testing, LR represents the learning rate, and
Epochs represents the number of times all the training data is recycled.

Method Iter_num Train_bsz Val_bsz LR Epochs

PointnetLK 10 64 1 0.01 200
DCP \ 32 1 0.001 250
RPMnet 5 4 1 0.0001 200
OMNet 4 64 1 0.001 1000
VPRNet(Ours) 3 24 1 0.0002 250

4.3. Generalizability Test

Table 2 shows the statistical results of the registration indicators of all algorithms
under unseen category point clouds. For comparative purposes, we define the relative
error rate to normalize indicators of different orders of magnitude. The calculation method
is: ε = |M1 − M2|/M1. As shown in Table 2, we can clearly obtain that the accuracy
of the deep learning methods significantly exceed the traditional algorithm since the
average relative error ratio of RMSE(R) and RMSE(t) is reduced by 54.21% and 32.40%
over traditional algorithms. Thanks to the high-dimensional features map extraction of
deep learning methods, the calculation of corresponding points is more accurate than
the traditional algorithm. Specifically, our algorithm expresses good competitiveness in
accuracy compared with all deep learning-based algorithms. Compared with DCP and
PointnetLK, our algorithm’s average relative error ratio in registration loss is reduced by
68.25% and 80.68%, respectively. We have to admit that our algorithm does have a certain
gap with RPMnet and OMNet in some aspects. However, we can find that the differences
are not too large to be accepted after a detailed analysis. For example, in terms of MAE(R),
our value is only 5.84 larger than RPMnet, that is, the average error of rotation of three
rotation axes is only 0.10°. Compared with the difference (32.57, 22.17) between RPMNet
and DCP and PointnetLK, the error rate is up to 82.07% and 73.66%, respectively. Besides,
focusing on translation estimation, the disparity between ours and RPMnet becomes smaller.
In numerical terms, both RMSE(t) are equal to 0.16, and the MAE(t) of our method is
0.01 lower than RPMnet. Moreover, it can be seen that the robustness of the RPMnet
algorithm is inferior to our algorithm in the subsequent experiments. In the comparison
with OMNet, our algorithm and OMNet are both aimed at partial registration, but these
adopt totally different processing ideas. Ours attempts to complete, while OMNet tries to
mask the meaningless part. From the results, the difference of MAE(R) is 5.08 (0.08°), the
error rates reach 84.03% and 76.27% compared with the difference between OMNet and
DCP and PointnetLK, which shows that the disagreements over MAE(R) between ours
and OMNet are not as sharp as DCP or PointnetLK. In summary, our algorithm achieves
competitive performance in unseen category tests. The conclusion can be inferred that
the self-supervised VPRNet first generates virtual corresponding points with Transformer
and Self Attention, which makes up for the negative impact of the incompleteness of
point clouds.
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Table 2. Results on point clouds of unseen categories in ModelNet40. Bold numbers are the smallest
in the current column, and represent the best performance. Lower is better.

Method RMSE(R) MAE(R) RMSE(t) MAE(t) R_loss T_loss Reg_loss Time(s)

ICP 17.29 14.85 0.19 0.16 0.73 0.21 0.94 0.005
ICP_plane 33.01 28.26 0.33 0.28 0.97 0.39 1.37 0.01
GO-ICP 48.09 43.2 0.55 0.48 1.84 0.92 2.76 0.53
FGR 28.11 24.47 0.22 0.19 0.95 0.2 1.15 0.08
PointnetLK 25.28 22.6 0.55 0.48 1.08 0.99 2.07 0.09
DCP 37.27 33 0.2 0.17 0.9 0.36 1.26 0.43
RPMnet 0.51 0.43 0.16 0.15 0.02 0.004 0.03 0.59
OMNet 2.09 1.19 0.02 0.01 0.06 0.03 0.09 0.06
VPRNet(Ours) 7.26 6.27 0.16 0.14 0.28 0.11 0.40 2.04

The visualization of samples after registration is shown in Figure 3. The histogram on
the right shows the proportions of different colors. Different colors represent the distance of
the closest point. The closer to blue, the closer the closest point in the opposite point cloud is
to this point. It is worth noting that the OMNet algorithm needs a ground-truth pose matrix
to calculate the overlapping mask, so the calculation of registration parameters cannot be
completed with only the residual clouds. Therefore, the registration of OMNet is excluded
from the results in Figure 3. The case of unseen categories are shown in sub-figure (a) of
Figures 3 and 4. It can be clearly seen from the figure that the color of our registration result
tends to be blue. Besides, there is no obvious visual difference between the registration
effect of this algorithm and the RPMnet algorithm despite the leadership in data.

Figure 3. Registration examples on (a) unseen categories, (b) noisy data, (c) sparse data, and (d) data
with rotation of 30–40°. The histograms on the right show the distance between the points. The closer
to the blue, the smaller the distance between the points.
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Figure 4. Completion results on (a) unseen categories, (b) noisy data, (c) sparse data, and (d) data
with rotation of 30–40°. Red points represent the original incomplete point cloud, and black points
represent the points generated by the network.

4.4. Robustness Test

The following three experiments tested the resistance of the proposed algorithm and
baseline algorithms to noise, sparsity levels, and initial rotation angles.

4.4.1. Noise Test

We randomly sampled jittering noise from N (0, 0.002) and cropped it to [−0.05, 0.05].
All the deep learning-based algorithms are retrained with noisy point clouds. The results are
shown in Table 3. The registration and completion results of noisy data are summarized in
Figures 3b and 4b, which shows that the proposed algorithm can still finish the completion
and registration of point clouds under the influence of noise. These two figures do not
show great visual deficiency. The precise analysis of noisy data is stated below.

Table 3. Results on noisy point clouds in ModelNet40. Bold numbers are the smallest in the current
column, and represent the best performance. Lower is better. Our algorithm is in the front rank
among all measurements.

Method RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t) R_loss T_loss Reg_loss Time(s)

ICP 17.29 14.85 0.04 0.19 0.16 0.72 0.21 0.94 0.002
ICP_plane 33.10 28.33 1.36 0.30 0.26 0.97 0.33 1.30 0.01
GO-ICP 48.16 43.23 0.33 0.55 0.48 1.84 0.92 2.76 0.07
FGR 27.40 23.83 0.06 0.22 0.19 0.94 0.20 1.13 0.62
PointnetLK 43.87 38.91 0.32 0.54 0.47 1.68 0.93 2.61 0.1
DCP 37.67 33.40 0.06 0.20 0.17 0.92 0.36 1.28 0.32
RPMnet 5.49 4.6 0.04 0.17 0.15 0.23 0.05 0.27 0.54
OMNet 3.58 2.64 0.0005 0.02 0.01 0.13 0.03 0.15 0.06
VPRNet(Ours) 7.69 6.60 0.03 0.16 0.14 0.31 0.12 0.43 2.10

Evidently, it can be seen from Table 3 that our algorithm has significant leadership
in the estimation of rotation compared with the PointnetLK and DCP, which is proved
by the fact that the relative error rates of MAE(R) reach 83.04% and 80.24%. In addition,
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our algorithm is still not much behind RPMnet. The performance of this algorithm on
MAE(R) is only 2.00 lower than the RPMnet algorithm, that is, the average rotation error
of three rotation axes is only 0.03°. Compared with 28.80 and 34.31 of DCP and PointnetLK
algorithm, the error rates are reduced by 93.06% and 94.17%, respectively. Additionally, the
translation estimation of the VPRNet algorithm is better than the RPMnet algorithm. For
example, the MAE(t), MSE(t), and RMSE(t) of VPRNet are all 0.01 lower than RPMNet.
Compared with the OMNet algorithm, there are still some gaps, for example, the error
rates of RMSE(R) and T_loss are 53.45% and 75.50%, respectively. Nevertheless, the gap
between them is reduced compared with the previous clean data. In the aspect of MAE(R),
the error between our algorithm and OMNet under noise interference is reduced by 22.05%
compared with that under clean data, and T_loss is reduced by 10.00%. Therefore, it can be
proved that our algorithm is closer to the advanced OMNet algorithm under noisy data
than clean data. Besides, compared with clean data, our algorithm’s error rate of Reg_loss
was reduced by 12.24%, which shows that our algorithm is the only one among all deep
learning methods whose registration results under noise interference are better than that of
clean data. Especially in the estimation of rotation, the relative error rate of MAE(R) of
RPMNet is 10.70 times higher than clean data. Not only the RPMnet algorithm but also the
OMNet algorithm is worse under noise than that under clean data. For example, the change
error rate of MAE(R) under clean and noisy data is 54.92%. Consequently, our method
demonstrates competitive robustness among all deep learning methods under noisy data.
Exploring deeper reasons, we can infer that the extracted high-dimensional embeddings
contain some wrong position information, which results in biased virtual points and
estimation of the registration parameters. However, the feature fusion of Transformer and
Self-Attention in VPGnet and Regnet can still focus on more relevant parts in noisy data.
Thus, these two modules reduce the impact of global noise on completion and registration.

4.4.2. Sparsity Level Test

Subsequently, we tested the influence of different sparsity levels on predicted rotation
and translation metrics. We first performed FPS on the original two point clouds and
retained four sparsity levels, 0.5, 0.25, 0.125, and 0.0625. The statistical performances of
all baseline algorithms under different sparsity levels are shown in Figure 5 and 6. The
registration and completion results of sparse point clouds from algorithms are shown in
Figures 3c and 4c. As can be seen from the figure, only our algorithm and RPMnet algorithm
can finish the registration between sparse and partial point clouds. Our algorithm can
complete point clouds with a sparse level of 0.5. In order to intuitively see the impact of
increased sparsity level, we calculate the x-axis as 0.5− x, where x is the sparsity level.
Although the point cloud tends to sparse, our algorithm can still alleviate the limitation of
sparseness and guarantee registration quality. The detailed analysis is as follows.

We can see from Figure 5 that, no matter how the sparsity level changes, the predicted
rotation and translation errors of our algorithm consistently rank high in all methods.
Among the traditional algorithms, only the estimation of rotation from ICP is near our
algorithm. The ICP algorithm surpasses our algorithm when the sparsity level is 0.0625,
but the average error rate of the two algorithms is only 3.90%. Meanwhile, the minimum
average error rate of MAE(R) between the remaining traditional algorithms and our
algorithm is 54.48%. Therefore, we can conclude that our algorithm is ahead of all the
traditional algorithms in the accuracy of rotation estimation. Focusing on the deep learning
methods, our algorithm, RPMnet, and OMNet always maintain a leading position. Notably,
compared with DCP and PointnetLK algorithms, our algorithm performs significantly
better on MAE(R) since the average error rates at different sparsity levels are 68.07% and
61.75%, respectively. As a future improvement focus, our algorithm still has a gap in
the overall accuracy revealed in the 49.77% of average error rate compared with RPMnet
algorithms. Thankfully, the mean gap in the degree system is only 0.09°. Besides, the
variance of MAE(R) metric of our algorithm under different sparsity levels is 10.39, which
is close to 12.22 of RPMnet, and the average error rate is only 14.98%. Peculiarly, when
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dealing with the point cloud registration problem with a sparsity level greater than 0.25, the
average variation of our algorithm is 3.68, which is close to 3.70 of the RPMnet algorithm.
However, our algorithm increases by 4.31 compared with MAE(R) under the previous
sparse levels, which is lower than 4.66 of RPMnet when turning to the case of extreme
sparsity level of 0.0625. Compared with the previous sparse level, the error growth rate of
our algorithm under extreme sparse conditions is 38.90%, while the error growth rates of
RPMNet and OMNet are 73.71% and 49.47%, respectively. Therefore, the above data prove
that our algorithm illustrates outstanding robustness among deep learning-based methods
especially under extreme sparse conditions. We can infer from the above situations that the
additional virtual point completion in this paper makes the source points that do not have
ground-truth correspondences produce virtual corresponding points, thus making up for
the lack of shape information caused by the increased sparseness of the point cloud.

Figure 5. Influence of different sparsity levels on MAE(R).

As for the estimation of translation from Figure 6, except for the PointnetLK and
GO-ICP algorithms, the estimated values of the other algorithms are relatively close,
which is validated by the 0.01 variance of the mean value under different sparsity levels.
Nevertheless, our algorithm is still the third performer with an average of 0.13. Although
RPMnet is highly ranked with an average value of 0.08, its overall variance is 0.001 higher
than ours. In other words, our translation estimation is more stable than RPMNet in the
estimation of translation. Finally, the translation estimation error of our algorithm is only
0.09 higher than that of OMNet at different sparse levels. The reason for our improved
performances is that the VPG module enriches the shape information of partial point clouds,
so that more conjugate point pairs mean a stronger guarantee of translation estimation.
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Figure 6. Influence of different sparsity levels on T_loss.

4.4.3. Initial Rotation Angles Test

We followed the suggestion of FMR and evenly divided the initial rotation angle range of
0–60° into 6 groups with an interval of 10°. Then, we calculated the indicators about predicted
rotation in the above groups of initial angles to explore the robustness of algorithms to different
initial rotation angles. The statistical figure about registration is shown in Figure 7. The broken
lines with different colors in the figures represent the performance of different algorithms at
various initial rotation angles. Figures 3d and 4d show the registration and completion results
with an initial rotation angle of 30–40°. It can be seen from the two pictures that the completion
and registration of our algorithm under this initial rotation angle are visually reasonable.

In view of the overall tendency, the prediction errors of all algorithms show a surging
trend as the initial rotation angle increases. The reason is that the overlapping region
between point clouds decreases with the increase of rotation angles. Besides, the FPFH
feature used in the FGR algorithm is also rotation-sensitive, which debilitates the registra-
tion ability under different initial rotation angles. As can be seen from Figure 7, although
our algorithm lags behind OMNet slightly, it is ahead of other algorithms in the test of all
initial rotation angles with a mean value of 11.04. For a more detailed analysis, we divide
the initial rotation angles into small angles of 0–40° and large angles of 40–60°. For the
small angles registration, the average value of our algorithm on MAE(R) gets a smaller
5.10, which is still ahead of other algorithms. For example, compared with RPMNet, the
relative error rate is 58.27%. It indicates that our method expresses good applicability for
registration with a large overlap rate. However, once facing the rotation angle of 40–60°,
MAE(R) of all the deep learning methods rise in different steep degrees. The PointnetLK
algorithm is the most seriously affected. The average error of the PointnetLK at the initial
rotation angle of 40–60° is 193.36% higher than the average value of 0–40°. Specifically, our
algorithm still takes the lead in all algorithms even in large rotation angles. The relative
error rate of the MAE(R) of ours and RPMNet under 40–60° is 27.63%. Moreover, the
average amplitude of RPMNet at large rotation angles is 12.43, which is greater than our
11.97. Therefore, the proposed algorithm achieves more stable and excellent performance
than all methods except OMNet regarding resistance to various initial rotation angles. The
apparent gap can still be observed from Figure 7 when compared with OMNet, but the
average discrepancy between them is 0.06° under large rotation angles, and 0.17° under
small rotation angles, respectively. Let us pay special attention to the case where the initial
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rotation angle is 50–60°. In this case, the increased error rate of our algorithm is 57.14%,
which is lower than 88.99% of OMNet. Therefore, our method performs with close accuracy
to OMNet and better robustness to different initial rotation angles than OMNet. Notably,
the stability of our method even exceeds the OMNet algorithm in extreme cases, that is, the
initial rotation angle of 50–60°. By inspection, we conclude the interpretation that the VPG
module enriches the corresponding point pairs after completing the missing points. The
Transformer is employed to consider the position information of the opposite cloud in the
structure of Regnet, so the corresponding points generated by the registration network can
be keenly aware of the position change of the opposite cloud.

Figure 7. Influence of different initial angles on MAE(R).

4.5. Ablation Study

We conduct several ablation studies in this section to dissect VPRNet. Specifically,
we replace the important module with an alternative to better understand how various
components influence the measurement of the proposed algorithm. All experiments are
performed in the same setting as the experiments in Section 4.2.

4.5.1. Without VPGnet

Firstly, we exclude VPGnet and only retain Regnet to test the effectiveness of our
completion subnetwork. The network is retrained according to the contents of Section 3.5,
and the number of iterations is 1. The comparison data between the retrained network
and the original VPRNet is shown in Table 4. As seen from the table, VPRNet with GAN
has lower rotation and translation error than the network without GAN. Mainly, R_ Loss
and t_ Loss decreased by 55.56% and 66.67% than the network without the VPG module.
Therefore, the network structure we designed to complete before registration plays a
positive role in registering partial point clouds.
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Table 4. The results of network without VPGnet and original network on unseen category data. Bold
numbers are the smallest in the current column, and represent the best performance.

Method RMSE(R) MAE(R) RMSE(t) MAE(t) R_loss T_loss Reg_loss Time(s)

VPRNet(No VPG) 37.27 33.00 0.20 0.17 0.90 0.36 1.26 0.43
VPRNet(Original) 9.85 8.47 0.16 0.14 0.40 0.12 0.52 0.73

4.5.2. Without Transformer

Sequentially, we exclude the Transformer module in the Regnet and explore its signifi-
cance for feature fusion. The new hybrid features are extracted from the source point cloud
and the target point cloud independently. There is no communication between feature
information. The results are shown in Table 5.

Table 5. The results of the network without Transformer and original network on unseen category
data. Bold numbers are the smallest in the current column, and represent the best performance.

Method RMSE(R) MAE(R) MSE(t) RMSE(t) MAE(t) R_loss T_loss Reg_loss Time(s)

VPRNet(No Trans) 10.44 9.05 0.03 0.16 0.14 0.43 0.13 0.56 0.09
VPRNet(Original) 7.26 6.27 0.03 0.16 0.14 0.29 0.11 0.40 2.04

From Table 5, we can see that the Regnet without Transformer module is inferior to
the original one regardless of the rotation or the translation measurement. Especially in the
rotation estimation, the relative error ratio ε of our RMSE(R) and MAE(R) are reduced by
30.45%, and 30.72%, respectively. Some conclusions can be inferred from the data that the
Transformer provides not only the shape information of the opposing point clouds but also
includes the position information. Combining one’s feature map with the others’ makes
the matching of corresponding points more accurate.

4.5.3. Change Iteration Numbers

Finally, we tested the influence of different iteration times in Regnet on the registration
effect, and the specific results are shown in Table 6. As can be seen from the table, the
number of iterations with the best performance is 3, so we take 3 as the number of iterations
in the final registration network. Since too many iterations lead to the registration network
relying too much on training data and reducing the generalization of test data, a moderate
number of iterations guarantees generalization ability.

Table 6. Results on unseen categories point clouds in ModelNet40 under different iteration numbers.
Bold numbers are the smallest in the current column, and represent the best performance.

Method MAE(R) RMSE(R) MAE(t) RMSE(t) R_loss T_loss Reg_loss Time(s)

iter = 1 8.47 9.85 0.14 0.16 0.40 0.12 0.52 0.73
iter = 3 6.27 7.26 0.14 0.16 0.28 0.11 0.40 2.04
iter = 5 6.70 7.76 0.15 0.17 0.31 0.12 0.43 3.48
iter = 7 8.77 10.18 0.15 0.17 0.40 0.14 0.54 4.79

5. Discussion

It can be concluded that VPRNet is a novel and competitive registration algorithm for
partial assignment tasks from the above extensive experiments. Mainly, some meaningful
discussions are summarized below.

5.1. Generalizability Test

We tested the registration under unseen category point clouds by dividing the dataset
into the training and testing set according to the category. The experiment shows that
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the accuracy of deep learning methods significantly exceed the traditional algorithm.
Specifically, our algorithm ranks high in registration accuracy among all algorithms and
is close to the better RPMNet and OMNet. Therefore, we believe that our algorithm is
competitive and outstanding in generalization ability.

5.2. Noise Test

We added N(0, 0.002) jittering noise to the original data to test the robustness of the
baselines and our methods to the noise. The results described in Table 3 state that the
accuracy of the proposed algorithm under the influence of noise is still ahead of DCP and
PointnetLK algorithms. Although it is slightly inferior to OMNet and RPMnet, the gap
between the two methods is smaller than clean data. Moreover, it is the only one that still
produces more accurate registration under noise interference than clean data. Therefore,
the proposed algorithm shows advanced robustness in point cloud registration under
noise interference.

5.3. Sparsity Test

We performed FPS on the original data with different ratios to construct data with
different sparsity levels. our algorithm, RPMnet, and OMNet still maintain a leading
position under different sparsity levels in the sparsity test. Specifically, our algorithm
illustrates the best robustness and stability among deep learning-based methods under
extreme sparse conditions.

5.4. Initial Rotation Angle Test

We divided the initial rotation angles into six groups at an interval of 10° and tested
the influence of different rotation angles on the registration results. Experiments show that
our algorithm has better results than RPMNet at all initial rotation angles. Specifically, our
registration under large initial rotation angle of 50–60° is more stable than OMNet.

5.5. Ablation Study

We excluded the influence of the VPGnet and Transformer in the ablation study to
explore the role of each component in the network. Besides, we changed the number of
iterations to determine the number of iterations that perform best. Experimental results
show that VPGnet and transformation of the network have positive significance for the
final registration, and the registration is the most accurate when the number of iterations
is three.

6. Conclusions

We have proposed a novel neural network architecture called VPRNet to solve the
partial-to-partial cloud registration task. The network first generates virtual points to
complete the partial point clouds via a self-supervised VPGnet. Then, an iterative Regnet is
designed to estimate the registration parameters. Various experimental results obtained
from Modelnet40 indicate that our algorithm commands a leading position in the aspects
of generality and robustness during the competition with traditional and advanced deep
learning algorithms. Therefore, we can summarize that our proposed VPRNet achieves
advanced performance for partial-to-partial registration. In the future, we plan to improve
the algorithm from the following aspects:

(1) We will add other loss functions and effective modules to improve the accuracy of
the completion.

(2) We will try to incorporate our method into a large system like SLAM to ensure the
completeness and accuracy of reconstructed scenes.
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